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Abstract

The Backlund transformation (BT) of Adler’s lattice eqjoatis inherent in the equation itself
by virtue of its multidimensional consistency. We refer te@ution of the equation that
is related to itself by the composition of two BTs (with diféat Backlund parameters) as
a 2-cycle of the BT. In this article we will show that such solutions @gsociated with a

commuting one-parameter family of rank-2 (i.e., 2-vagbP-valued mappings. We will

construct the explicit solution of the mappings within tfamily and hence give the solutions
of Adler’s equation associated with 2-cycles of the BT.

1 Introduction

The problem of finding the “periodic fixed-points” of a Bachkd transformation (BT) was first
considered by John Weiss [1, 2] in connection with the coetitn of solutions of the Korteweg-
de Vries (KdV) equation. He obtained finite-dimensionaégrable systems associated with such
solutions, namely periodic Kac-van Moerbeke chains.

In [3] we found solutions of Adler’s lattice equation by ctmgting the fixed-points of its BT.
Adler’'s equation was discovered in [4] as the nonlinear gusdtion principle for BTs of the
Krichever-Novikov (KN) equation [5, 6], it is an integrablattice equation in which the lattice
parameters are points on an elliptic curve. This latticeatiqn is multidimensionally consistent
in the sense of [7, 8], cf [9], which means the BT is inhererthmlattice equation itself. Because
of this one is tempted to conclude that solutions can thezdbe straightforwardly constructed.
However, the construction of a seed solution to start a Béckchain turns out to be a nontrivial
problem for Adler’s equation, in fact the simplest solutadithat equation in terms of elliptic func-
tions is only trivially altered by the BT (we coined such ssetuitionsnon-germinating) and leads
to a trivial Backlund chain. However the solution found &} &s the fixed-point (or 1-cycle) of the
BT yields a nontrivial Backlund chain of soliton type saduts of Adler's equation. Remarkably,
this germinating seed solution is again in terms of ellifitiections, but over a deformation of the
curve associated with the lattice parameters of the equatio

In the present note we will push this idea one step furthercamstruct solutions of Adler’'s
equation that are 2-cycles of the BT. It will be seen that ssmlutions are associated with a
commuting one-parameter family of rank-2 (i.e., 2-va@gbR-valued mappings. The construction
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we apply is closely related to the issue of periodic redustiof the quadrilateral lattice. This idea
was first explored in the context of periodic “staircase”ugttbns of integrable lattice equations
of KdV type, cf [10], where they led to mappings integrablethie sense of Liouville [11] (the
general notion of Liouville integrability of maps was dissed in [12]). A two-step reduction
of this type for Adler’s equation was studied recently in therk of Joshi et. al. [13] in which
the resulting scalar second-order mapping was shown to benoh-QRT type. We will explain
the connection between this mapping and the mapping assoomth the 2-cycle of the BT
considered here. More generally, periodic reductions erlattice can be considered the analog
of finite-gap solutions [14] (cf also [1]) and this conneatieads us to expect that parameterisation
of N-cycles of the BT withN > 2 will need Abelian functions associated with hyper-eitigiurves,
which is beyond the scope of this note.

2 Adler’s lattice equation

We will consider Adler’s lattice equation in the Jacobi forifrwe define the quadrilateral expres-
sion
s o o pQ-oP, & _
2, 4(u,U,0,U) = p(uli+ Gu) — q(uli+ tu) — l_7|02qz(uu + 00— pq(1+ utdu)), (2.1)

then we may write the equation conveniently as
D,q(u,0,0,0) = 0. 2.2)

Hereu = u(n,m), U= u(n+1,m), G=u(n,m+1) andd = u(n+1,m+ 1) denote the values of
the scalar dependent variahleas a function of the independent variabtesn € Z. The lattice
parameterg = (p,P) andq = (g, Q) lie on the elliptic curve of Jacobi type,

M= {(xX):X2=x*+1— (k+1/k) x*} (2.3)

wherek is referred to as the elliptic modulus. This form of Adlerguation was first given by
Hietarinta [15], it is equivalent (by a change of variables)he Weierstrass form given originally
by Adler [4], cf [3].

The natural product that turisinto an abelian group has the following rational repregéria

- (pQ+qP Pp(q“—l)—Qq(p“—l))_ (2.2)
1-pP?’ (1-p??)(aP— pQ)

The identity in this group is the poirt= (0,1) and the inverse of a point is the pointp~! =

(—p,P). The product (2.4) will play a central role in our constroatiof the solutions of (2.2). We

have defined it here independently of the elliptic modiuso it can be defined this way for any
curve of Jacobi type. The product (2.4) is connected to theduratic expression

A4 (u,0) = 2_1p (W4 T — (1+ W) p? — 2UGP). 2.5)

Specifically ifU is such thatt = (u,U) € T, thenu € {p-u,p~1-u} = % (u,u) = 0 because of
the factorisation

1-uwp? /. uP—pU\ /. uP+pU
s =2t (1) (- Tpe) e
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In turn the biquadratic expression (2.5) is connected teAslequation by the identity

~ ~ 4p202 ~ ~
Dy (U000 2,2 (080T) = o7 (A0 DA(0) A0 A4@D), 27)
which arises in Adler’s original construction [4]. We shsdle that the relation (2.7) can be used

to simplify the construction of solutions presented here.

3 The Backlund transformation and its 2-cycle

Let us now describe (and introduce convenient notationtf)BT of Adler’s equation. Consider
the coupled system of equations in the variablesu(n,m) andv = v(n,m),

Qp,[(uv G,V,\A//) = 07 Qq,[(uv G,V,\//\) =0. (31)

These equations involve shifts orandv in the single discrete variableandm respectively, so
they are ordinary difference equations. If the pairsatisfy (3.1) throughout the lattice (i.e., for
all nandm) then we will write

uv 3.2

and say thav is related tau by the Backlund transformation (3.1) with Backlund paetenl. By
the symmetry of the expression (2.1), the system (3.1) @riamt under the interchange— v,

so the relation (3.2) is symmetric. Now,fis fixed throughout the lattice, then (3.1) constitutes
an overdetermined system forit can be verified that this system is compatible if and ohly i

satisfies (2.2). Together with the«< v symmetry this implies that ifi N v, then bothu andv
satisfy (2.2).

In the communication [3] we considered the solutions of)(#hat are fixed-points of the BT
(3.1), more precisely these are solutions for which

u~u (3.3)

for some fixed parametérc I'. This is the simplest case of the more general problem to fied t
“periodic fixed-points” of the BT in the sense of Weiss [1, d]hese are solutions; ... uy for
which

1 t2 N
Up ~ Uy, Uz ~ Us, e Un ~ Up (34)

for some parametets...ty € I'. That such solutions of (2.2) exist is not a-priori obvidusywever
it is worth remarking that the system of equations implied®y) amounts to a coupled pair of
rankN 2-valued mappings, the commutativity of which is equivalenthe existence of these
solutions.

In the present article we will consider this problem in theedd = 2, that is to findu for which
there existy such that

us v, Ve u, (3.5)
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for some fixed parametets, t, € I'. If t1 = t, this includesall solutions of (2.2) because the BT
relation is symmetric. It; # t, we will refer to any suchu as a2-cycle of the BT. Clearly the
solutionv is also a 2-cycle of the BT. By definition, the equations iraglby (3.5) are

Qp,tl(ua U,V,\A/') = Oa Qp,tz(ua U,V,\A/') = Oa (36)
4.4, (U, U, v, V) =0, 24.,(U, T, v, V) = 0. (3.7)

We will treat the systems (3.6) and (3.7) as mappifigs) > (@, V) and (u,v) - (G, V) respec-
tively. As such they are 2-valued, that is if we fix, v) then there are two possible values of the
pair (U,V) which satisfy (3.6), and two possible values of the gaiv) which satisfy (3.7). In
order to construct the general simultaneous solution afemeappings we begin in the following
section by solving the first of them, the system (3.6).

4 The explicit solution of the rank-2, 2-valued mapping and he de-
formed elliptic curve

Consider the mappingu,v) - (4,v) defined by the system (3.6). This involves shifts in the
discrete variabl@ only, hence throughout this section, in which we solve (3x@ will restrict our
attention to the variable alone, that is we considéo,v) = (u(n),v(n)). In the first step toward
the solution of this mapping we use the identity (2.7), whitlows that the defining equations
(3.6) imply that

%(U, m%(\/,\ﬂ = jﬁi(uvv)'%etl(ﬁvvjv

Ay, 0) (V) = Ay (), (T,9). (4.1)

Elimination of the common LHS from the derived system (4eBds naturally to the following

2, (U,V)

=1 J==2—"
H,(U,V)

4.2)
The dynamical equation for the new varialiles trivial and provides a first integral of the derived
mapping defined by (4.1). In the remainder of this section wlgesthe essentially technical
problem of using this to find the explicit solution of (3.6).

Fixing J(0) from the initial data(u(0),v(0)), the second equation of (4.2) amounts to a mildly
non-autonomous biquadratic constraintwandv which is actually of Jacobi type:

th—1,J

H,(uv)d — I, (u,v) = t,
f1to

A, (U,V), (4.3)

the new parameter. = (t,, T.) is defined by the equations

tl — tzJ tle — t]_TzJ
t2 —tt === = 4.4
T, Y ty—t;J (4-4)
and lies on a new curve, €I,
M= {(%X): X2 =x*+1— (k. + 1/k,)**}, (4.5)
1 tito(k+1/K)(J+1/3)+2(TqTo — 1 —t2t2
k*+_:12(+/)(+/)+ (12 12)’ (4.6)

K. titp(J+1/3) —t2 —t2
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which is again of Jacobi type but with a new elliptic modukys The parametet, € I, defined
by (4.4) depends o4 so it is non-autonomous, the curve itself depends) amly through the
combinationJ + 1/J which from (4.2) is clearly autonomous, it follows tH:alz ..

The biquadratic constrain#{, (u,v) = 0 can be used to eliminatefrom (3.6). We begin by
choosingU such thatt = (u,U) € I', and assuming one factor (see identity (2.6)4f (u,v) is
Zero:

B uT, +t,U

Co1-t2u2
This is without loss of generality because choosing therddedor leads to (4.7) with, — —t,,
under which the equations (4.4) definingare invariant. Note that the relation (4.7) applied at
n= 0, taken with the definition of. (4.4), fixest, uniquely at the origin in terms af(0) € I, and
v(0) which we take as the initial conditions.

On substituting fow using (4.7), the system (3.6) reduces to two relations batwendu. It
turns out that these relations are compatible only if

tt, +tito = 0. (4.8)

It can be confirmed that this constraint is compatible withdlefinition oft,, in fact (4.8) refines
this definition by fixingt. uniquely at each iteration in terms of its previous valueteNaiso that

t. = t. so the value of the parameter oscillates.
When (4.8) holds the substitution of (4.7) reduces (3.6)smgle equation on the curve,

where the new (non-autonomous) parameter (p.,P.) € I', is defined by the equations
pZ—pp2  tZ4tity

p«(P—P12) tlta+t2)’ (4.10)

1 pf—pp12<|1— L tHh—-0 >
P.=—(p— + — — .
tio (P=Pr2) P— P12 -t p1— pz(p Pi2)P1P2

We have used the notation:

(4.7)

pr=p-t;t, pa=p-t, to=tit, p=pty
wherep; = (p1,P1) etc. The equations (4.10) fer have two solutions, so there is some choice in
the parametep, at each iteration of (4.9). In fact

poe{p .t topd, (4.11)

which can be verified directly. The existence of this choitéhie value ob, is a consequence of
the underlying mapping defined by (3.6) being 2-valued. Afram the book-keeping involved
in this detail, the solution of the dynamical equation defibg (4.9) and (4.11) is trivial.

We conclude this section by giving a concrete example. Letdfime thecanonical solution
by choosing from (4.11), = t.;1 -, - p., which fixesp, at each iteration in terms of its value at

the origin,p.(0), moreoverp, = p, so the value op, oscillates. Now from (4.9)

L(0)V2.p, (1)V2.4(0), neven
u(n) = { E*EO;(WF:L)‘;Z(' p)*(l)(;l(l))/Z . U(O), n OdCL (412)

wherep, (1) = t.(0)~1 - t.(1) - p.(0). The canonical solution of (3.6) itself is actually the pair
(u(n),v(n)), butv(n) can also be found from(n) = (u(n),U(n)) given in (4.12) by using the
relation (4.7).
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5 The solution on the lattice

As we have established, any 2-cycle of the BT satisfies thpledwsystems (3.6) and (3.7). In
the previous section we solved the first system (3.6) by tiaduit to a single equation on the
new curvel .. The second system, defined by (3.7), differs from the firgf omthe change of
parametep — q (and that it involves shifts in the other direction, the dite variablem and not
n). In particular the (mildly non-autonomous) biquadratimstraint is the same#; (u,v) =0,
which therefore holds throughout the lattice. We can useséimee substitution (4.7) to eliminate
v from (3.7) which, provided,t, +t;t, = 0 (note from (4.8) we see that = t, so thatt, is a
function ofn+ monly) then reduces to the single equation

U=q,-u, (5.2)

on the curvd ,. The new parametey, is defined by the relations (4.10) with the chamge> q
andp, — g, and it satisfies the dynamical equation

e {h ettt (5.2)

It remains to couple the mappings (4.9) and (5.1) to find thestlution on the lattice. These
mappings are compatible, i.@.= 1, if and only if

Pe e = Qo - Pa (5.3)

throughout the lattice. Now, from the definition pf together with the observation that=t,,
we see thap, is subject (in principle) to the same choicepasn (4.11). Similarlyg, is subject to
the same choice ag in (5.2). However the condition (5.3) constrains these cémi specifically
we must choose that

E*:t*_l-t*-p*, qe =t Lt O (5.4

So in fact the dynamics qf. in the™ direction andy. in the™ direction are single-valued. When
the dynamics op, andq, satisfy (5.4) the equations (4.9) and (5.1) can be coupledttaa full
solution on the latticey(n, m), follows from their general simultaneous solutiofn, m).

It is natural to define theanonical 2-cycle of the BT by fixing the choices (4.11) and (5.2) so
that

P =ity t;la T = s 't 't*_l~ (5.5)

Given (5.4) this means that. = p,. andq, = q. throughout the lattice, so both parameters are

a function ofn+ m only, moreover they oscillatgy, = p, etc. This canonical solution written
explicitly is

)_{um>Mm LT PO 4O 00, nimeven o

£.(0)~(MMD/2. ¢ (1)(EmL/2 . ( ) q-(0)™-u(0,0), n-+modd

We finish this section with a number of remarks regarding titaioed results.
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Remark 1

Choosing initial data so thadtdefined in (4.2) is equal to 1 at the origin has the consequirate
J = 1 throughout the lattice. Fixing =1 in (4.2) and using this to eliminatefrom the systems
(3.6) and (3.7) which define the 2-cycle of the BT, yields thduced system

Qp,tl-tz(ua U) U, m = Oa

DO 5.7
24.4,(U,U,u,0) = 0. .7)

But this is exactly the system that defines the fixed-poinhefBT:
ut 2y, (5.8)

where the Backlund parameter associated to this solusidhei pointt; - t, € I'. So the solution
found in this article as a 2-cycle of the BT is a generalisatif the solution found in [3] as a
fixed-point of the BT because it reduces to that solution ifolveose the initial data so that= 1.

Remark 2

In the limit t;, — ’ql we find thatl, — I andp.,q. — p,q. In this sense the new curve and
parameters are deformations of the original curve anaéapiarameters associated to the equation
(2.2). In the same limit the solution presented here goekdémbn-germinating seed solution
givenin [3].

Remark 3

The superposition formula for solutions of Adler’s equat{@.2) that are related by the BT (3.1) is
inherent in the equation itself: ifL vandu 2 w, thent defined by the equatiog, (,(u,v,w,T) =
0 satisfies/ 2 T andw 2 T.

Now, given that the 2-cycle of the BT is defined by the relation v, u 2 v, we can naturally
construct a new solution by superposition,

Qtl,tz(uavavau) = 0’ (59)

so thatv 2 T andv U, and hencai is another 2-cycle of the BT. Clearly by iteration of this
procedure we can construct a sequence of such solutiong. Hdatever that solutions related in
this way are associated with the same deformed cligve

Remark 4

Let us restrict our attention to the mapping defined by ($18he special case that= t,, that is
we choose one lattice parameter of the equation to coincitheome of the Backlund parameters.
In this case the first equation of (3.6) reduces to the trisalation(u— v)(V—u) = 0. Choosing
the solutionv = U brings the second equation of (3.6) to

D4, 1,(U,T,0,0) = 0. (5.10)

This scalar second-order ordinary difference equatiohastwo-step periodic “staircase” reduc-
tion of Adler’'s equation considered first by Joshi et. al. ][1Blote that, apart from notational
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differences, the equation (5.10) coincides with the supstion formula for 2-cycles of the BT,
(5.9). The first integral of the mapping defined by (3.6) giueri4.2) is unchanged in the case
p = t1 because it is independent of the parametefhis integral was first given for (5.10) in the
work of Joshi et. al. [13].

Now, it is of some interest to consider the solution of (5.&0)ts own right. The solution
method of section 4 applied in this case leads to (4.9) beimgldied to the (single-valued)
mappingu = t. - u. The solution itself can be written explicitly as

£.(0)"2. £,(1)"2. u(0), neven

u(n) = { t*(O)(’Hi) 2.{*(1)(n—1)/2_u(o)7 nodd (5.11)

Note that the parameter that was defined originally in terms 66(0),v(0)) is now defined in
terms of(u(0),u(1)) because we have choser- U, so that in particulary(0) = u(1).

Remark 5

Adler’s equation [4] is the superposition principle for Bdkthe Krichever-Novikov (KN) equa-
tion [5, 6]. In Jacobi form the KN equation is

uy—uxxx+%(uﬁx—u4—l+(k+ 1/k)u?) =0, (5.12)
X

wherex,y € R are the independent variables. The BT for (5.12) found ircf4] be written
UxVyx = J71(U,V) (5.13)

wherel is the Backlund parameter.
Now, the equations that define the 2-cycle of the BT (5.13) are

UxVx = %1(u7v)7 UxVx = %Z(U,V). (514)

This actually constrains the initial data, i.e., by elining derivatives we see tha¥q, (u,v) =
78, (u,v) which fixesv in terms ofu for all x. In fact eliminatingv from (5.14) the resulting
equation fomu is

Ug = . (U, ). (5.15)

This is nothing but the defining equation for the fixed-poihthe BT of the KN equation (the
seed solution given in [3]) with Backlund parametert, € I'. Therefore for the KN equation the
2-cycle of the BT and the fixed-point of the BT essentiallyncide.

6 Conclusion

The solutions of Adler’s lattice equation found in this eleias 2-cycles of the Backlund trans-
formation (BT) have been shown to generalise the solutiom$onnd previously as fixed-points
(or 1-cycles) of the BT. Like those solutions, the 2-cycléshe BT are in terms of shifts on a
deformation of the elliptic curve associated with the emumitself. The new features in this case
are that the deformation of the curve depends on the choiggtiall data, and the shifts on the
deformed curve are themselves non-autonomous (in factobeifate with period 2).
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In the continuous case, i.e., for the Krichever-Novikov apn, we have found that the solu-
tions which arise as 2-cycles of the BT essentially coingiith the solutions we found previously
as fixed-points of the BT. This is in contrast to the situationAdler's equation and reveals a
notable difference between the compatible discrete antintamus systems.

In this article we have also defined thecycles of the BT for Adler’'s equation, of which the
1-cycles and 2-cycles discussed above are special cagenattiral to conjecture that the rahk-
2-valued mapping that arises in this more general casedgrable.
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