Symmetric graphs of order 4p of valency prime

Wang Xiuyun 1, a
1 School of Mathematic Science University of Jinan, Jinan, Shandong, China
a1519168700@qq.com

Abstract.

A graph is symmetric or arc-transitive if its automorphism group acts transitively on vertices, edges and arcs. Let p, q be odd primes with p, q ≥ 5 and X a q-valent symmetric graph of order 4p. In this paper, we proved that $X \cong K_{4p}$ with $4p-1=q$, $X \cong K_{2p,2p-2pK_2}$ with $2p-1=q$, the quotient graph of X is isomorphic to $K_{p,p}$ and $p=q$, or K_{2p} and $2p-1=q$.

Keywords: Symmetric graph; Transitive graph; quotient graph; complete graph; prime

1 Introduction

Throughout this paper we denote by Z_n the cyclic group of order n and by Z_n^* the multiplicative group of Z_n consisting of numbers coprime to n. Let D_{2n} be the dihedral group of order $2n$, and let A_n and S_n be the alternating and symmetric group of degree n, respectively. All graphs are assumed to be finite, simple and undirected, but with an implicit orientation of the edges when appropriate. For a graph X, let $V(X)$, $E(X)$, $A(X)$ and $Aut(X)$ be the vertex set, the edge set, the arc set and the automorphism group of X, respectively. A graph X is said to be vertex-transitive, edge-transitive or arc-transitive (symmetric) if $Aut(X)$ acts transitively on $V(X)$, $E(X)$, or $A(X)$, respectively.

To end this section, we introduce the so called quotient graph of a graph X. Let $G \leq Aut(X)$ acts imprimitively on $V(X)$. Then G has a complete block system $\Sigma = \{B_0, B_1, \ldots, B_{n-1}\}$ on $V(X)$. The quotient graph X_{Σ} of X relative to Σ is defined to have vertex set and edge set as following:

$V(X_{\Sigma}) = \Sigma$

$E(X_{\Sigma}) = \{ \{B_i, B_j\} \mid \text{there exist } v_i \in B_i, v_j \in B_j \text{ such that } \{v_i, v_j\} \in E(X)\}$

In particular, if N is a normal subgroup of G then the set of orbits of N on $V(X)$ is a complete block system of G. In this case, the quotient graph of X relative to the orbits of N is also called the quotient graph of X relative to N, denoted by X_N. It is easy to see that if X is edge-transitive then the valency of X_N is a divisor of the valency of X.

One of the standard problems in the study of symmetric graphs is to classify such graphs of certain orders. Let p be a prime. The classification of symmetric
graphs of order \(p, p^2 \) and \(2p \) were given in [1-2]. Wang and Xu [3] classified the symmetric graphs of order \(3p \). In particular, constructing and classifying the symmetric graphs of small order is currently one of active topics in algebraic graph theory [4, 5, 6]. Let \(p, q \) be odd primes with \(p, q \geq 5 \) and \(X \) a \(q \)-valent symmetric graph of order \(4p \). In this paper, we proved that \(X \cong K_{4p} \) with \(4p-1=q \), \(X \cong K_{2p}, 2p-2pK_2 \) with \(2p-1=q \), the quotient graph of \(X \) is isomorphic to \(K_{p,p} \) and \(p=q \), or \(K_{2p} \) and \(2p-1=q \).

2 Preliminary Results

Cheng and Oxley [2] classified the connected symmetric graphs of order \(2p \) for a prime \(p \). To extract a classification of connected \(q-, 2q-, \) and \(4q \)-valent symmetric graphs of order \(2p \) for a prime \(q \geq 5 \), we need to define some graphs. Let \(V \) and \(V' \) be two disjoint copies of \(Z_p \), say \(V=\{i \mid i \in Z_p\} \) and \(V'=\{i' \mid i \in Z_p\} \). Let \(r \) be a positive integer dividing \(p-1 \) and \(H(p,r) \) the unique subgroup of \(\mathbb{Z}_p^* \) of order \(r \).

Define the graph \(G(2p,r) \) to have vertex set \(\overline{V} \cup \overline{V}' \) and edge set \(\{xy' \mid x,y \in Z_p, y-x \in H(p,r)\} \).

Clearly, \(G(2p,p-1) \cong K_{p,p} - pK_2 \), the complete bipartite graph of order \(2p \) minus a one factor. Furthermore, assume that \(r \) is an even integer dividing \(p-1 \). Then the graph \(G(2p,r) \) is defined to have vertex set \(\overline{V} \cup \overline{V}' \) and edge set \(\{xy,x'y,x'y',x'y' \mid x,y \in Z_p, y-x \in H(p,r)\} \).

Proposition 2.1.

[2, Theorem 2.4 and Table 1] Let \(p, q \) be odd primes with \(q \geq 5 \) and let \(X \) be a connected edge-transitive graph of order \(2p \). Then \(X \) is symmetric. Furthermore, if \(X \) has valency \(q \) then one of the following holds:

1. \(X \cong K_{2p} \), the complete graph of order \(2p \), and \(2p-1=q \);
2. \(X \cong K_{p,p} \), the complete bipartite graph of order \(2p \), and \(p=q \);
3. \(X \cong G(2p,q) \) with \(q \mid (p-1) \) and \((p,q) \neq (11,5) \), and \(\text{Aut}(X) \cong (\mathbb{Z}_p \times \mathbb{Z}_q) \rtimes \mathbb{Z}_2 \);
4. \(X \cong G(2 \cdot 11,5) \) and \(\text{Aut}(X) \cong \text{PSL}(2,11) \rtimes \mathbb{Z}_2 \).

If \(X \) has valency \(2q \) then \(X \) is bipartite and one of the following holds:

5. \(2q < p-1 \), \(X \cong G(2p,2q) \) with \(2q \mid (p-1) \) and \(\text{Aut}(X) \cong (\mathbb{Z}_p \times \mathbb{Z}_{2q}) \rtimes \mathbb{Z}_2 \);
6. \(2q=p-1 \), \(X \cong K_{p,p} - pK_2 \) and \(\text{Aut}(X) \cong \mathbb{Z}_p \rtimes \mathbb{Z}_2 \).

If \(X \) has valency \(4q \) then one of the following holds:

7. \(X \) is non-bipartite, \(X \cong G(2p,2q) \) with \(2q \mid (p-1) \) and \(4q < p-1 \), \(\text{Aut}(X) \cong (\mathbb{Z}_p \times \mathbb{Z}_{4q}) \rtimes \mathbb{Z}_2 \) and \(\text{Aut}(X) \cong \mathbb{Z}_p \rtimes \mathbb{Z}_{4q} \);
8. \(X \) is bipartite and \(X \cong G(2p,4q) \) with \(4q \mid (p-1) \) and \(4q < p-1 \), \(\text{Aut}(X) \cong (\mathbb{Z}_p \rtimes \mathbb{Z}_{4q}) \rtimes \mathbb{Z}_2 \).

The socle of a finite group \(G \), denoted by \(\text{soc}(G) \), is the product of all minimal normal subgroups of \(G \). One may extract the following results from [7, Table 3].

Proposition 2.2.

Let \(p \) be a prime and \(G \) a primitive group of degree \(n \).

1. For \(n = p \), \(G \) is either solvable with a normal Sylow \(p \)-subgroup or non-solvable with the following table, where \(d \) and \(k \) denote the degree and transitive multiplicity, respectively.
<table>
<thead>
<tr>
<th>Soc(G)</th>
<th>d</th>
<th>k</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_p</td>
<td>p</td>
<td>p+2</td>
<td>G=A_p</td>
</tr>
<tr>
<td>A_p</td>
<td>p</td>
<td>p</td>
<td>G=S_p</td>
</tr>
<tr>
<td>PSL(2, 2^r)</td>
<td>p</td>
<td>2^r+1</td>
<td>S>0</td>
</tr>
<tr>
<td>PSL(n,q)</td>
<td>p</td>
<td>$(q^r-1)(q-1)$</td>
<td>n>3, n odd</td>
</tr>
<tr>
<td>M_{11}</td>
<td>11</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>M_{23}</td>
<td>23</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

(2) For n=2p, either G is 2-transitive or p=5.
(3) For n=4p, either G is 2-transitive or p=7, 13, or 17.
Also, one may see Proposition 2.2(1) and 2.2(2) from [8, Corollary 3.5B] and [2, Theorem 1.1], respectively. Moreover, if G is primitive, but not 2-transitive of degree 2p then p=5 and G ≅ A_5 or S_5. If G is primitive, but not 2-transitive of degree 4p then G ≅ A_8, S_8, PSL(2,8) or PGL(2,7) for p=7, G ≅ Aut(PSL(3,3)) for p=13, or G is isomorphic to a subgroup between PSL(2,16) and PΓL(2,16) for p=17.

Proposition 2.3. Let G be a 2-transitive permutation group of degree 2p. Then soc(G) ≅ A_2p, M_{22} or PSL(2,r^n).

MAIN RESULT

Let p, q ≥ 5 be odd primes with q ≥ 5. In this section we classify the q-valent symmetric graphs of order 4p. The mainly ideas for this paper come from two situation which is “Primitive” and “Non-Primitive”, figure 1 showed the process of the method.

![Figure 1 process of the method](image-url)
Theorem 3.1. Let p, q be odd primes with $p, q \geq 5$ and X a q-valent symmetric graph of order $4p$. Then $X \cong K_{4p}$ with $4p-1=q$, $X \cong K_{2p,2p-2pK_2}$ with $2p-1=q$, the quotient graph is isomorphic to $K_{p,p}$ and $p=q$, or K_{2p} and $2p-1=q$.

Proof. Let $A = \text{Aut}(X)$. Since X is symmetric graph of valency q, $q||A_\alpha|$ for some $\alpha \in V(X)$. First assume that A is 2-transitive on $V(X)$. Then $X \cong K_{4p}$ with $4p-1=q$.

Now assume that A is primitive, but not 2-transitive. By Proposition 2.2, we have $A \cong A_8, S_8, \text{PGL}(2,7), \text{PSL}(2,8)$ with $p=7$, or $A \cong \text{Aut}(\text{PSL}(3,3))$ with $p=13$, or $\text{PSL}(2,16) \leq A \leq \text{PGL}(2,16)$ with $p=17$. Suppose that $A = \text{PGL}(2,7), \text{PSL}(2,8)$ or $\text{Aut}(\text{PSL}(3,3))$. Then $|A_\alpha| = 2^2 \cdot 3$, $2 \cdot 3^2$ or $2^3 \cdot 3^3$, implying that $q=3$, a contradiction.

Suppose that $A = A_8, S_8$. Then $|A_\alpha| = 2^3 \cdot 3^2 \cdot 5$ or $2 \cdot 3^2 \cdot 5$, implying that $q=5$. It is impossible because the subdegrees of A are $1, 12, 15$. Suppose that $\text{PSL}(2,16) \leq A \leq \text{PGL}(2,16)$. Then $|A_\alpha| = 2^1 \cdot 3 \cdot 5$, $2^3 \cdot 3 \cdot 5$ or $2^4 \cdot 3 \cdot 5$, implying that $q=5$. By Magma[9], the subdegrees of A are $1, 12, 15, 20, 20$, and $1, 12, 15, 20, 20, 1, 12, 15, 40$, respectively. It is impossible. Thus, we may assume that A is imprimitive.

Let B be a non-trivial block of A on $V(X)$. Since $|V(X)| = 4p$, we have $|B|=p, 4, 2$ or $2p$. It follows that $B = \{ B^a \mid a \in A \}$ is a complete block system of A on $V(X)$.

Consider the quotient graph X_B relative to B and let K be the kernel of A on B. Then K is a normal subgroup of A, implying that K_α is a normal subgroup of A_α. Since X has valency q, A_α is primitive on $N(\alpha)$. It follows that $K_\alpha = 1$ or $q||K_\alpha|$. We can get the complete graph by using Primitive group in “Non-Primitive” situation. Figure 2 showed the structure of the method. For the “Non-Primitive” situation, we can get the remaining graphs from four different lengths.
Figure 2 Structure of the method

- $|B| = p$
- $|B| = 4$
- $|B| = 2p$
- $|B| = 2$

- No graph
- $X_B \cong X_{p,q}$
- $p = q$
- $X_B \cong X_{2p}$
- $2p - 1 = q$

- B is a non-trivial block of A on $V(X)$
Case I: $|B|=p$.
In this case, $|X_B|=4$ and $A/K \leq S_4$. Thus, $pq | |K|$. It follows that X is unconnected, a contradiction. In particular, A has no non-trivial normal p-subgroup.

Case II: $|B|=4$.
In this case, K is a $\{2,3\}$-group. It follows that $K_2=1$ and $|K| \leq 4$. Since A/K is transitive on X_B, by Proposition 2.2, A/K has a normal p-subgroup or A/K is 2-transitive on $V(X_B)$. Suppose that A/K has a normal p-subgroup, say M/K. Then M is a normal subgroup of A and the Sylow p-subgroup P of M is characterized in M, implies that P is a normal subgroup of A, contrary to Case I. Thus, A/K is 2-transitive on $V(X_B)$, implying that $X \not\cong K_p$. Assume that k is the number of the edges between two blocks. Then $(p-1)k=4q$, it follows that $k=1$ and $p-1=4q$, or $k=2$ and $p-1=2q$. By Proposition 2.2, $\text{soc}(A/K) \cong A_p$, $\text{PSL}(2,2^s)$ with $p=2^{2s}+1$, $\text{PSL}(m,r)$ with $p=(r^m-1)/(r-1)$, $\text{PSL}(2,11)$, M_{11} or M_{23}. If $\text{soc}(A/K) \cong A_p$ then $|A/K|$ is divisible by $1/2(p!)$. From elementary number theory it is well known that there exists a prime t between q and $2q$. Since $p-1=2q$ or $4q$, one has $t|\sigma(A)$, which is impossible because $|\sigma(A)|=4pqn$ where each prime divisor of n is a divisor of $q!$. If $\text{soc}(A/K) \cong \text{PSL}(2,2^s)$ then $p-1=2^{2s}-2q$ or $4q$, which is clearly impossible[10]. If $\text{soc}(A/K) \cong \text{PSL}(m,r)$ then $p=(r^m-1)/(r-1)=r^{m-1}+\cdots+r+1$ and $m \geq 3$ is odd. It follows that $t(1+r)/(p-1)$, which is also impossible because $p=2q$ or $4q$ and $q \geq 5$ (note that $4 \cdot 5 + 1 = 21$ is not a prime). Thus, $\text{soc}(A/K) \cong \text{PSL}(2,11)$, M_{11} and $p=11$, or M_{23} and $p=23$. If $|K|=2$ or 4, then K is imprimitive on B since $|B|=4$. Let Δ be a non-trivial block of K acting on B. Then Δ is non-trivial block of A, $|\Delta|=2$ and $\Sigma=\{\Delta a \mid a \in A\}$ is a complete block system of A. (see case IV) Thus, we may assume that $K=1$. It follows that $A=\text{PSL}(2,11)$, $\text{PGL}(2,11)$, M_{11} or M_{23} because $|\text{Out}(\text{PSL}(2,11))|=2$, and $|\text{Out}(\text{M}_{11})|=|\text{Out}(\text{M}_{23})|=1$ (see [11]). Note that $|\text{PSL}(2,11)|=2^4\cdot3\cdot5\cdot11$, $|\text{M}_{11}|=2^4\cdot3^2\cdot5\cdot11$ and $|\text{M}_{23}|=2^7\cdot3^2\cdot5\cdot7\cdot11\cdot23$. Since $|V(X)|=4p$, if $A=\text{PSL}(2,11)$ or $\text{PGL}(2,11)$ then A_1, or A is a subgroup of A of order 15 or 30, respectively, which is not true. Similarly, $A \neq \text{M}_{11}$ or M_{23} because M_{11} and M_{23} have no subgroups of order $2^2\cdot3^2\cdot5$ and $2^3\cdot3^2\cdot5\cdot7\cdot11$, respectively.

In this case, X is a bipartite graph with bipartite sets B and B' Let A' be the subgroup of A fixing B and B' setwise. Then $|A:A'|=2$ and A' is a normal subgroup of A. Assume that A' is imprimitive on B. Note that A' is the block stabilizer of B in A. Thus, every non-trivial block of A' on B is also a block of A, which has size 2 or p (see Case I and Case IV). Now assume that A' is primitive. Since $|B|=2p$, by Proposition 2.2, A' is 2-transitive on B. Then every vertex in $B\{u\}$ has the same number of neighbors $N(u)$, say m. It follows that $(q-1)(2p-1)m$, implying that $q\geq 2p-1$ and $m(2p-1)$. By Proposition 2.3, $\text{soc}(A') \cong A_{2p}$, M_{22} or $\text{PSL}(2,2^s)$. If $\text{soc}(A') \cong A_{2p}$ and $q=2p$ then there exists a prime t between q and $2q$ such that $t|\sigma(A')$, contrary to the fact that $|\sigma(A')|=4pqn$ and each prime of n dividing $q!$. If $q=2p-1$ then $X \not\cong K_{2p-2p^2}$. If $\text{soc}(A') \cong M_{22}$
then $q=7$ since $|M_{22}| = 2^7 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11$. It follows that $m=2$. Since M_{22} is 3-transitive on B, we have $A^*_{u,v}$ is transitive on $B \setminus \{u,v\}$. However, $A^*_{u,v}$ fixes $\{u',v'\}$ setwise, and $|N(N(u') \setminus \{u',v'\}) \setminus \{u,v\}| = 10 < 20$, contrary to the fact that A^* is 3-transitive on B. If $\text{soc}(A^*) \cong \text{PSL}(2,r^n)$ then $2p-1 = r^{n-1}$. Since $q|2p-1$ and $q^2|2p-1$, we have $n=2$ and $r=q$. It follows that $2p-1=q$ and $X \cong K_{2p}, 2p=2pK_2$.

Case IV: $|B|=2$.

In this case, K is 2-group and $|X_B|=2p$. Since $K_{u,v}$ is 1 or $q | |K_{u,v}|$, we have $|K| \leq 2$. Since X is symmetric, X_B is symmetric. Let X_B have valency d and let l be the number of edges between two blocks. Then $2q=d \cdot l$. It follows that $l=1$ and $d=2q$, or $l=2$ and $d=q$.

First assume that X_B has valency $2q$. By Proposition 2.1, X_B is symmetric, and $PK/K \leq A/K$, or $X_B \cong K_{2p}pK_2$ with $p=2q$. Let $2q=p-1$ and $L=(A/K)^*$. By Proposition 2.2, L has a normal p-subgroup or $\text{soc}(L)=A_p, \text{PSL}(2,2^2), \text{PSL}(n,r), \text{PSL}(2,11), M_{11}$ or M_{23}. If $\text{soc}(L)=A_2$, there then there exists a prime t between q and $2q$ such that $t | |L|$, a contradiction. If $\text{soc}(L)=\text{PSL}(2,2^2)$ or $\text{PSL}(n,r)$ then $p-1 \neq 2q$, a contradiction. Suppose that $\text{soc}(L)=M_{11}$ or M_{23}. Because Mult$(M_{11}) = Mult(M_{23})=1$. If $K=1$ then $A^*_{u,v}=M_{11}$ or M_{23} because Out$(M_{11}) = Out(M_{23})=1$. However, M_{11} and M_{23} has no subgroup of index 22 or 46, respectively, a contradiction. Thus, $\text{soc}(L)=\text{PSL}(2,11)$, implying that $L=\text{PSL}(2,11)$ or $\text{PGL}(2,11)$. Note that X_B is a Cayley graph on $D_{2^{11}}$. If $|K|=2$ then X is a Cayley graph on Q_{4p}. Furthermore, B is a subgroup of order 2 of Q_{4p}. It is impossible because Q_{4p} has unique an involution and X has no edges in B. If $|K|=1$ then $A^*_{u,v}=\text{PSL}(2,11)$ or $\text{PGL}(2,11)$. However, $\text{PSL}(2,11)$ and $\text{PGL}(2,11)$ both have no subgroup of index 22, a contradiction.

Now assume that X_B has valency q. By Proposition 2.1, $X_B \cong K_{2p}$ with $2p-1=q$, $K_{p,2}$ with $p=q$, or $G(2p,q)$ with $q|p-1$. Support that $X_B \cong G(2p,q)$ and $(p,q) \in \{(1,5)\}$. Then $PK/K \leq A/K$, implying that $P \leq A$, a contradiction. If $X_B \cong G(2,11,5)$ then $A/K \cong \text{PSL}(2,11) \rtimes \mathbb{Z}_2$. If $A/K \cong \text{PSL}(Z_{11} \rtimes \mathbb{Z}_2)$ then the Sylow 11-subgroup of A is normal in A, a contradiction. Thus, $A/K \cong \text{PSL}(2,11) \rtimes \mathbb{Z}_2$. If $|K|=2$ then X is a Cayley graph on $Q_{4,11}$, a contradiction. If $|K|=1$ then $A=\text{PSL}(2,11) \rtimes \mathbb{Z}_2$. It is impossible because $\text{PSL}(2,11)$ has no subgroup of index 22. Thus, $X_B \cong K_{p,2}$ and $2p-1=q$.

Conclusion

We give the classification of symmetric graphs of order $4p$ of valency prime in the paper. It is proved that if such graph exists, it must be complete graph of order $4p$ or complete bipartite graph minor 1-factor, or the quotient graph is isomorphic to complete bipartite graph or complete graph of order $2p$. The two former graphs must be symmetrical graphs, but the two later graphs should be further verified. We guess that both of these two graphs are symmetric. In addition, the classification of symmetric graphs of order of p, $2p$ and $3p$ have been completely
given. For the symmetric graphs of order 4p, only the classification of symmetric
graphs of order 4p of valency prime is done. We hope to use the theorem of non-
primitive block to study the classification of symmetric graphs of order 4p with
general valency.

Acknowledgment

This work was supported by the National Natural Science Foundation of
China(11201180), the National Natural Science Foundation of
Shandong(ZR2012AQ023) and the Doctoral Program of University of Jinan
(XBS1212)

References

[1] C.Y. Chao, On the classification of symmetric graphs with a prime number

593-604.

[8] J.D. Dixon, B. Mortimer: Permutation Groups (Springer-Verlag, New York,
1996).

[10] X.G. Fang, C.H. Li and M.Y. Xu, On edge-transitive Cayley graphs of

1590