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Abstract 
The theory of fuzzy measures has a great potential for 
real world applications, but limited by the lack of 
suitable identifying methods. This research proposes a 
bisection algorithm based on Sugeno’s λ-fuzzy 
measures. The proposed method is simple enough to 
suit the practical applications for the required data is 
similar to the traditional weighted-sum method. The 
computing complexity of this method is O(n), and it is 
efficient to meet the huge computations in practical. 

Keywords: Fuzzy measure; bisection algorithm; 
computing complexity 

1. Introduction 
The theory of fuzzy measures has a great potential for 
applications of subjective evaluation, information 
fusion, multiple criteria decision making [Wang and 
Klir, 1992; Grabisch, 1995]. However, this potential 
has not been fully utilized due to the lack of 
identifying methods for constructing fuzzy measure 
from empirical data [Yuan and Klir, 1996]. The crux is 
the amount of required coefficients growing 
exponentially with problem size n (roughly 2n). The 
existed identifying methods are based on either 
learning data, or semantic estimations, or both, but this 
problem is not yet solved in a fully satisfactory way 
[Grabisch, 1995]. 

Sugeno proposed a λ-fuzzy measure satisfying the 
λ-additive axiom [Sugeno and Terano, 1977; Wang 
and Klir, 1992]. The λ-fuzzy measure reduces the 
difficulty of identification effectively, and has plenty 
applications recently, including pattern recognition, 
speaker verification, and public attitude analyzing. 
Some studies estimate this single parameter of λ-fuzzy 
measure from learning data by the soft-computing 
methods like genetic algorithm [Lee and Leekwang, 
1995], neural networks [Wang and Wang, 1997]. But 
collecting subjective evaluations of each information 
source by questionnaire is an easier approach, and this 
approach reduces the identifying problem to an n-1 
degree polynomial (see function G in fig. 1 and 
explanation of section 2 for detail). There are many 

available methods [Wierzchoń, 1983], and the Keller 
and Osborns’ Newton’s method seems the simplest 
among them for practical uses. 
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Fig. 1: The equation for identification (S is the summation of 
input). 

 
However, the Newton’s method is sensitive to 

initial solution, and a feasible initial solution is not 
easy to locate in the polynomial of figure 1. A bad 
initial solution of G’(λ) ! 1 will lead the positive or 
negative infinite; and G’(λ)<1 when S<1, G’(λ)>1 
when S>1 will mislead the searching sequence back to 
the trivial solution λ=0. Besides, an over-estimated 
initial solution causes a slow converging sequence. 
The last, the Newton’s method requires the first-order 
differentiation having computing complexity O(n2).  

This research proposes a simple method based on 
bisection search and a linear transformation of 
traditional one (see function H in fig. 2 and 
explanation of section 2 for detail). The properties of 
this method are listed below. (1) The input is simple as 
the traditional weighted-sum method, and the required 
data is n only. (2) The executing time is short in 
practice and increases linearly with problem size only. 
A analysis of computing complexity O(n) is given in 
section 4. (3) The robustness is guaranteed and 
discussed in section 5. (4) The implementation is easy, 
and the source code of an executable program is 
opened in the appendix. 
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Fig. 2: The proposed identifying method based on function 
H(λ)=G(λ)-1-λ. 

2. λ-Fuzzy Measures  
In this section, some notations and required properties 
for our method are given. Most of them have been 
discussed deeply in some pioneering studies. We refer 
the reader to Leszczyński et al. [1986], Wang and Klir 
[1992]. 

Definition 2.1. Let X={x1, x2, …, xn} be a 
nonempty finite set, P is the power set of X. A (regular) 
λ-fuzzy measure µ defined on (X, P) is a set function 
satisfying the conditions: 
[1] µ(Φ)=0, µ(X)=1, where Φ  is the empty set; 

(boundary conditions) 
[2] If A, B! P and A ! B=Φ  then µ(A ! B)= 

µ(A)+µ(B)+ λµ(A)µ(B), λ ! (-1, + ! ); 
(monotonicity) 
Proposition 2.2. Denote gi=µ({xi}), the fuzzy 

measure µ satisfies the bounding conditions: 
(Leszczyński et al., 1986, pp.148-150; Wang and 
Wang,1997, p.187; Wang and Klir, 1992, pp.40-46) 
[1] gi![0, 1] for all i; 
[2] if there exists gi=1, then gj=0 for any j! i; 
[3] if gi<1 for all i, then there are at least two of them 

being positive. 
Extending definition 2.1, we obtain an equation 

for identifying parameter λ: 
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S , if λ!(-1, 
+! ) then G’(λ)>0, G’’(λ)>0, and G’(0)=S for n>2 
(lemma 2.4 and corollary 2.5 of Leszczyński et al. 
1986). 

Theorem 2.4. The parameter λ can be determined 
uniquely from G(λ) (theorem 3.6 of Wang and Klir, 
1992): 
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Proposition 2.5. Let H(λ)=G(λ)-1-λ=0. 
[1] When S>1, if exist u, v, –1<u<v<0, and H(u)>0, 

H(v)<0, then there exists a unique w, such that 
H(w)=0 and u<w<v. 

[2] When S<1, if exist u, v, u>v>0, and H(u)>0, 
H(v)<0, then there exists a unique w, such that 
H(w)=0 and u>w>v. 
[Proof] From the continuity of function H and 

uniqueness of theorem 2.4, if we can obtain a closed 
range having the two endpoints with different signs, 
then a solution exists uniquely from intermediate 
theory (see fig. 2). 

Proposition 2.6. If there exists a small ε, and ε>0, 
then (1) H(-1)>0 when all gi<1; (2) H(-ε)<0 when S>1; 
(3) H(ε)<0 when S<1. 
[Proof]  
(1) H(-1)=(1-g1)(1- g2)…(1- gn)-1+1=(1-g1)(1- g2)… 

(1- gn)>0  ( ig
i

!<" ,10Q ). 
(2) H’(λ)=G’(λ)-1>-1, H’’(λ)=G’’(λ)>0, H’(0)=G’(0)-

1=S-1 (from proposition 2.3), and H(0)=G(0)-1=0. 
When S>1, H’(0)=S-1>0, therefore H(-ε)<H(0)=0. 

(3) Similar as the above, H’(0)=S-1<0 when S<1, 
therefore H(ε)<H(0)=0. 

3. The Algorithm  
Fig. 3 shows the proposed algorithm. There are three 
primary steps consisting of validating the input data, 
determining a closed range of λ, and conducting a 
bisection search.  
 
Validate the input data 
1-1. If n<2, then return error 
1-2. If any gi<0 or gi>1 for I=1..n, then return error 
1-3. If any gi<ε1/2 for i=1..n, then let gi=0 
1-4. Let c0 be the count of gi=0, c1 be the count of 

gi=1, for i=1..n 
1-5. If c1>1, then return error 
1-6. If c1=1 and c0<n-1 then return error 
1-7. If n-c0<2, then return error 
Determine a closed range of λ  (S is the summation 
of gi): 
2-1. If |S-1|<ε, then return 0 
2-2. If S>1, then { let u=-1, v=-ε, and go to step 3} 
2-3 If S<1, then find a k>1 and H(2k)>0: 
 Let k=0; repeat let k=k+1 until H(2k)>0 
 Let v=ε, u=2k 



Perform a bisection search between v and u: 
Repeat Let w=(u+v)/2 
 If u=w or v=w then break-repeat 
 If H(w)>0 then let u=w; else let v=w 
Until (|u-v|<d) 
Return w 

 
Fig. 3: The detail algorithm. 

4. Computing Complexity  
There are two explicit loops and one implicit loop in 
this method. The first explicit loop is to find the range 
of λ when S<1 (step 2-3). The second explicit loop is 
to conduct a bisection search within a closed range 
(step 3). The implicit loop is to compute function H 
each explicit loop. The following discussions begin 
with the implicit loop. 

(1) THE IMPLICIT LOOP OF COMPUTING FUNCTION H 

By definition, H(λ) =(1+λ*g1) *(1+λ*g2) *… 
*(1+λ*gn) -1-λ. Let c1 be the fixed overhead, and 
roughly c2 be the executing time of each input; then, 
we can denote the executing time of function H as 
O1(n) below. 

O1(n)=c1+c2*n 

(2) THE EXPLICIT LOOP OF FINDING A CLOSED RANGE 

If S<1, this loop can be stated as finding a k and 
H(2k)>0. If S>1, then k=0. Whatever S is, the value of 
k is predefined as a specific set of gi is given. We 
denote the executing time by O2(n) below. There are 
two constants in O2(n), say c3, c4, where c3 is the 
fixed parts, and c4 is the executing time in the loop 
excluding the computing time of function H. 

O2(n)=c3+(c4+c1+c2*n)*(k+1) 

(3) THE EXPLICIT LOOP OF CONDUCTING A 
BISECTION SEARCH 

There are 2 normal conditions to halt this loop, 
including the absolute width of searching range (|u-v|) 
is smaller than e1, or the distance of function H (|H(w)|) 
is smaller than e2. The worst case above happens 
when λ is large, and only the first condition can be 
activated. Then, the algorithm has to equally divide the 
range (0, 2k) k+1 times and narrow-down the searching 
width to 1, and equally divide log2(1/e1) times again to 
approach the precision e1. The executing time of this 
loop is denoted by O3(n). In O3(n), the constants c5, 
c6 are similar to c3, c4 in O2(n). 

O3(n)=c5+(c6+c1+c2*n)*(k+1+log2(1/e1)) 

(4) THE OVERALL COMPUTING COMPLEXITY  

Let the fixed overhead of this method be c7, and 
the overall executing time is: 

O(n)=c7+c3+(c4+c1+c2*n)*(k+1)+ 

c5+(c6+c1+c2*n)*(k+1+log2(1/e1)) 
All the constants, c1, c2, …, c7 are fixed and 

dependent on computing system, and parameters e1, k 
are either predefined or fixed to any given data set. 
Finally, we can simply say the computing complexity 
of our algorithm is 

O(n)=n 
The term “computing complexity O(n)=n” 

implies that the computing effort increases linearly as 
the problems size increasing in the worst case. 

5. Experimental Analysis  

(1) THE EXPERIMENTAL DATA 

Thousands of testing data are generated 
randomly in this section, and controlled by n (problem 
size) and S (summation of input). In a random data set, 
the value of S is randomly determined within a range 
firstly, and then another process distributes this 
summation to each input (gi) randomly again. For 
example, in the combination of n=2 and S=0.8 +0.2, 
we get the value of S randomly from (0.6, 1) at first. 
And then, we distribute this value of S to g1, g2 
randomly. 

There is a little trick in randomly distributing a 
fixed S to g1…gn and keeping them bounded in (0, 1). 
A random sequence between (0, 1), say g’

1…g’
n, is 

generated  at first. Assume R is the summation of 
g’

1…g’
n. If R>S or S<1, then we can simply multiply 

each g’i by S/R. However, if R<S and S>1, such a 
process can’t guarantee each g’

i *S/R is still bounded 
within (0, 1). Therefore, we change the view from g’i, 
S, R to 1- g’i, n-S, n-R, to make sure they do not 
excess their boundaries. 

Table 1 shows the results of each combination n 
and S under the precisions d= 0.0001, ε=10-12. The 
sequence of n is 2, 3, 4, 5, 6, 7, 8, then, 16, 32, at last, 
64. The values of S are discussed in two ways. (1) If 
S<1, then S is distributed uniformly in 4 absolutely 
range: 0.8+0.2, 0.4+0.1, 0.2+0.05, and 0.1+0.025. (2) 
If S>1, then S is distributed uniformly in 4 relative 
range: 1+(n-1)* (0.8 +0.2), 1+(n-1)* (0.4 +0.1), 1+(n-
1)* (0.2 +0.05), and 1+(n-1)* (0.1 +0.025).  

 
Table 1. The λa of fixed data set, and averages of λb, H#c, 
|H|d under various combinations of S and n in 30 random 

tests 

 

S=1+(n-

1)* 

(0.8+0.2) 

S=1+(n-1)* 

(0.4+0.1) 

S=1+(n-1)* 

(0.2+0.05) 

S=1+(n-1)* 

(0.1+0.025) 
S=0.8+0.2 S=0.4+0.1 S=0.2+0.05 S=0.1+0.025 

n=2 

-0.98761a 

-0.98935b 

14.00c 

0.000028d 

-0.81635 

-0.84819 

14.00 

0.000012 

-0.55560 

-0.61648 

14.00 

0.000007 

-0.33063 

-0.36284 

14.00 

0.000002 

1.24994 

3.17614 

16.93 

0.000005 

14.99994 

19.60841 

24.07 

0.000020 

79.99994 

183.00738 

30.07 

0.000026 

359.99994 

610.37085 

34.20 

0.000030 

n=3 

-0.99750 

-0.99668 

14.00 

-0.90424 

-0.92254 

14.00 

-0.68524 

-0.73785 

14.00 

-0.44281 

-0.48930 

14.00 

0.87018 

0.94872 

16.07 

8.23553 

15.05157 

23.07 

34.12372 

52.14021 

27.27 

117.24982 

164.26495 

30.53 



0.000033 0.000019 0.000011 0.000006 0.000006 0.000019 0.000032 0.000046 

n=4 

-0.99945 

-0.99880 

14.00 

0.000036 

-0.94733 

-0.95911 

14.00 

0.000025 

-0.77142 

-0.80424 

14.00 

0.000012 

-0.53204 

-0.55506 

14.00 

0.000008 

0.75458 

1.14321 

16.33 

0.000007 

6.60797 

8.33315 

22.00 

0.000026 

25.28546 

34.55428 

26.00 

0.000044 

79.99994 

107.87764 

29.33 

0.000044 

n=5 

-0.99994 

-0.99987 

14.00 

0.000048 

-0.97015 

-0.98143 

14.00 

0.000029 

-0.83087 

-0.86475 

14.00 

0.000016 

-0.60406 

-0.63175 

14.00 

0.000008 

0.69867 

0.90443 

15.87 

0.000007 

5.88751 

7.37860 

21.87 

0.000028 

21.66864 

25.32389 

25.27 

0.000039 

65.88849 

78.90986 

28.47 

0.000057 

n=6 

-0.99994 

-0.99986 

14.00 

0.000048 

-0.98273 

-0.98848 

14.00 

0.000026 

-0.87299 

-0.89694 

14.00 

0.000018 

-0.66266 

-0.69119 

14.00 

0.000012 

0.66571 

0.81978 

15.73 

0.000006 

5.48236 

5.98209 

20.93 

0.000025 

19.71783 

23.73429 

25.20 

0.000049 

58.57587 

70.96923 

28.00 

0.000056 

n=7 

-0.99994 

-0.99992 

14.00 

0.000048 

-0.98981 

-0.99510 

14.00 

0.000032 

-0.90350 

-0.91825 

14.00 

0.000017 

-0.71112 

-0.75079 

14.00 

0.000014 

0.64410 

0.99910 

16.07 

0.000008 

5.22308 

6.31972 

21.20 

0.000031 

18.50104 

21.81824 

24.73 

0.000055 

54.12616 

65.61039 

28.00 

0.000062 

n=8 

-0.99994 

-0.99994 

14.00 

0.000056 

-0.99396 

-0.99703 

14.00 

0.000026 

-0.92596 

-0.93547 

14.00 

0.000019 

-0.75128 

-0.78022 

14.00 

0.000015 

0.62872 

0.78508 

15.73 

0.000006 

5.04303 

5.80138 

21.07 

0.000029 

17.67072 

19.32992 

24.47 

0.000052 

51.14056 

62.62416 

27.73 

0.000060 

n=16 

-0.99994 

-0.99994 

14.00 

0.000061 

-0.99994 

-0.99982 

14.00 

0.000041 

-0.98944 

-0.99014 

14.00 

0.000033 

-0.91534 

-0.91994 

14.00 

0.000021 

0.58014 

0.87316 

16.07 

0.000008 

4.49432 

4.75031 

20.40 

0.000026 

15.21649 

16.53394 

23.87 

0.000052 

42.56610 

47.00269 

27.13 

0.000070 

n=32 

-0.99994 

-0.99994 

14.00 

0.000061 

-0.99994 

-0.99994 

14.00 

0.000061 

-0.99969 

-0.99966 

14.00 

0.000029 

-0.98676 

-0.98590 

14.00 

0.000026 

0.55865 

0.60504 

15.40 

0.000007 

4.25970 

4.50196 

20.13 

0.000036 

14.20282 

15.54286 

23.80 

0.000040 

39.13776 

42.42880 

26.73 

0.000085 

n=64 

-0.99994 

-0.99994 

14.00 

0.000061 

-0.99994 

-0.99994 

14.00 

0.000061 

-0.99994 

-0.99994 

14.00 

0.000060 

-0.99957 

-0.99946 

14.00 

0.000028 

0.54840 

0.50037 

15.20 

0.000006 

4.15082 

4.55727 

20.20 

0.000031 

13.73944 

14.39713 

23.67 

0.000047 

37.59357 

38.74102 

26.33 

0.000089 

Remark: d=0.0001,ε=10-12 

Each combination is tested 30 times randomly, 
and the average of λ, |H|, and H# are reported. Beside 
the random data, the value of λ of a fixed data set is 
given. The purpose of fixed data is verification. Each 
input of fixed data has the same value; and the 
summation of fixed data is equal to the middle point of 
random range. 

(2) THE ANALYSIS OF RELIABILITY 

This section discusses the reliability in two ways. 
The first is to compare the λ of known data set with 
the computing result outside the method. The other is 
to verify the results satisfying the identification 
equation H(λ)=0 or not. The required precision of λ is 
d=0.0001 in Table 1. 

There are eight combinations of n=2 in the first 
row of Table 1, and four numbers in each combination; 
the first of the four numbers is the λ of fixed data set. 
Usually, this algorithm is too complicated to n=2; but 
it is easy to verify the results manually. For example, 
the contents of the fixed data are S=1.8, and g1= 
g2=0.9 in the combination of n=2 and S=1+(n-
1)*(0.8+0.2), and S=0.1, and g1= g2=0.05 in n=2 and 
S=0.1+0.025. We can compare the values in the Table 

1 with the “true” values below; and both the results are 
bounded in -0.98761+0.0001, and 359.99994+0.0001 
(d=0.0001).  

0.9+0.9+λ*0.9*0.9=1 
λ =-0.8/0.81=-0.98765 
0.05+0.05+λ*0.05*0.05=1 
λ =0.9/0.0025=360 
In another way, we can compute the values of 

function H; and both errors, Hg1=g2=0.9(-0.98761)=-
0.000035, Hg1=g2=0.05(359.99994)=0.000054, are 
relatively small. The last number of each combination 
is the average of |H|. All the values in the Table 1 are 
very small, from 0.000002 to 0.000089; that is, the 
values of λ are quite reliable. 

6. Conclusions 
A bisection algorithm given in this paper has been 
used successfully to identify λ-fuzzy measure. The 
amount of required data is small, and as same as the 
problem size, n. The executing time is short in practice, 
and increases with n. An analysis of computing 
complexity O(n) is given, and the reliability is shown 
by thousands of samples. The robustness is discussed 
in two way, the data exceeding the ability of 
computing systems are screened in the validating step, 
and the rests are demonstrated reliable through four 
types of specially designed data. The implementation 
of this method is easy and effective. 
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