
Bisection Algorithms for Solving λ-Fuzzy Measures
Jih-Chang Wang1 Ting-Yu Chen2

1Department of Information Management, Chang Gang University, Taiwan
2Department of Business Administration, Chang Gung University, Taiwan

Abstract
The theory of fuzzy measures has a great potential for
real world applications, but limited by the lack of
suitable identifying methods. This research proposes a
bisection algorithm based on Sugeno’s λ-fuzzy
measures. The proposed method is simple enough to
suit the practical applications for the required data is
similar to the traditional weighted-sum method. The
computing complexity of this method is O(n), and it is
efficient to meet the huge computations in practical.

Keywords: Fuzzy measure; bisection algorithm;
computing complexity

1. Introduction
The theory of fuzzy measures has a great potential for
applications of subjective evaluation, information
fusion, multiple criteria decision making [Wang and
Klir, 1992; Grabisch, 1995]. However, this potential
has not been fully utilized due to the lack of
identifying methods for constructing fuzzy measure
from empirical data [Yuan and Klir, 1996]. The crux is
the amount of required coefficients growing
exponentially with problem size n (roughly 2n). The
existed identifying methods are based on either
learning data, or semantic estimations, or both, but this
problem is not yet solved in a fully satisfactory way
[Grabisch, 1995].

Sugeno proposed a λ-fuzzy measure satisfying the
λ-additive axiom [Sugeno and Terano, 1977; Wang
and Klir, 1992]. The λ-fuzzy measure reduces the
difficulty of identification effectively, and has plenty
applications recently, including pattern recognition,
speaker verification, and public attitude analyzing.
Some studies estimate this single parameter of λ-fuzzy
measure from learning data by the soft-computing
methods like genetic algorithm [Lee and Leekwang,
1995], neural networks [Wang and Wang, 1997]. But
collecting subjective evaluations of each information
source by questionnaire is an easier approach, and this
approach reduces the identifying problem to an n-1
degree polynomial (see function G in fig. 1 and
explanation of section 2 for detail). There are many

available methods [Wierzchoń, 1983], and the Keller
and Osborns’ Newton’s method seems the simplest
among them for practical uses.

y=1+!

y=G
S>1
(!)

y=G
S=1
(!)

y=G
S<1
(!)

!!=0!=-1

y

Fig. 1: The equation for identification (S is the summation of
input).

However, the Newton’s method is sensitive to

initial solution, and a feasible initial solution is not
easy to locate in the polynomial of figure 1. A bad
initial solution of G’(λ) ! 1 will lead the positive or
negative infinite; and G’(λ)<1 when S<1, G’(λ)>1
when S>1 will mislead the searching sequence back to
the trivial solution λ=0. Besides, an over-estimated
initial solution causes a slow converging sequence.
The last, the Newton’s method requires the first-order
differentiation having computing complexity O(n2).

This research proposes a simple method based on
bisection search and a linear transformation of
traditional one (see function H in fig. 2 and
explanation of section 2 for detail). The properties of
this method are listed below. (1) The input is simple as
the traditional weighted-sum method, and the required
data is n only. (2) The executing time is short in
practice and increases linearly with problem size only.
A analysis of computing complexity O(n) is given in
section 4. (3) The robustness is guaranteed and
discussed in section 5. (4) The implementation is easy,
and the source code of an executable program is
opened in the appendix.

S>1

S=1

!(")

"

S<1

"=0"=-1

Fig. 2: The proposed identifying method based on function
H(λ)=G(λ)-1-λ.

2. λ-Fuzzy Measures
In this section, some notations and required properties
for our method are given. Most of them have been
discussed deeply in some pioneering studies. We refer
the reader to Leszczyński et al. [1986], Wang and Klir
[1992].

Definition 2.1. Let X={x1, x2, …, xn} be a
nonempty finite set, P is the power set of X. A (regular)
λ-fuzzy measure µ defined on (X, P) is a set function
satisfying the conditions:
[1] µ(Φ)=0, µ(X)=1, where Φ is the empty set;

(boundary conditions)
[2] If A, B! P and A ! B=Φ then µ(A ! B)=

µ(A)+µ(B)+ λµ(A)µ(B), λ ! (-1, + !);
(monotonicity)
Proposition 2.2. Denote gi=µ({xi}), the fuzzy

measure µ satisfies the bounding conditions:
(Leszczyński et al., 1986, pp.148-150; Wang and
Wang,1997, p.187; Wang and Klir, 1992, pp.40-46)
[1] gi![0, 1] for all i;
[2] if there exists gi=1, then gj=0 for any j! i;
[3] if gi<1 for all i, then there are at least two of them

being positive.
Extending definition 2.1, we obtain an equation

for identifying parameter λ:

() ()
!"

!
#
$

=

%+=+&= =

01

011
G 1

'

'''' i

n

i
g

Proposition 2.3. Denote !

=

=
n

i

i
g

1

S , if λ!(-1,
+!) then G’(λ)>0, G’’(λ)>0, and G’(0)=S for n>2
(lemma 2.4 and corollary 2.5 of Leszczyński et al.
1986).

Theorem 2.4. The parameter λ can be determined
uniquely from G(λ) (theorem 3.6 of Wang and Klir,
1992):

!
"

!
#

$

><<%

==

<>

1Swhen 01

1Swhen 0

1Swhen 0

&

&

&

Proposition 2.5. Let H(λ)=G(λ)-1-λ=0.
[1] When S>1, if exist u, v, –1<u<v<0, and H(u)>0,

H(v)<0, then there exists a unique w, such that
H(w)=0 and u<w<v.

[2] When S<1, if exist u, v, u>v>0, and H(u)>0,
H(v)<0, then there exists a unique w, such that
H(w)=0 and u>w>v.
[Proof] From the continuity of function H and

uniqueness of theorem 2.4, if we can obtain a closed
range having the two endpoints with different signs,
then a solution exists uniquely from intermediate
theory (see fig. 2).

Proposition 2.6. If there exists a small ε, and ε>0,
then (1) H(-1)>0 when all gi<1; (2) H(-ε)<0 when S>1;
(3) H(ε)<0 when S<1.
[Proof]
(1) H(-1)=(1-g1)(1- g2)…(1- gn)-1+1=(1-g1)(1- g2)…

(1- gn)>0 (ig
i

!<" ,10Q).
(2) H’(λ)=G’(λ)-1>-1, H’’(λ)=G’’(λ)>0, H’(0)=G’(0)-

1=S-1 (from proposition 2.3), and H(0)=G(0)-1=0.
When S>1, H’(0)=S-1>0, therefore H(-ε)<H(0)=0.

(3) Similar as the above, H’(0)=S-1<0 when S<1,
therefore H(ε)<H(0)=0.

3. The Algorithm
Fig. 3 shows the proposed algorithm. There are three
primary steps consisting of validating the input data,
determining a closed range of λ, and conducting a
bisection search.

Validate the input data
1-1. If n<2, then return error
1-2. If any gi<0 or gi>1 for I=1..n, then return error
1-3. If any gi<ε1/2 for i=1..n, then let gi=0
1-4. Let c0 be the count of gi=0, c1 be the count of

gi=1, for i=1..n
1-5. If c1>1, then return error
1-6. If c1=1 and c0<n-1 then return error
1-7. If n-c0<2, then return error
Determine a closed range of λ (S is the summation
of gi):
2-1. If |S-1|<ε, then return 0
2-2. If S>1, then { let u=-1, v=-ε, and go to step 3}
2-3 If S<1, then find a k>1 and H(2k)>0:
 Let k=0; repeat let k=k+1 until H(2k)>0
 Let v=ε, u=2k

Perform a bisection search between v and u:
Repeat Let w=(u+v)/2
 If u=w or v=w then break-repeat
 If H(w)>0 then let u=w; else let v=w
Until (|u-v|<d)
Return w

Fig. 3: The detail algorithm.

4. Computing Complexity
There are two explicit loops and one implicit loop in
this method. The first explicit loop is to find the range
of λ when S<1 (step 2-3). The second explicit loop is
to conduct a bisection search within a closed range
(step 3). The implicit loop is to compute function H
each explicit loop. The following discussions begin
with the implicit loop.

(1) THE IMPLICIT LOOP OF COMPUTING FUNCTION H

By definition, H(λ) =(1+λ*g1) *(1+λ*g2) *…
*(1+λ*gn) -1-λ. Let c1 be the fixed overhead, and
roughly c2 be the executing time of each input; then,
we can denote the executing time of function H as
O1(n) below.

O1(n)=c1+c2*n

(2) THE EXPLICIT LOOP OF FINDING A CLOSED RANGE

If S<1, this loop can be stated as finding a k and
H(2k)>0. If S>1, then k=0. Whatever S is, the value of
k is predefined as a specific set of gi is given. We
denote the executing time by O2(n) below. There are
two constants in O2(n), say c3, c4, where c3 is the
fixed parts, and c4 is the executing time in the loop
excluding the computing time of function H.

O2(n)=c3+(c4+c1+c2*n)*(k+1)

(3) THE EXPLICIT LOOP OF CONDUCTING A
BISECTION SEARCH

There are 2 normal conditions to halt this loop,
including the absolute width of searching range (|u-v|)
is smaller than e1, or the distance of function H (|H(w)|)
is smaller than e2. The worst case above happens
when λ is large, and only the first condition can be
activated. Then, the algorithm has to equally divide the
range (0, 2k) k+1 times and narrow-down the searching
width to 1, and equally divide log2(1/e1) times again to
approach the precision e1. The executing time of this
loop is denoted by O3(n). In O3(n), the constants c5,
c6 are similar to c3, c4 in O2(n).

O3(n)=c5+(c6+c1+c2*n)*(k+1+log2(1/e1))

(4) THE OVERALL COMPUTING COMPLEXITY

Let the fixed overhead of this method be c7, and
the overall executing time is:

O(n)=c7+c3+(c4+c1+c2*n)*(k+1)+

c5+(c6+c1+c2*n)*(k+1+log2(1/e1))
All the constants, c1, c2, …, c7 are fixed and

dependent on computing system, and parameters e1, k
are either predefined or fixed to any given data set.
Finally, we can simply say the computing complexity
of our algorithm is

O(n)=n
The term “computing complexity O(n)=n”

implies that the computing effort increases linearly as
the problems size increasing in the worst case.

5. Experimental Analysis

(1) THE EXPERIMENTAL DATA

Thousands of testing data are generated
randomly in this section, and controlled by n (problem
size) and S (summation of input). In a random data set,
the value of S is randomly determined within a range
firstly, and then another process distributes this
summation to each input (gi) randomly again. For
example, in the combination of n=2 and S=0.8 +0.2,
we get the value of S randomly from (0.6, 1) at first.
And then, we distribute this value of S to g1, g2
randomly.

There is a little trick in randomly distributing a
fixed S to g1…gn and keeping them bounded in (0, 1).
A random sequence between (0, 1), say g’

1…g’
n, is

generated at first. Assume R is the summation of
g’

1…g’
n. If R>S or S<1, then we can simply multiply

each g’i by S/R. However, if R<S and S>1, such a
process can’t guarantee each g’

i *S/R is still bounded
within (0, 1). Therefore, we change the view from g’i,
S, R to 1- g’i, n-S, n-R, to make sure they do not
excess their boundaries.

Table 1 shows the results of each combination n
and S under the precisions d= 0.0001, ε=10-12. The
sequence of n is 2, 3, 4, 5, 6, 7, 8, then, 16, 32, at last,
64. The values of S are discussed in two ways. (1) If
S<1, then S is distributed uniformly in 4 absolutely
range: 0.8+0.2, 0.4+0.1, 0.2+0.05, and 0.1+0.025. (2)
If S>1, then S is distributed uniformly in 4 relative
range: 1+(n-1)* (0.8 +0.2), 1+(n-1)* (0.4 +0.1), 1+(n-
1)* (0.2 +0.05), and 1+(n-1)* (0.1 +0.025).

Table 1. The λa of fixed data set, and averages of λb, H#c,
|H|d under various combinations of S and n in 30 random

tests

S=1+(n-

1)*

(0.8+0.2)

S=1+(n-1)*

(0.4+0.1)

S=1+(n-1)*

(0.2+0.05)

S=1+(n-1)*

(0.1+0.025)
S=0.8+0.2 S=0.4+0.1 S=0.2+0.05 S=0.1+0.025

n=2

-0.98761a

-0.98935b

14.00c

0.000028d

-0.81635

-0.84819

14.00

0.000012

-0.55560

-0.61648

14.00

0.000007

-0.33063

-0.36284

14.00

0.000002

1.24994

3.17614

16.93

0.000005

14.99994

19.60841

24.07

0.000020

79.99994

183.00738

30.07

0.000026

359.99994

610.37085

34.20

0.000030

n=3

-0.99750

-0.99668

14.00

-0.90424

-0.92254

14.00

-0.68524

-0.73785

14.00

-0.44281

-0.48930

14.00

0.87018

0.94872

16.07

8.23553

15.05157

23.07

34.12372

52.14021

27.27

117.24982

164.26495

30.53

0.000033 0.000019 0.000011 0.000006 0.000006 0.000019 0.000032 0.000046

n=4

-0.99945

-0.99880

14.00

0.000036

-0.94733

-0.95911

14.00

0.000025

-0.77142

-0.80424

14.00

0.000012

-0.53204

-0.55506

14.00

0.000008

0.75458

1.14321

16.33

0.000007

6.60797

8.33315

22.00

0.000026

25.28546

34.55428

26.00

0.000044

79.99994

107.87764

29.33

0.000044

n=5

-0.99994

-0.99987

14.00

0.000048

-0.97015

-0.98143

14.00

0.000029

-0.83087

-0.86475

14.00

0.000016

-0.60406

-0.63175

14.00

0.000008

0.69867

0.90443

15.87

0.000007

5.88751

7.37860

21.87

0.000028

21.66864

25.32389

25.27

0.000039

65.88849

78.90986

28.47

0.000057

n=6

-0.99994

-0.99986

14.00

0.000048

-0.98273

-0.98848

14.00

0.000026

-0.87299

-0.89694

14.00

0.000018

-0.66266

-0.69119

14.00

0.000012

0.66571

0.81978

15.73

0.000006

5.48236

5.98209

20.93

0.000025

19.71783

23.73429

25.20

0.000049

58.57587

70.96923

28.00

0.000056

n=7

-0.99994

-0.99992

14.00

0.000048

-0.98981

-0.99510

14.00

0.000032

-0.90350

-0.91825

14.00

0.000017

-0.71112

-0.75079

14.00

0.000014

0.64410

0.99910

16.07

0.000008

5.22308

6.31972

21.20

0.000031

18.50104

21.81824

24.73

0.000055

54.12616

65.61039

28.00

0.000062

n=8

-0.99994

-0.99994

14.00

0.000056

-0.99396

-0.99703

14.00

0.000026

-0.92596

-0.93547

14.00

0.000019

-0.75128

-0.78022

14.00

0.000015

0.62872

0.78508

15.73

0.000006

5.04303

5.80138

21.07

0.000029

17.67072

19.32992

24.47

0.000052

51.14056

62.62416

27.73

0.000060

n=16

-0.99994

-0.99994

14.00

0.000061

-0.99994

-0.99982

14.00

0.000041

-0.98944

-0.99014

14.00

0.000033

-0.91534

-0.91994

14.00

0.000021

0.58014

0.87316

16.07

0.000008

4.49432

4.75031

20.40

0.000026

15.21649

16.53394

23.87

0.000052

42.56610

47.00269

27.13

0.000070

n=32

-0.99994

-0.99994

14.00

0.000061

-0.99994

-0.99994

14.00

0.000061

-0.99969

-0.99966

14.00

0.000029

-0.98676

-0.98590

14.00

0.000026

0.55865

0.60504

15.40

0.000007

4.25970

4.50196

20.13

0.000036

14.20282

15.54286

23.80

0.000040

39.13776

42.42880

26.73

0.000085

n=64

-0.99994

-0.99994

14.00

0.000061

-0.99994

-0.99994

14.00

0.000061

-0.99994

-0.99994

14.00

0.000060

-0.99957

-0.99946

14.00

0.000028

0.54840

0.50037

15.20

0.000006

4.15082

4.55727

20.20

0.000031

13.73944

14.39713

23.67

0.000047

37.59357

38.74102

26.33

0.000089

Remark: d=0.0001,ε=10-12

Each combination is tested 30 times randomly,
and the average of λ, |H|, and H# are reported. Beside
the random data, the value of λ of a fixed data set is
given. The purpose of fixed data is verification. Each
input of fixed data has the same value; and the
summation of fixed data is equal to the middle point of
random range.

(2) THE ANALYSIS OF RELIABILITY

This section discusses the reliability in two ways.
The first is to compare the λ of known data set with
the computing result outside the method. The other is
to verify the results satisfying the identification
equation H(λ)=0 or not. The required precision of λ is
d=0.0001 in Table 1.

There are eight combinations of n=2 in the first
row of Table 1, and four numbers in each combination;
the first of the four numbers is the λ of fixed data set.
Usually, this algorithm is too complicated to n=2; but
it is easy to verify the results manually. For example,
the contents of the fixed data are S=1.8, and g1=
g2=0.9 in the combination of n=2 and S=1+(n-
1)*(0.8+0.2), and S=0.1, and g1= g2=0.05 in n=2 and
S=0.1+0.025. We can compare the values in the Table

1 with the “true” values below; and both the results are
bounded in -0.98761+0.0001, and 359.99994+0.0001
(d=0.0001).

0.9+0.9+λ*0.9*0.9=1
λ =-0.8/0.81=-0.98765
0.05+0.05+λ*0.05*0.05=1
λ =0.9/0.0025=360
In another way, we can compute the values of

function H; and both errors, Hg1=g2=0.9(-0.98761)=-
0.000035, Hg1=g2=0.05(359.99994)=0.000054, are
relatively small. The last number of each combination
is the average of |H|. All the values in the Table 1 are
very small, from 0.000002 to 0.000089; that is, the
values of λ are quite reliable.

6. Conclusions
A bisection algorithm given in this paper has been
used successfully to identify λ-fuzzy measure. The
amount of required data is small, and as same as the
problem size, n. The executing time is short in practice,
and increases with n. An analysis of computing
complexity O(n) is given, and the reliability is shown
by thousands of samples. The robustness is discussed
in two way, the data exceeding the ability of
computing systems are screened in the validating step,
and the rests are demonstrated reliable through four
types of specially designed data. The implementation
of this method is easy and effective.

7. References
[1] Grabisch, M. (1995), “The application of fuzzy

integrals in multicriteria decision making,”
European Journal of Operational Research 89,
445-456.

[2] Lee, K.-M., and H. Leekwang, (1995),
“Identification of λ-fuzzy measure by genetic
algorithms,” Fuzzy Sets and Systems 75, 301-309.

[3] Leszczyński, K., Penczek, P., and Grochulski, W.
(1985), “Sugeno’s fuzzy measure and fuzzy
clustering,” Fuzzy Sets and Systems 15, 147-158.

[4] Sugeno, M., and T. Terano, (1977), “A model of
learning based on fuzzy information,”
Kybernetes 6, 157-166.

[5] Wang, Jia and Z. Wang (1997), “Using neural
networks to determine Sugeno measures by
statistics,” Neural Networks 10:1, 183-195.

[6] Wang, Z., and G.J. Klir, (1992), Fuzzy Measure
Theory. Plenum Press, New York.

[7] Wierzchoń, S.T. (1983), “An algorithm for
identification of fuzzy measure,” Fuzzy Sets and
Systems 9, 69-78.

[8] Yuan, B. and G.J. Klir (1996), “Constructing
fuzzy measures: a new method and its
application to cluster analysis,” IEEE, 567-571.

