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Abstract

In this paper we describe the Hamiltonian dynamics, in some invariant manifolds of the mo-
tion of a gyrostat in Newtonian interaction with a sphericalrigid body. Considering a first
integrable approximation of this roto-translatory problem, by means of Liouville-Arnold the-
orem and some specifics techniques, we obtained a complete topological classification of the
phase flow associated to this system. The action-angle variables regions are obtained. These
variables allow us to calculate the modified Keplerian elements of this problem useful to elab-
orate a perturbation theory. The results of this work have a direct application to the study of
two body roto-translatory pro-blems where the rotation of one of them influences strongly in
the orbital motion of the system. In particular, we can applythese results to binary asteroids.

1 Introduction

In this work we describe the qualitative analysis of the dynamics of a first integrable approximation
of a gyrostat in Newtonian interaction with a spherical rigid body, in the fibers of constant total
angular momentum vector of an invariant manifold of motion.Let us remember what is known as
gyrostat: a mechanical systemScomposed of a rigid bodyS′ and other bodiesS′′ (deformable or
rigid) connected to it, in such a way that their motion relative toS′ does not alter the distribution of
masses of the systemS. Examples of such systems are: a rigid body to which are connected axes
of several symmetric rotors; or a rigid body with cavities completely filled with a homogeneous
fluid (see [9], [5], [3] for details).

As in [8], in some invariant manifolds of the motion, the dynamics of the non-canonical hamil-
tonian system is described, in a first approximation of the gravitational potential, by the Hamilto-
nianH : E−→ R given by:

H = H Kepler+ α(β − pθ )2 (1.1)

whereHKepler represents the Kepler Hamiltonian associated to the classical two-body problem
andα(β − pθ )2 is the effect associated to the rotation of the gyrostat. Whereα > 0 andβ ∈ R are
two structural constants of the system andE = R

+×S1×R
2 is the phase space.
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In order to do a qualitative study of the dynamics associatedto the Hamiltonian system, in a
similar way to [4], we consider the following sets:

Ih = H −1(h) = {z∈ E : H (z) = h} , Ik = {z∈ E : pθ = k} and Ihk = Ih∩ Ik

with z= (r,θ , pr , pθ ) ∈ E and(h,k) ∈ R
2.

These sets are invariant by the flow associated to the Hamiltonian, beingH and pθ two first
integrals of motion, independent and in involution.

The main results of this paper are the description of the foliation of:

(a) The phase spaceE by the invariant setsIh.

(b) Ih by the invariant setsIhk.

(c) Ihk by the flow of the Hamiltonian system.

This foliation provides a good description of the phase space when(h,k) ∈ R
2 varies for dif-

ferent values ofα andβ .

The main tool for this study is the Liouville-Arnold theorem([1],[4]), applied to the momentum
map(H , pθ ) : E×R −→ R

2 at regular values. A particular study for the setsIh, Ik and Ihk for
critical values of the momentum map is made. These values come given by the equilibrium points
of H or by values wherepθ = k is a maximum or a minimum of the energy surface.

In order to conclude we obtain the action-angle variables and the region of the phase space
where they can be defined. We calculate the Delaunay variables and the modified Keplerian ele-
ments of this problem useful to elaborate a perturbation theory.

2 Hamiltonian dynamics of the system

2.1 Equations of motion

According to [8], we use the following notation:S0 is a gyrostat of massm0 andS1 is a spherical
rigid body of massm1. M1 = m0 + m1; g1 = m0m1/M1; u, v vectors ofR3; IR3 is the identity
matrix and0 is the zero matrix of order three;I = diag(A,B,C) the diagonal tensor of inertia
of the gyrostat,z =(Π,u1,p1) ∈ R

9 is a generic element of the twice reduced problem obtained
using the symmetries of the system;Π = IΩ + lr is the total rotational angular momentum vector
of the gyrostat in the body frame, which is attached to its rigid part J and whose axes have the
direction of the principal axes of inertia ofS0; lr = (0,0, l) is the gyrostatic momentum due to the
relative motion in the gyrostat, that we assume constant andparallel to the third axis of inertia;
u1,p1 are the barycentric coordinates and linear momenta expressed in the body frameJ and
L = Π+u1×p1.
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Let M = R
9 and we consider the following Lie-Poisson system(M ,{ , },H ), with Poisson

brackets{ , } defined by means of the Poisson tensor:

B(z) =




Π̂ û1 p̂1

û1 0 IR3

p̂1 −IR3 0


 (2.1)

In B(z), each elementŝv are the image of a vector ofR
3 by the standard isomorphism between

the Lie AlgebrasR3 andso(3).

v̂ =




0 −v3 v2

v3 0 −v1

−v2 v1 0


 (2.2)

The twice reduced Hamiltonian of the system has the following expression (see [8]):

H (z) =
| p1 |

2

2g1
+

1
2

ΠI
−1Π− lr · I−1Π+V (u1) (2.3)

where:

V (u1) = −
∫

S0

Gm1dm(Q)

| Q+ m1
M1

u1 | (2.4)

is the potential of gravitational interaction between the gyrostatS0 and the spherical bodyS1.

The equations of the motion are given by
dz
dt

= {z,H (z)} = B(z)∇zH (z). Developing

{z,H (z)}, we obtain the following group of vectorial equations of themotion:

dΠ
dt

= Π×Ω+u1×∇u1 V ,
du1

dt
=

p1

g1
+u1×Ω and

dp1

dt
= p1×Ω−∇u1V

2.2 Approximate hamiltonian dynamics

We consider the multipolar development of the potentialV (u1), supposing that the involved bodies
are at much more mutual distances than the individual dimensions of the same ones. For a triaxial
gyrostat the potential function, up to second harmonics, isgiven by the formula (see [8] for details):

V1 = −
Gm1

| u1 |

(
m0 +

trace(I)
2 | u1 |2

−
3(u1 · Iu1)

2 | u1 |4

)
(2.5)

then

H1(z) =
| p1 |

2

2g1
+

1
2

ΠI
−1Π− lr · I−1Π+V1(u1) (2.6)

If the gyrostat is close to a sphere we have:

V1 = −
Gm0m1

| u1 |
+ εP (2.7)

with ε a very small quantity andP is the perturbation due to the non-spherical form of the gyro-
stat.
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We denominated as a first integrable approximation of the considered problem whenε = 0 and
approximate dynamics to the differential equations of motion given by:

dz
dt

= {z,H (z)} = B(z)∇zH (z)

being:

H (z) =
| p1 |

2

2g1
+

1
2

ΠI
−1Π− lr · I−1Π−

Gm0m1

| u1 |
(2.8)

2.3 Invariant manifolds of the motion

Denotingu1 = (u1,u2,u3), p1 = (p1, p2, p3) andΠ = (π1,π2,π3), it is easy to prove that:

MC = {z∈ R
9,π1 = π2 = u3 = p3 = 0}

is an invariant manifold for the flow of the equations of motion. Similar results can be obtained
for the invariant manifoldsMA, MB in the cases in which the gyrostatic momentum is on the first
or second axis of inertia, respectively.

As in [8], consideringB(z) restricted toMC and denoting this restriction asBMC (z), then
LMC = π3 +(u1p2−u2p1) is a Casimir function of the Poisson tensorBMC (z), and each value of
the total angular momentumLMC = L constant, the dynamics on the fiberMC∩(LMC = L) adopts
canonical form.

Making an adequate canonical transformation, the Hamiltonian is:

H =
| P1 |

2

2
+ α(β − (xP2−yP1))

2−
1
| x |

(2.9)

with α =
σ
2C

, β =
L− l
σ2 , σ = µ (1−µ) andµ = m0 describes the planar dynamics of a gyrostat

in Newtonian interaction with a spherical rigid body on the fiberMC∩ (LMC = L) of the invariant
manifoldMC.

In which it follows we will consider the Hamiltonian in polarsymplectics coordinates:

H =
1
2

(
p2

r +
p2

θ
r2

)
+ α (β − pθ )2−

1
r

(2.10)

3 Qualitative study of the Hamiltonian flow

In this section we study the topology of the invariant manifoldsH −1(h) = Eh andIhk. To give the
topological classification of these invariant sets we need some notation and some new results.

Note thatze = (re,θe, pre, pθe) ∈ E is an equilibrium point of the Hamiltonian flow if and
only if z̃e = (re,θe) is a critical point of the amended potential. Moreover,π(ze) = z̃e, where
π : E−→R

+×S1 is the natural projection. For this reason, when 27αβ 4−128>0, the Hamiltonian
has two families of equilibrium points; one family of equilibrium points when 27αβ 4 − 128=
0 and the Hamiltonian does not have equilibria when 27αβ 4 − 128< 0. We denote byhi =
H (r i ,θi ,0, pθi ) (i = 1,2,3), the values of the HamiltonianH at its equilibrium points andc j ,( j =
1,2,3,4) the extremes of the energy surfaceH −1(h)/S1.
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To classify the trajectories we need the equilibrium pointshi (i = 1,2,3), the valuesc j ( j =
1,2,3,4) and some new valuesa1 anda2. These last values are the real roots respect tok of the
equationh−α (β −k)2 = 0. Is easy to see that, betweena1 anda2, all the trajectories are not
bounded . When we are ink = 0 the orbits are not bounded too. In the rest of the cases we have
not energy surface, a point or a bounded trajectory.

Finally, letSn−1 be the sphere inRn, with n > 1 andY the union of two open solid tori identi-
fying point to point the points of two circles of each torus which cannot be contracted to a single
point inside the corresponding torus (see [4] for details).

3.1 Energy surfaces

In this subsection we can observe the figures that represent the energy surfaces.

First case: 27αβ 4−128> 0.

Figure 1:H −1(h)/S1 for 27αβ 4−128>
0 andh < h2, wherek = pθ andc1,c2 the
extremes.

Figure 2:H −1(h)/S1 for 27αβ 4−128>
0 andh = h2, wherek = pθ , h2 the equili
brium point andc1,c2 the extremes.

Figure 3:H −1(h)/S1 for 27αβ 4−128>
0 and h2 < h < 0, where k = pθ and
c1,c2,c3,c4 the extremes.

Figure 4:H −1(h)/S1 for 27αβ 4−128>
0 and 0< h < h1, where k = pθ and
c1,c2,c3,c4 the extremes.

Figure 5:H −1(h)/S1 for 27αβ 4−128>
0 andh = h1, wherek = pθ , h1 the equili
brium point andc1,c2 the extremes.

Figure 6:H −1(h)/S1 for 27αβ 4−128>
0 andh > h1, wherek = pθ andc1,c2 the
extremes.
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Second case:27αβ 4−128= 0.

Figure 7:H −1(h)/S1 for 27αβ 4−128=
0 andh < h3, wherek = pθ andc1,c2 the
extremes.

Figure 8:H −1(h)/S1 for 27αβ 4−128=
0 andh = h3, wherek = pθ , h3 the equili
brium point andc1,c2 the extremes.

Figure 9:H −1(h)/S1 for 27αβ 4−128=
0 andh3 < h < 0, wherek = pθ andc1,c2

the extremes.

Figure 10:H −1(h)/S1 for 27αβ 4−128=
0 andh ≥ 0, wherek = pθ and c1,c2 the
extremes.

Third case: 27αβ 4−128< 0.

Figure 11:H −1(h)/S1 for 27αβ 4−128<
0 andh < 0, wherek = pθ and c1,c2 the
extremes.

Figure 12:H −1(h)/S1 for 27αβ 4−128<
0 andh ≥ 0, wherek = pθ and c1,c2 the
extremes.

The different colors in the pictures represent the contour line of the energy surfaces for constant
angular momentum and this allow us to see more easily if the trajectories are bounded.
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3.2 Topology of the invariant manifolds

In the following tables we describe the topological classification ofIh andIhk.

h Ih Ihk

h < h2 {S3\S1}, See Fig. 1

S1×S1, c2 < k < 0

S1×R, k = 0

S1×S1, 0< k < c1

h=h2 {S3\S1}∪{S1}, See Fig. 2

S1×S1, c2 < k < 0

S1×R, k = 0

S1×S1, 0< k < c1

S1×S1, k=h2

h2<h<0 {S3\S1}∪{S3}, See Fig. 3

S1×S1, c2 < k < 0

S1×R, k = 0

S1×S1, 0< k < c1

S1×S1, c3<k<c4

0 < h < h1 {S3\S1}∪{S3\S1}, See Fig. 4

S1×S1, c2 < k < 0

S1×R, k = 0

S1×S1, 0< k < c1

S1×S1, c3<k<a1

S1×R, a1< k<a2

S1×S1, a2<k<c4

h = h1 Y, See Fig. 5

S1×S1, c2 < k < 0

S1×R, k = 0

S1×S1, 0<k<a1

S1×R, a1< k<a2

S1×S1, a2<k<c1

h > h1 S3\{S1∪S1}, See Fig. 6

S1×S1, c2 < k < 0

S1×R, k = 0

S1×S1, 0< k < c1

S1×S1, 0<k<a1

S1×R, a1< k<a2

S1×S1, a2<k<c1

Table 1: Topological classification ofIh andIhk when 27αβ 4−128> 0.
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h Ih Ihk

h < h3 S3\S1, See Fig. 7

S1×S1, c2 < k < 0

S1×R, k = 0

S1×S1, 0< k < c1

h = h3 S3\S1, See Fig. 8

S1×S1, c2 < k < 0

S1×R, k = 0

S1×S1, 0< k < c1

h3 < h < 0 S3\S1, See Fig. 9

S1×S1, c2 < k < 0

S1×R, k = 0

S1×S1, 0< k < c1

h≥ 0 S3\{S1∪S1}, See Fig. 10

S1×S1, c2 < k < 0

S1×R, k = 0

S1×S1, 0<k<a1

S1×R, a1 < k < a2

S1×S1, a2 < k < c1

Table 2: Topological classification ofIh andIhk when 27αβ 4−128= 0.

h Ih Ihk

h < 0 S3\S1, See Fig. 11

S1×S1, c2 < k < 0

S1×R, k = 0

S1×S1, 0< k < c1

h≥ 0 S3\{S1∪S1}, See Fig. 12

S1×S1, c2 < k < 0

S1×R, k = 0

S1×S1, 0< k < a1

S1×R, a1 < k < a2

S1×S1, a2 < k < c1

Table 3: Topological classification ofIh andIhk when 27αβ 4−128< 0.
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4 Action-angle variables

In this section we calculate, by means of the Hamilton-Jacobi Theory, the action-angle variables
and the expression of the Hamiltonian in these variables. These variables are useful to calculate
the modified Keplerian elements and the planetary equationsthat are derived of these elements.

The action-angle variables can be defined by:

Jθ =
1

2π

∫ 2π

0
pθ dθ = k (4.1)

Jr =
1

2π

∫ r2

r1

√

2h−2Ṽ (r)−
1+2αr2

r2

(
k−

2αβ r2

1+2αr2

)2

dr (4.2)

where:

Ṽ (r) =
αβ 2

1+2αr2 −
1
r

is the expression of the amended potential in polar-symplectic coordinates.

In order to calculateJr we use the Cauchy Residue theorem. The expressions forJθ andJr are:

Jθ = k (4.3)

Jr = −Jθ −
1√

2
(
αβ 2−h−2αβJθ + αJ2

θ
) (4.4)

The transformation from polar-symplectic variables to action-angle variables can be defined in
the region where the following equation inr:

2h−2Ṽ (r)−
1+2αr2

r2

(
k−

2αβ r2

1+2αr2

)2

= 0 (4.5)

has two different real roots, according to the parametersα , β andh.

By means of Sturm Algorithm we obtain the region where (4.5) has two different real roots.
This region is given by the following inequalities:

1

2
(

h−α (β −k)2
) +k2 < 0 (4.6)

h−α (β −k)2 < 0 (4.7)



62 M C Balsaset al.

In the next figure the region defined by the inequalities (4.6)and (4.7) is presented

Figure 13: Region where (4.5) has two different real roots

Solvingh in (4.4) we have the Hamiltonian expressed by means of these new variables:

H = −
1

2(Jr +Jθ )2 + α (β −Jθ )2 (4.8)

5 Delaunay variables

Using the next transformations to Delaunay variables:

G = Jθ , L = Jr +Jθ

the HamiltonianH takes the form:

H =−
1

2L2 + α (β −G)2 (5.1)

In Delaunay variables, the inequalities (4.6) and (4.7) become to:

G2−L2 < 0 (5.2)

−
1

2L2 < 0 (5.3)
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And the region defined by the previous inequalities is:

Figure 14: Region for Delaunay variables

6 Planetary Equations

Using the Classical Perturbation Theory, we obtain the modified Keplerian elements, denoted by
(a,e, l ,g).

• a is the semi-major axis and its expression is:

a =
−1

2
(

h−α (β −k)2
) (6.1)

• e is the eccentricity:

e=
(

1+2
(

h−α (β −k)2
)

k2
) 1

2 (6.2)

• l is the mean anomaly:

l = t −n−1(E−esinE) (6.3)

where t is the time,n = a−
3
2 andE is the eccentric anomaly.

• g is the argument of perihelion:

g = θ − f −2α (t − l)
(

a
1
2
(
1−e2

) 1
2 −β

)
(6.4)

where f is the true anomaly.

It can be proved that the planetary equations are the same as the Kepler problem but the pertur-
bation theory for this system is more complicated because the Perturbed Kepler Problem has:

θ = g+ f

and for our Hamiltonian we have:

θ = g+ f +2α (t − l)
(

a
1
2
(
1−e2

) 1
2 −β

)

For more details about the planetary equations of Kepler problem see [2].
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7 Conclusions

In this paper we have considered a first integrable approximation of a roto-translatory problem.
We have described the Hamiltonian dynamics on the fibers of constant value of the total angular
momentum(LMC = L) in the invariant manifoldMC. A complete topological classification of
the invariant setsIh, Ik andIhk is given by means of Liouville-Arnold theorem and some specifics
techniques. The action-angle variables have been obtainedand the region of the phase space
where they can be defined. We have calculated the Delaunay variables and the modified Keplerian
elements of this problem useful to elaborate a perturbationtheory. The results of this work have
a direct application to the study of two body roto-translatory problems where the rotation of one
of them influences strongly in the orbital motion of the system. In particular, we can apply these
results to binary asteroids.
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