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Abstract

In this paper we describe the Hamiltonian dynamics, in samariant manifolds of the mo-
tion of a gyrostat in Newtonian interaction with a spheridggld body. Considering a first
integrable approximation of this roto-translatory prohldy means of Liouville-Arnold the-
orem and some specifics techniques, we obtained a comppetiotpcal classification of the
phase flow associated to this system. The action-angleblasiaegions are obtained. These
variables allow us to calculate the modified Keplerian eletsef this problem useful to elab-
orate a perturbation theory. The results of this work haveectapplication to the study of
two body roto-translatory pro-blems where the rotationmd of them influences strongly in
the orbital motion of the system. In particular, we can appbse results to binary asteroids.

1 Introduction

In this work we describe the qualitative analysis of the dyita of a first integrable approximation
of a gyrostat in Newtonian interaction with a sphericalditiody, in the fibers of constant total
angular momentum vector of an invariant manifold of motibet us remember what is known as
gyrostat: a mechanical systeédtomposed of a rigid bod$ and other bodie§’ (deformable or
rigid) connected to it, in such a way that their motion reiatioS does not alter the distribution of
masses of the systeB Examples of such systems are: a rigid body to which are atedexes
of several symmetric rotors; or a rigid body with cavitiesngetely filled with a homogeneous
fluid (see [9], [5], [3] for details).

As in [8], in some invariant manifolds of the motion, the dymies of the non-canonical hamil-
tonian system is described, in a first approximation of tlewitmtional potential, by the Hamilto-
nian.7 : E— R given by:

H = Hkepler+ A (B — Pg)° (1.1)

where Jkepier represents the Kepler Hamiltonian associated to the chssivo-body problem
anda (B — pg)? is the effect associated to the rotation of the gyrostat. M/tie> 0 andg < R are
two structural constants of the system d&hek R* x St x R? is the phase space.
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In order to do a qualitative study of the dynamics associtdetie Hamiltonian system, in a
similar way to [4], we consider the following sets:

|h:<%ﬁ_l(h):{Z€Eljf(Z):h}, |k:{Z€EI p9:k} and I = Ih Nk

with z= (r,8, pr, pe) € E and(h,k) € R%

These sets are invariant by the flow associated to the Hamailipbeing7# and pg two first
integrals of motion, independent and in involution.

The main results of this paper are the description of thatiol of:
(a) The phase spa&eby the invariant seth,.
(b) I, by the invariant seth.

(¢) Ink by the flow of the Hamiltonian system.

This foliation provides a good description of the phase spaleen(h, k) € R? varies for dif-
ferent values oftr andp.

The main tool for this study is the Liouville-Arnold theordfi],[4]), applied to the momentum
map (7, pg) : EXxR — R? at regular values. A particular study for the shisl, and Iy for
critical values of the momentum map is made. These valueg givan by the equilibrium points
of 2 or by values wherg@y = k is a maximum or a minimum of the energy surface.

In order to conclude we obtain the action-angle variables the region of the phase space
where they can be defined. We calculate the Delaunay vasiainid the modified Keplerian ele-
ments of this problem useful to elaborate a perturbatioarthe

2 Hamiltonian dynamics of the system

2.1 Equations of motion

According to [8], we use the following notatioly is a gyrostat of massy andS; is a spherical
rigid body of massmy. M1 = mg+ my; g1 = memy/Ms; u, v vectors ofR3; Igs is the identity
matrix andO is the zero matrix of order thred;= diag(A,B,C) the diagonal tensor of inertia
of the gyrostatz =(M,uy,p1) € R® is a generic element of the twice reduced problem obtained
using the symmetries of the systefh=IQ + |, is the total rotational angular momentum vector
of the gyrostat in the body frame, which is attached to it&rjgart J and whose axes have the
direction of the principal axes of inertia &; I, = (0,0,1) is the gyrostatic momentum due to the
relative motion in the gyrostat, that we assume constantpanallel to the third axis of inertia;
u1,py are the barycentric coordinates and linear momenta exguessthe body framey and

L =M+uz xp1.
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Let M = R® and we consider the following Lie-Poisson systéh, { , },.#), with Poisson
brackets{ , } defined by means of the Poisson tensor:

r p1
B(z) = 0 lgs (2.1)
F/)\l _IR3 0

In B(z), each elements are the image of a vector & by the standard isomorphism between
the Lie AlgebrasR® andso(3).

0 —V3 V7
V= V3 0 —Vi (2.2)

S5

—Vo Vi 0

The twice reduced Hamiltonian of the system has the follgverpression (see [8]):

H(2) = ‘;’;’ 4+ I'II[ 01T+ 7 (uy) (2.3)
1
where:
Gmdm(Q)
‘Q+mlu1’ (2.4)

is the potential of gravitational interaction between tieogtatS, and the spherical body;.
The equations of the motion are given I%\% = {z,7/(z)} = B(z)0,¢(z). Developing
{z,¢(2)}, we obtain the following group of vectorial equations of thetion:

dn d
=X QU x O 7, M _Priyxo  and Propixa-0,7

2.2 Approximate hamiltonian dynamics

We consider the multipolar development of the poterttiéli; ), supposing that the involved bodies
are at much more mutual distances than the individual dimmea®f the same ones. For a triaxial
gyrostat the potential function, up to second harmoniagyisn by the formula (see [8] for details):

g = Bm ( trace(l) 3(u1.1[u1)> 25)

| Uz | 2lur > 2fuf?
then
H(2) = | g;l‘ + r|11 =117 4 74 (uy) (2.6)
If the gyrostat is close to a sphere we have:
V= —G’Tir?“ra@ 2.7)

with € a very small quantity and? is the perturbation due to the non-spherical form of the gyro
stat.
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We denominated as a first integrable approximation of theidened problem whesa= 0 and
approximate dynamics to the differential equations of orotiven by:

dz
g = 2 (2)} =BL2(2)
being:
() < PP Iy i Gmom (2.8)
201 2 |up |

2.3 Invariant manifolds of the motion

Denotinguy = (ug,Uz,Us), P1 = (p1, P2, p3) andl = (1, 7, 7B), it is easy to prove that:
Mc={zeR% m=1m=u3=p3=0}

is an invariant manifold for the flow of the equations of matidsimilar results can be obtained
for the invariant manifold$1 o, Mg in the cases in which the gyrostatic momentum is on the first
or second axis of inertia, respectively.

As in [8], consideringB (z) restricted toMc and denoting this restriction @&y (z), then
Lme = B8+ (U1 p2 — Uzp1) is @ Casimir function of the Poisson teng®yi.. (z), and each value of
the total angular momentuiny . =L constant, the dynamics on the filde N (Lv. = L) adopts
canonical form.

Making an adequate canonical transformation, the Hanidtois:

2
jf:%jta(ﬁ—(xpz—ya))z—ﬁ (2.9)

with a = % ,B= LG—_ZI , 0= U (1—u)andu =mydescribes the planar dynamics of a gyrostat

in Newtonian interaction with a spherical rigid body on tHeefiMc N (Lm. = L) of the invariant
manifoldMc.
In which it follows we will consider the Hamiltonian in polaymplectics coordinates:

w=2 (s B) vap-po- 2.10)

3 Qualitative study of the Hamiltonian flow

In this section we study the topology of the invariant maldiga;#—(h) = Ey, andlpk. To give the
topological classification of these invariant sets we needesnotation and some new results.
Note thatze = (re, Be, Pr, Ps,) € E is an equilibrium point of the Hamiltonian flow if and

only if Z = (re,6e) is a critical point of the amended potential. Moreove(z) = Z, where
m: E — RT x Stis the natural projection. For this reason, whea B7—128> 0, the Hamiltonian
has two families of equilibrium points; one family of egbifium points when 2@34 — 128 =

0 and the Hamiltonian does not have equilibria whemw 27— 128 < 0. We denote by =
J(1i,6,0,pg) (i=1,2,3), the values of the Hamiltoniag#” at its equilibrium points and;, (j =
1,2,3,4) the extremes of the energy surfagé—(h)/St.
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To classify the trajectories we need the equilibrium pomts = 1,2,3), the valuesc; (j =
1,2,3,4) and some new valuem anday. These last values are the real roots respektdbthe
equationh—a (B — k)2 = 0. Is easy to see that, betweananday, all the trajectories are not
bounded . When we are k= 0 the orbits are not bounded too. In the rest of the cases we hav
not energy surface, a point or a bounded trajectory.

Finally, let "~ be the sphere iiR", with n > 1 andY the union of two open solid tori identi-
fying point to point the points of two circles of each torusigéhcannot be contracted to a single
point inside the corresponding torus (see [4] for details).

3.1 Energy surfaces

In this subsection we can observe the figures that represemniergy surfaces.
First case: 27a 3% — 128> 0.

Figure 1:7~1(h)/S! for 27a3* — 128> Figure 2:#~1(h)/S! for 27a3* — 128>
0 andh < hy, wherek = pg andcy, ¢, the 0 andh = hy, wherek = pg, hy the equili
extremes. brium point andcy, ¢, the extremes.

4 by

Figure 3:.2-1(h)/S! for 27aB* — 128> Figure 4:2~*(h)/S" for 27a3* — 128>
0 andh, < h < 0, wherek = pg and 0 and 0< h < hy, wherek = pg and
C1,Cp,C3,C4 the extremes. C1,Cp,C3,C4 the extremes.

Figure 5:7~1(h)/S' for 27a3* — 128> Figure 6:.5¢~1(h)/S' for 27a3* — 128>
0 andh = hy, wherek = pg, h; the equili 0 andh > h;, wherek = pg andc,, ¢, the
brium point andc,, ¢, the extremes. extremes.
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Second case27a 3% —128=0.

Figure 7:5¢~1(h)/S" for 27a3* — 128= Figure 8:#~1(h)/S! for 27a 3% — 128=
0 andh < hz, wherek = pg andcy, ¢, the 0 andh = hs, wherek = pg, hz the equili
extremes. brium point andcy, ¢, the extremes.

Figure 9:.57~1(h)/S' for 27aB* - 128= Figure 10:57~(h) /S for 27ap* — 128=
0 andhz < h < 0, wherek = pg andcy, ¢, 0 andh > 0, wherek = pg andcy,c, the
the extremes. extremes.

Third case: 27a3*—128< 0.

Figure 11:5¢~1(h)/S" for 27a3* — 128 < Figure 12:57~1(h) /S for 27a3* — 128<
0 andh < 0, wherek = pg andcy,c, the 0 andh > 0, wherek = pg andcy,c; the
extremes. extremes.

The different colors in the pictures represent the contioerdf the energy surfaces for constant
angular momentum and this allow us to see more easily if Hjedrories are bounded.
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3.2 Topology of the invariant manifolds

In the following tables we describe the topological clasation ofly andly.

h In Ink

Stxs, c,<k<O0
h<hy {S*\S'}, See Fig. 1 S'xR, k=0
StxS, O0<k<c

Stxs, c,<k<O0

h=hy (S\s}U{S!}, See Fig. 2 SxR, k=0
Stx S, O0<k<c
SlXSl, k=h2
Stxsh, c<k<O
St xR, k=0

h,<h<0 S\SI U {S}, See Fig. 3
g (SASHU{s]) g Stxs, 0<k<co

Stx St cg<k<cea

Stxsh c<k<O
SxR, k=0

, StxS, O0<k<c
O<h<hy | {$\SJU{S\SY, See Fig. 4

SIxSL  c3<k<ay
SIxR, a<k<ap

SIxSL  ay<k<cy

Stxs, c,<k<O0
S'xR, k=0
h=h; Y, See Fig. 5 SIxSL O<k<ay
S'xR, a<k<ap

SIxSL  ay<k<c

Stxs, c,<k<O0
S'xR, k=0
Stx S, O0<k<c
SIxSL O<k<ay

SIxR, a<k<ap

h>h; S\{Stus'}, See Fig. 6

Stxst  ay<k<c

Table 1: Topological classification df, andln when 2@ 34 — 128> 0.
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h Ih Ihk
StxSt, c<k<O
h<hg S\S', See Fig. 7 SIxR, k=0
Stxst, O<k<c
StxSt, c<k<O
h=hs S\ S, See Fig. 8 SIxR, k=0
Stxst, O<k<c
StxSt, cp<k<O
hs<h<0 | S\S, See Fig. 9 SIxR, k=0
Stxst, O<k<c
StxSt, cp<k<O
SIxR, k=0
h>0 S\{stus'}, See Fig. 10 S xS, O<k<a
S xR, a<k<a
Stx S, ay<k<c

Table 2: Topological classification df, andlp when 234 — 128=0.

h Ih Ihk
Stxs, c<k<O0

h<0 S\S!, See Fig. 11 S'xR, k=0
StxS, 0O<k<c
Stxsh, cp<k<O

St xR, k=0
h>0 S\{stus'}, See Fig. 12 Stx S, O<k<a
SxR, ay<k<a
xS, aa<k<og

Table 3: Topological classification df, andln, when 2834 — 128< 0.
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4 Action-angle variables

In this section we calculate, by means of the Hamilton-Jatbkory, the action-angle variables
and the expression of the Hamiltonian in these variablegs@&lvariables are useful to calculate
the modified Keplerian elements and the planetary equatiaisare derived of these elements.

The action-angle variables can be defined by:

1 rom
Jo =5 | Pod0 =k (4.1)
JFZ%T/rIZ\/Zh—zf(r)—l%zz‘”z(k-%)zdr 4.2)

where:

~ aB? 1

rN=-—F- __Z
() 1+2ar?2 r

is the expression of the amended potential in polar-syripleoordinates.
In order to calculatd, we use the Cauchy Residue theorem. The expressiods fordJ; are:

Jo =Kk (4.3)

1

\/2(aB2—h—2aBJs+a3)

The transformation from polar-symplectic variables ta@aeaingle variables can be defined in
the region where the following equationfin

2h—27/(r) —

2 2 \?2
1+2ar (k 2aBr > _o .5)

r2 ~ 1+2ar2

has two different real roots, according to the parametei$ andh.

By means of Sturm Algorithm we obtain the region where (448 two different real roots.
This region is given by the following inequalities:

1
2<h—a([3—k)2>

+k2<0 (4.6)

h—a(B—-k?*<0 4.7)
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In the next figure the region defined by the inequalities (4r&) (4.7) is presented

\/.

Figure 13: Region where (4.5) has two different real roots
Solvinghin (4.4) we have the Hamiltonian expressed by means of thesevariables:

— 1 — 2
H = 2(Jr+J9)2+a(B Jo) (4.8)

5 Delaunay variables
Using the next transformations to Delaunay variables:
G=Jg, L=J+Jg

the Hamiltonians# takes the form:

L -6y (5.1)

iy

In Delaunay variables, the inequalities (4.6) and (4.7pbezto:

G’>—L%2<0 (5.2)
1
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And the region defined by the previous inequalities is:

L

Figure 14: Region for Delaunay variables

6 Planetary Equations
Using the Classical Perturbation Theory, we obtain the frestiKeplerian elements, denoted by
(a,el,0).
e ais the semi-major axis and its expression is:
-1
a= 2 (6.1)
2 (h —a(B-K) )

e eis the eccentricity:

e= (l+2(h—a([3—k)2> k2>% (6.2)

e | is the mean anomaly:
| =t—n"Y(E —esinE) (6.3)
where t is the time,n = a~2 andE is the eccentric anomaly.
e gis the argument of perihelion:
g:@—f—2cx(t—|)<a%(1—e2)%—ﬁ> (6.4)
wheref is the true anomaly.

It can be proved that the planetary equations are the sarhe &pler problem but the pertur-
bation theory for this system is more complicated becaus®érturbed Kepler Problem has:

0=9g+f
and for our Hamiltonian we have:
6=g+f+2a(t-1)(at (1-&) -B)

For more details about the planetary equations of Kepldrlpro see [2].
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7 Conclusions

In this paper we have considered a first integrable apprdiomaf a roto-translatory problem.
We have described the Hamiltonian dynamics on the fibers mdtaat value of the total angular
momentum(L . = L) in the invariant manifoldMc. A complete topological classification of
the invariant sets;,, Ix andln is given by means of Liouville-Arnold theorem and some djei
techniques. The action-angle variables have been obta@nddhe region of the phase space
where they can be defined. We have calculated the Delaunaples and the modified Keplerian
elements of this problem useful to elaborate a perturbatieory. The results of this work have
a direct application to the study of two body roto-trangtatproblems where the rotation of one
of them influences strongly in the orbital motion of the systén particular, we can apply these
results to binary asteroids.
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