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Abstract

A family of asymptotic solutions at infinity for a system ofdamary differential equations is
considered. Existence of exact solutions which have thegmptotics is proved.

1 Introduction

This paper is a reply to the Calogero’s question, asked oiNEEEDS-2007, about justification
of asymptotic solution of ordinary differential equationghe full-dimensional manifold of so-
lutions is the principal interest. Such solutions are ugdalked with the physically observed
phenomena. In the case of linear equations an asymptotansign of the general solution can
be constructed by using a fundamental system of asymptaltitiens [5, 15]. We present here a
similar result for nonlinear equations.

The main object is the system of differential equations

d

d_)t( =1t*f(x,t), x e R", (k= const>0) (1.2)
considered at >ty > 0. The factort* is here involved for identification of growing right hand
sides, occurring in applied problemis:+ 1 is called Poincare rank. L&(t;a), a € R" be an
n—parametric asymptotic solution at infinity. It means tthat vector functiorX (t; a) € Cl[to, »)
under substitution into the equation (1.1) yields the nesid

Y(t;a) E%—T—tkf(x,t), 1.2)
which is vanishing at infinityY (t;a) = O(t™#), t — o, u = const> 0. We study the following
problem: is theren—parametric exact solutior(t; a), for which theX(t;a) is an asymptotic
approximation at infinity:x(t;a) = X(t;a) + O(t™"), t — o, (v = const> 0)? An affirmative
answer is obtained here. The proof is reduced to the existdmeorem for the remainder. The
principal feature is the uniformity of the asymptotics widspect to the parameter

Justification of asymptotics in the general case was notggrayp to now and, probably, can
not be proved at all, although very interesting results arewn for some types of equations.
Results for linear equations are collected in [5, 15]. fiaation of asymptotics for the nonlinear
Painlevé equations are discussed in [2, 7, 9]. Usually #istence theorem follows the formal
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asymptotic construction. Various theorems were provecudidferent conditions which depend
on the asymptotic methods used [3, 12, 11, 13, 14]. Kuznistseell known results [13, 14]
deal with the case wheK(t) is a formal series (of powers, logarithms and exponentiai)
constant coefficients. Sometimes such series give an astimgxpansion of the general solution
[11]. But often such an expansion does not correspond torgkeselution. For example, the
pendulum equatior + sinx = 0 has few solutions of that type: a single solutigh) = 0 and two
one-parametic solutiongt) = £+ O(exp(—t)), t — c. The other solutions are oscillating and
belong to a two-parametric family.

Usually the general asymptotic expansions for nonlineaatgns are given by WKB formulas
in the form of power series with oscillating coefficientsB&utroux studied such two-parametric
asymptotics for the Painlevé equations [2]. In the genesiak the WKB asymptotics depend on
n parameters and just such solutions are of interest in phy$tor example, existence of two-
parametric increasing solution of main resonance equai®itdentified with the presence of the
autoresonance phenomenon [4, 10]. Justification of WKB asytics for the linear equations
[5, 16] and for some nonlinear equations [11] can be reduzédiznetsov’s theorem. But the re-
duction is unknown and evidently is impaossible for many éigua occurred in physics. Painleves
equations studied in [2, 7, 9] give examples of such type.

Justification of WKB asymptotics for the Painlevé equatiamusually based on the property
of integrability [7]. Nonlinear nonintegrable equatiorre atudied in this paper. We prove an ex-
istence theorem and give an estimate for the remainder. fHsepce of the—parameter solution
makes the proof very easy. Both technic of the proof and thieatbestimate are determined by
the properties of the asymptotic solutidtit; o). A similar estimate obtained in [8] for the case
of single solutionX(t) is linked with the properties of matrix of linearized systégi(X,t). Both
of these results are obtained under differsuifficientconditions, hence in general case they can
not be reduced to each other. In order to perform a compadrerhas to specify the considered
system and the asymptotic solution. We avoid both any asgpiioptonstruction and any discus-
sion on the method which yields the asymptotic solution.sTdpproach allows us to obtain an
existence theorem in general form which may be useful fordewéange of problems.

Our estimate is uniform with respect to the parameteand this feature is crucial for the
successful application in asymptotic theories. In paldictne uniformity of the WKB asymptotics
proves the orbital stability of the oscillating solutioResearches [13, 14, 8] deal with a single
solution which may be stable or unstable, see [11]. As a hdesblution have no any physical
sense, if it is unstable. Stability of the solution is notcdissed in the existence theorems [13, 14,
8]. The problem of stability returns us to investigatiomeparameter solution which is considered
here. Certainly our result does not give any information pstable solutions.

2 Input conditions

We consider the equation (1.1) under the assumption thatetbi@r function from the right side
f(x,t) is smooth (continuously differentiable) in the dom&ine D C R",t > tp}. An asymptotic
behavior at infinity

of(x,t)

f(x,t), ——==0(1), t—
(1), =5 = =O(1), t—o

uniformly on every compact € ¢ C D is supposed. The principal conditions are formulated by
means of the asymptotic solutiof(t; o). It is assumed that the vector functitit; o) depends
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on the parametere = (a1,...,an) and this dependence is smooth in some doneaia Ay C
R". Values of the asymptotic solution belong to the compaxt(t; a) € .#,, C R" when both
t € [to,0) and parametera range over any compact € </ C Ayg. Parametersr are supposed
functionally independent and the Jacobian

/(t:a)zg—é

has an asymptotics
det 7 (t;a) =tPla+0(1)], t — oo, (p=const a= consts 0).

In some sensk (t; a) is a general asymptotic solution. Elements of the Jacobetnixd = {3 ; }
have a similar asymptotics (may be different order for vasiaumber, j =1,...,n)

aij(t;a) =O(t%), t— oo, (gj; = cons.
We shall use the more short formula which may be considereah asymptotic estimate:

S (ta) =0(t7), t— oo, (q=maxq;). 2.1)
Under these assumptions the inverse matrix has a similan@syic estimate

S Hta)=0(t"), t— . 2.2)

One can see that the exponents satisfy the relatiprsgn, r <q(n—1) — p.
The residual determined by the formula (1.2) depends ondremeters as welY =Y (t; a).
We assume asymptotic estimates:

Y(ta)=0(tH), Z—Z = Ot H*3), t — oo, (U,s=cons). (2.3)
All asymptotics given above are supposed to be uniform veiipect to parameters< 7.

Remark. All restrictions are induced by examples of WKB asymptofios the Painlevé’s
equations [2, 7, 9] and for the main resonance equations T exponent: is a crucial param-
eter. It corresponds to the length of the asymptotic satutiés a rule,u can be made large as
desired, while the exponentg, p,q,r,s depend on both the considered equations and the family
of asymptotic solutions. They do not depend on the lengtlswingototicsu, as is seen in different
examples.

3 Existence theorem

Theorem 1. Let the vector functioiX(t;a), a € Ag C R" be an n—parametric asymptotic solu-
tion of the equatior(1.1) and the propertieg2.1), (2.2) hold. If the residual defined bf1.2) is
decreased?2.3)fast sufficiently at infinity:

U>r+s+landy >2(r+q+1)+Kk, (3.1)

1The case of unbounded asymptotic solution can be reducezhsidered one.
2In the case of complicated problem the quantitdepends on the talent of researcher, [1].
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then for arbitrary compact? C Ag there is a neighborhood of infinityat [T, e ) where the equation
(1.1) has the n-parametric exact solutia(t; o) which has an asymptotics

x(ta)=X(t;a)+0(t™"), t >0, (Vv=p—r—q—1>0)
uniformly withVa € <.

Proof. The idea of the proof was suggested by M.Fedoruk [6] and Veasrapplied in [10].
We seek an exact solution as the suftya) = X(t;a) + R(t;a). The dependence on the
parametersr will be omitted for brevity. The equation for the desired snderR reads

‘3—? =tK[f(X +R,t) —f(X,1)] = Y(t). (3.2)
It can be rearranged by identification of the linear part efdperator as follows
dR
at =t[4(HR+G(R,1)] - Y (t). (3.3)
Here the matrix#y(t) is calculated by means of derivatives of the known functiginen above:
_ of(X,t)
Mo = “ox

The vector function
G(R,t) =f(X+R,t) —f(X,t) — xf(X,t)R

has an asymptotid3(R,t) = O(|R|?) asR — 0. This asymptotics is uniform with respectto ty.

We desire to demonstrate existence of an exact sol&ioyor) which is given in some infinite
interval T <t < o and which is rapidly decreasing at infinity. As usual in sucborems, the
differential equation (3.3) must be reduced to an integgalagion in order to apply the method
of successive approximations. However, a trivial redurcionsisting in integration with respect
to t does not lead to success because the linear part of thedhtgggrator is not contractive
in that case. The idea suggested by M.Fedoruk consists émsion of an essential part of the
linear operator in the equation (3.3) by using the given gigtit solutionX(t; o). For this type
of inversion we use the Jacobi matri¥ (t;a). It is a fundamental asymptotic solution for the
linearized equation. Indeed, derivation of the startirgntity (1.2) with respect to parametears
yields

% —tX (1) 7 =0q4Y.

Here the left hand side represents linearized operatorhakiapplied atl, while the right hand
side is the residual which is rapidly vanishing at infiniggY (t; o) = O(t>#), t — co.
The Jacobi matrix is used in the substitutRr= ¢ C. Then the equation (3.3) is transformed
at the equation for the vector functi@it; a):
dC

Gt =4 (OC+9(CY) - 7). (3.4)

The main novelty now is the matrix7 in the linear part

M) =~ F 10, Y = Ot SH),
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which is rapidly decreasing at infinity if the is sufficiently large. In particular, the norm of the
matrix is estimated ifR"

|2 (1)] < Mgt" 5~ H vt > tg, (Mg = consy.
The nonlinear part is represented by the vector function
g(C,t) =t* #71G(_ZC1).

It has an asymptotic&(R,t) = O(|R|?) as|R| — 0 and this asymptotics is differentiable with
respect tR (uniformly with respect td). Then the inequality

IG(R1,t) = G(Rz,t)| < Mk (|R1| + [Rz2|)[R1 =Rz, Vt=>to

holds for allR1, R» in arbitrary compact?’; here the constamilk depends on the chosen compact
. Last relation provides the Lipschitzian property of thegtor:

[9(C1,t) —4(Ca,t)| < Myt*H" -t9(|Cq[ 4 |C2]) - 19|C1 — Cy (3.5)

for all vector functiontC; (t),t9C,(t) in every compact?’.
The differential equation (3.4) is equivalent to the insgmuation

ct) [ LamCn) +9(C).m)dn =Z(). @9

00

The vector function on the right hand side
zt)= [ /7 (mn

is well known and has an asymptotiggt) = O(t"*1H), t — . We are looking for a solution
C(t) which has a like asymptotic behavior.

In order to prove the theorem, we have to introduce some Besjaace. An appropriate space
of continuous vector function8(t) € C, [T, ) is determined by the weight norm

IClIx = sup*|C(O)], A =p—r— 1.
t>T
The boundaryl = const> ty will be chosen by the requirement of contractiveness oftkegiral
operator in what follows.

The first condition from (3.1) taken in the forth > g and the inequality (3.5) provide the
estimate

9(C1.t) ~ % (Cat)] < Mt 282y +[|C2l1)[C1— Cally (37)

which is valid for all vector function€;(t),Cx(t) in arbitrary compact?” C C, [T, ). If we take
here the integral with, then we can derive the Lipschitzian inequality

t
| [1@c1m -9 (Camdn|, <MeakTr 222 ¢y - €l = L €1 Call,
(3.8)
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which is valid for all[|C4[[5, [[C2[x < K. The Lipschitzian constant
LK — MKZKTk+2(f+q+l)—[J

can be chosen arbitrary small (for example, < 1/2) under arbitrarily largd’, as the exponent
k+2(r+g+1) — u < 0 is negative because of the second condition (3.1). Théiael§3.8)
provides contractiveness of the nonlinear part of the nalegperator.

The norm of the linear part of the integral operator can hienased by integration of the matrix
norm.Z (t):

supt? n”l///(n)ldnngsUptA/ n'teHAdt =
t>T t t>T t

=M TS0/ bs—u— A +1) = L.

The constanLy can be made small as desired (shy,< 1/2) under assumed conditiqm >
r +s+ 1. Itis enough to choose an appropriate lafgelhelg is used as a Lipschitzian constant
for the linear part of integral operator:

t
| [#myicam) - caman||, <Lolica—Calh.

Thus, if the value ofT is sufficiently large then the integral operator from theatopn (3.6)
turn out to be contractive in Banach spdaCg[T,»). The right side of the equatiod(t) =
O(t™1=H), t — = belongs the same spaZdt) c C,[T,o) asA = u—r —1. Then the fixed-
point theorem can be applied to the integral equation (3i6)mplies existence of the solution
C(t) € C,[T,). This vector function is differentiable because of the tdgr{3.4). As the equa-
tion (3.4) is equivalent to (3.2), theR(t) = #C(t) is a desired solution of the residual equation
(3.2) and it has an asymptotics

R(t)= #C(t) =0(t%*),t » o0, (A —q=V).

It must be point out that all estimates found are uniform wébpect to parametetsin arbi-
trary compacteZ. So the proof, as given above, is suitable both for the casefiséd parameter
o and a fixed compactr € &7 C Ap. In the last case the estimate of the remainder

R(t;a)= _ZC(t;a)=0(t"),t =

is uniform with respect t& a € 7. This completes the proof.
[

Remark. It may occur in application to specific problems that the omfethe asymptotic
estimate of the remaindd®(t) = O(t*~"'~9"1) is very rough. More precise estimations can be
derived, if a full asymptotic solution in the form of an infi@iasymptotic series is known; see
[10].
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