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Abstract

The Bäcklund transformation (BT) of Adler’s lattice equation is inherent in the equation itself
by virtue of its multidimensional consistency. We refer to asolution of the equation that
is related to itself by the composition of two BTs (with different Bäcklund parameters) as
a 2-cycle of the BT. In this article we will show that such solutions areassociated with a
commuting one-parameter family of rank-2 (i.e., 2-variable), 2-valued mappings. We will
construct the explicit solution of the mappings within thisfamily and hence give the solutions
of Adler’s equation associated with 2-cycles of the BT.

1 Introduction

The problem of finding the “periodic fixed-points” of a Bäcklund transformation (BT) was first
considered by John Weiss [1, 2] in connection with the construction of solutions of the Korteweg-
de Vries (KdV) equation. He obtained finite-dimensional integrable systems associated with such
solutions, namely periodic Kac-van Moerbeke chains.

In [3] we found solutions of Adler’s lattice equation by constructing the fixed-points of its BT.
Adler’s equation was discovered in [4] as the nonlinear superposition principle for BTs of the
Krichever-Novikov (KN) equation [5, 6], it is an integrablelattice equation in which the lattice
parameters are points on an elliptic curve. This lattice equation is multidimensionally consistent
in the sense of [7, 8], cf [9], which means the BT is inherent inthe lattice equation itself. Because
of this one is tempted to conclude that solutions can therefore be straightforwardly constructed.
However, the construction of a seed solution to start a Bäcklund chain turns out to be a nontrivial
problem for Adler’s equation, in fact the simplest solutionof that equation in terms of elliptic func-
tions is only trivially altered by the BT (we coined such seedsolutionsnon-germinating) and leads
to a trivial Bäcklund chain. However the solution found in [3] as the fixed-point (or 1-cycle) of the
BT yields a nontrivial Bäcklund chain of soliton type solutions of Adler’s equation. Remarkably,
this germinating seed solution is again in terms of ellipticfunctions, but over a deformation of the
curve associated with the lattice parameters of the equation.

In the present note we will push this idea one step further andconstruct solutions of Adler’s
equation that are 2-cycles of the BT. It will be seen that suchsolutions are associated with a
commuting one-parameter family of rank-2 (i.e., 2-variable), 2-valued mappings. The construction
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we apply is closely related to the issue of periodic reductions of the quadrilateral lattice. This idea
was first explored in the context of periodic “staircase” reductions of integrable lattice equations
of KdV type, cf [10], where they led to mappings integrable inthe sense of Liouville [11] (the
general notion of Liouville integrability of maps was discussed in [12]). A two-step reduction
of this type for Adler’s equation was studied recently in thework of Joshi et. al. [13] in which
the resulting scalar second-order mapping was shown to be ofa non-QRT type. We will explain
the connection between this mapping and the mapping associated with the 2-cycle of the BT
considered here. More generally, periodic reductions on the lattice can be considered the analog
of finite-gap solutions [14] (cf also [1]) and this connection leads us to expect that parameterisation
of N-cycles of the BT withN > 2 will need Abelian functions associated with hyper-elliptic curves,
which is beyond the scope of this note.

2 Adler’s lattice equation

We will consider Adler’s lattice equation in the Jacobi form, if we define the quadrilateral expres-
sion

Qp,q(u, ũ, û, ̂̃u) = p(uũ + û̂̃u)−q(uû + ũ̂̃u)−
pQ−qP
1− p2q2 (û̃u+ ũû− pq(1+ uũû̂̃u)), (2.1)

then we may write the equation conveniently as

Qp,q(u, ũ, û, ̂̃u) = 0. (2.2)

Hereu = u(n,m), ũ = u(n + 1,m), û = u(n,m + 1) and̂̃u = u(n + 1,m + 1) denote the values of
the scalar dependent variableu as a function of the independent variablesn,m ∈ Z. The lattice
parametersp = (p,P) andq = (q,Q) lie on the elliptic curve of Jacobi typeΓ,

Γ =
{
(x,X) : X2 = x4 +1− (k +1/k) x2} (2.3)

wherek is referred to as the elliptic modulus. This form of Adler’s equation was first given by
Hietarinta [15], it is equivalent (by a change of variables)to the Weierstrass form given originally
by Adler [4], cf [3].

The natural product that turnsΓ into an abelian group has the following rational representation

p ·q =

(
pQ + qP
1− p2q2 ,

Pp(q4−1)−Qq(p4−1)

(1− p2q2)(qP− pQ)

)
. (2.4)

The identity in this group is the pointe = (0,1) and the inverse of a pointp is the pointp−1 =
(−p,P). The product (2.4) will play a central role in our construction of the solutions of (2.2). We
have defined it here independently of the elliptic modulusk, so it can be defined this way for any
curve of Jacobi type. The product (2.4) is connected to the biquadratic expression

Hp(u, ũ) =
1

2p

(
u2 + ũ2− (1+ u2ũ2)p2−2uũP

)
. (2.5)

Specifically ifU is such thatu = (u,U) ∈ Γ, thenũ ∈ {p ·u,p−1 ·u} ⇒ Hp(u, ũ) = 0 because of
the factorisation

Hp(u, ũ) =
1−u2p2

2p

(
ũ−

uP− pU
1− p2u2

)(
ũ−

uP + pU
1− p2u2

)
. (2.6)
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In turn the biquadratic expression (2.5) is connected to Adler’s equation by the identity

Qp,q(u, ũ, û, ̂̃u)Qp,q−1(u, ũ, û, ̂̃u) =
4p2q2

p2q2−1

(
Hp(u, ũ)Hp(û, ̂̃u)−Hq(u, û)Hq(ũ, ̂̃u)

)
, (2.7)

which arises in Adler’s original construction [4]. We shallsee that the relation (2.7) can be used
to simplify the construction of solutions presented here.

3 The Bäcklund transformation and its 2-cycle

Let us now describe (and introduce convenient notation for)the BT of Adler’s equation. Consider
the coupled system of equations in the variablesu = u(n,m) andv = v(n,m),

Qp,l(u, ũ,v, ṽ) = 0, Qq,l(u, û,v, v̂) = 0. (3.1)

These equations involve shifts onu andv in the single discrete variablen andm respectively, so
they are ordinary difference equations. If the pairu,v satisfy (3.1) throughout the lattice (i.e., for
all n andm) then we will write

u
l
∼ v (3.2)

and say thatv is related tou by the Bäcklund transformation (3.1) with Bäcklund parameterl. By
the symmetry of the expression (2.1), the system (3.1) is invariant under the interchangeu ↔ v,
so the relation (3.2) is symmetric. Now, ifu is fixed throughout the lattice, then (3.1) constitutes
an overdetermined system forv, it can be verified that this system is compatible if and only if u

satisfies (2.2). Together with theu ↔ v symmetry this implies that ifu
l
∼ v, then bothu andv

satisfy (2.2).
In the communication [3] we considered the solutions of (2.2) that are fixed-points of the BT

(3.1), more precisely these are solutions for which

u
t
∼ u (3.3)

for some fixed parametert ∈ Γ. This is the simplest case of the more general problem to find the
“periodic fixed-points” of the BT in the sense of Weiss [1, 2].These are solutionsu1 . . .uN for
which

u1
t1∼ u2, u2

t2∼ u3, . . . uN
tN∼ u1 (3.4)

for some parameterst1 . . . tN ∈Γ. That such solutions of (2.2) exist is not a-priori obvious,however
it is worth remarking that the system of equations implied by(3.4) amounts to a coupled pair of
rank-N 2-valued mappings, the commutativity of which is equivalent to the existence of these
solutions.

In the present article we will consider this problem in the caseN = 2, that is to findu for which
there existsv such that

u
t1∼ v, v

t2∼ u, (3.5)
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for some fixed parameterst1, t2 ∈ Γ. If t1 = t2 this includesall solutions of (2.2) because the BT
relation is symmetric. Ift1 6= t2 we will refer to any suchu as a2-cycle of the BT. Clearly the
solutionv is also a 2-cycle of the BT. By definition, the equations implied by (3.5) are

Qp,t1(u, ũ,v, ṽ) = 0, Qp,t2(u, ũ,v, ṽ) = 0, (3.6)

Qq,t1(u, û,v, v̂) = 0, Qq,t2(u, û,v, v̂) = 0. (3.7)

We will treat the systems (3.6) and (3.7) as mappings(u,v)
p
7→ (ũ, ṽ) and(u,v)

q
7→ (û, v̂) respec-

tively. As such they are 2-valued, that is if we fix(u,v) then there are two possible values of the
pair (ũ, ṽ) which satisfy (3.6), and two possible values of the pair(û, v̂) which satisfy (3.7). In
order to construct the general simultaneous solution of these mappings we begin in the following
section by solving the first of them, the system (3.6).

4 The explicit solution of the rank-2, 2-valued mapping and the de-
formed elliptic curve

Consider the mapping(u,v)
p
7→ (ũ, ṽ) defined by the system (3.6). This involves shifts in the

discrete variablen only, hence throughout this section, in which we solve (3.6), we will restrict our
attention to the variablen alone, that is we consider(u,v) = (u(n),v(n)). In the first step toward
the solution of this mapping we use the identity (2.7), whichshows that the defining equations
(3.6) imply that

Hp(u, ũ)Hp(v, ṽ) = Ht1(u,v)Ht1(ũ, ṽ),
Hp(u, ũ)Hp(v, ṽ) = Ht2(u,v)Ht2(ũ, ṽ).

(4.1)

Elimination of the common LHS from the derived system (4.1) leads naturally to the following

JJ̃ = 1, J =
Ht1(u,v)
Ht2(u,v)

. (4.2)

The dynamical equation for the new variableJ is trivial and provides a first integral of the derived
mapping defined by (4.1). In the remainder of this section we solve the essentially technical
problem of using this to find the explicit solution of (3.6).

Fixing J(0) from the initial data(u(0),v(0)), the second equation of (4.2) amounts to a mildly
non-autonomous biquadratic constraint onu andv which is actually of Jacobi type:

Ht2(u,v)J −Ht1(u,v) = t∗
t2− t1J

t1t2
Ht∗(u,v), (4.3)

the new parametert∗ = (t∗,T∗) is defined by the equations

t2
∗ = t1t2

t1− t2J
t2− t1J

, T∗ =
t2T1− t1T2J

t2− t1J
(4.4)

and lies on a new curve,t∗ ∈ Γ∗,

Γ∗ = {(x,X) : X2 = x4 +1− (k∗ +1/k∗)x
2}, (4.5)

k∗ +
1
k∗

=
t1t2(k +1/k) (J +1/J)+2

(
T1T2−1− t2

1t2
2

)

t1t2(J +1/J)− t2
1 − t2

2

, (4.6)
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which is again of Jacobi type but with a new elliptic modulusk∗. The parametert∗ ∈ Γ∗ defined
by (4.4) depends onJ so it is non-autonomous, the curve itself depends onJ only through the
combinationJ +1/J which from (4.2) is clearly autonomous, it follows thatΓ̃∗ = Γ∗.

The biquadratic constraintHt∗(u,v) = 0 can be used to eliminatev from (3.6). We begin by
choosingU such thatu = (u,U) ∈ Γ∗ and assuming one factor (see identity (2.6)) ofHt∗(u,v) is
zero:

v =
uT∗ + t∗U
1− t2

∗u2 . (4.7)

This is without loss of generality because choosing the other factor leads to (4.7) witht∗ → −t∗,
under which the equations (4.4) definingt∗ are invariant. Note that the relation (4.7) applied at
n = 0, taken with the definition oft∗ (4.4), fixest∗ uniquely at the origin in terms ofu(0) ∈ Γ∗ and
v(0) which we take as the initial conditions.

On substituting forv using (4.7), the system (3.6) reduces to two relations betweenu andũ. It
turns out that these relations are compatible only if

t∗t̃∗ + t1t2 = 0. (4.8)

It can be confirmed that this constraint is compatible with the definition oft∗, in fact (4.8) refines
this definition by fixingt∗ uniquely at each iteration in terms of its previous value. Note also that
˜̃
t∗ = t∗ so the value of the parameter oscillates.

When (4.8) holds the substitution of (4.7) reduces (3.6) to asingle equation on the curveΓ∗,

ũ = p∗ ·u, (4.9)

where the new (non-autonomous) parameterp∗ = (p∗,P∗) ∈ Γ∗ is defined by the equations

p2
∗− pp12

p∗(p− p12)
=

t2
∗ + t1t2

t∗(t1 + t2)
,

P∗ =
1

t12
(p− p12)+

p2
∗− pp12

p− p12

(
T1−T2

t1− t2
−

t1− t2
p1− p2

(p− p12)p1p2

)
.

(4.10)

We have used the notation:

p1 = p · t−1
1 , p2 = p · t−1

2 , t12 = t1 · t2, p12 = p · t−1
12

wherep1 = (p1,P1) etc. The equations (4.10) forp∗ have two solutions, so there is some choice in
the parameterp∗ at each iteration of (4.9). In fact

p̃∗ ∈ {p−1
∗ , t−1

∗ · t̃∗ ·p∗}, (4.11)

which can be verified directly. The existence of this choice in the value ofp∗ is a consequence of
the underlying mapping defined by (3.6) being 2-valued. Apart from the book-keeping involved
in this detail, the solution of the dynamical equation defined by (4.9) and (4.11) is trivial.

We conclude this section by giving a concrete example. Let usdefine thecanonical solution
by choosing from (4.11)̃p∗ = t−1

∗ · t̃∗ · p∗, which fixesp∗ at each iteration in terms of its value at

the origin,p∗(0), moreover̃̃p∗ = p∗ so the value ofp∗ oscillates. Now from (4.9)

u(n) =

{
p∗(0)n/2 ·p∗(1)n/2 ·u(0), n even,
p∗(0)(n+1)/2 ·p∗(1)(n−1)/2 ·u(0), n odd,

(4.12)

wherep∗(1) = t∗(0)−1 · t∗(1) · p∗(0). The canonical solution of (3.6) itself is actually the pair
(u(n),v(n)), but v(n) can also be found fromu(n) = (u(n),U(n)) given in (4.12) by using the
relation (4.7).
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5 The solution on the lattice

As we have established, any 2-cycle of the BT satisfies the coupled systems (3.6) and (3.7). In
the previous section we solved the first system (3.6) by reducing it to a single equation on the
new curveΓ∗. The second system, defined by (3.7), differs from the first only in the change of
parameterp → q (and that it involves shifts in the other direction, the discrete variablem and not
n). In particular the (mildly non-autonomous) biquadratic constraint is the same:Ht∗(u,v) = 0,
which therefore holds throughout the lattice. We can use thesame substitution (4.7) to eliminate
v from (3.7) which, provided̂t∗t∗ + t1t2 = 0 (note from (4.8) we see thatt̂∗ = t̃∗ so thatt∗ is a
function ofn+ m only) then reduces to the single equation

û = q∗ ·u, (5.1)

on the curveΓ∗. The new parameterq∗ is defined by the relations (4.10) with the changep → q

andp∗ → q∗, and it satisfies the dynamical equation

q̂∗ ∈ {q−1
∗ , t−1

∗ · t̂∗ ·q∗}. (5.2)

It remains to couple the mappings (4.9) and (5.1) to find the full solution on the lattice. These
mappings are compatible, i.e.,˜̂u = ̂̃u, if and only if

p̂∗ ·q∗ = q̃∗ ·p∗ (5.3)

throughout the lattice. Now, from the definition ofp∗ together with the observation thatt̃∗ = t̂∗,
we see that̂p∗ is subject (in principle) to the same choice asp̃∗ in (4.11). Similarlyq̃∗ is subject to
the same choice aŝq∗ in (5.2). However the condition (5.3) constrains these choices, specifically
we must choose that

p̂∗ = t−1
∗ · t̂∗ ·p∗, q̃∗ = t−1

∗ · t̃∗ ·q∗. (5.4)

So in fact the dynamics ofp∗ in thê direction andq∗ in the˜ direction are single-valued. When
the dynamics ofp∗ andq∗ satisfy (5.4) the equations (4.9) and (5.1) can be coupled and the full
solution on the lattice,u(n,m), follows from their general simultaneous solutionu(n,m).

It is natural to define thecanonical 2-cycle of the BT by fixing the choices (4.11) and (5.2) so
that

p̃∗ = p∗ · t̃∗ · t
−1
∗ , q̂∗ = q∗ · t̂∗ · t

−1
∗ . (5.5)

Given (5.4) this means that̂p∗ = p̃∗ and q̂∗ = q̃∗ throughout the lattice, so both parameters are

a function ofn + m only, moreover they oscillate,̃̃p∗ = p∗ etc. This canonical solution written
explicitly is

u(n,m) =

{
t∗(0)−(n+m)/2 · t∗(1)(n+m)/2 ·p∗(0)n ·q∗(0)m ·u(0,0), n+ m even,
t∗(0)−(n+m−1)/2 · t∗(1)(n+m−1)/2 ·p∗(0)n ·q∗(0)m ·u(0,0), n+ m odd.

(5.6)

We finish this section with a number of remarks regarding the obtained results.
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Remark 1

Choosing initial data so thatJ defined in (4.2) is equal to 1 at the origin has the consequencethat
J = 1 throughout the lattice. FixingJ = 1 in (4.2) and using this to eliminatev from the systems
(3.6) and (3.7) which define the 2-cycle of the BT, yields the reduced system

Qp,t1·t2(u, ũ,u, ũ) = 0,
Qq,t1·t2(u, û,u, û) = 0.

(5.7)

But this is exactly the system that defines the fixed-point of the BT:

u
t1·t2∼ u, (5.8)

where the Bäcklund parameter associated to this solution is the pointt1 · t2 ∈ Γ. So the solution
found in this article as a 2-cycle of the BT is a generalisation of the solution found in [3] as a
fixed-point of the BT because it reduces to that solution if wechoose the initial data so thatJ = 1.

Remark 2

In the limit t2 −→ t−1
1 we find thatΓ∗ −→ Γ andp∗,q∗ −→ p,q. In this sense the new curve and

parameters are deformations of the original curve and lattice parameters associated to the equation
(2.2). In the same limit the solution presented here goes to the non-germinating seed solution
given in [3].

Remark 3

The superposition formula for solutions of Adler’s equation (2.2) that are related by the BT (3.1) is

inherent in the equation itself: ifu
l1∼ v andu

l2∼ w, thenu defined by the equationQl1,l2(u,v,w,u) =

0 satisfiesv
l2∼ u andw

l1∼ u.
Now, given that the 2-cycle of the BT is defined by the relations u

t1∼ v, u
t2∼ v, we can naturally

construct a new solutionu by superposition,

Qt1,t2(u,v,v,u) = 0, (5.9)

so thatv
t2∼ u and v

t1∼ u, and henceu is another 2-cycle of the BT. Clearly by iteration of this
procedure we can construct a sequence of such solutions. Note however that solutions related in
this way are associated with the same deformed curveΓ∗.

Remark 4

Let us restrict our attention to the mapping defined by (3.6) in the special case thatp = t1, that is
we choose one lattice parameter of the equation to coincide with one of the Bäcklund parameters.
In this case the first equation of (3.6) reduces to the trivialequation(ũ− v)(ṽ−u) = 0. Choosing
the solutionv = ũ brings the second equation of (3.6) to

Qt1,t2(u, ũ, ũ, ˜̃u) = 0. (5.10)

This scalar second-order ordinary difference equation is the two-step periodic “staircase” reduc-
tion of Adler’s equation considered first by Joshi et. al. [13]. Note that, apart from notational
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differences, the equation (5.10) coincides with the superposition formula for 2-cycles of the BT,
(5.9). The first integral of the mapping defined by (3.6) givenin (4.2) is unchanged in the case
p = t1 because it is independent of the parameterp. This integral was first given for (5.10) in the
work of Joshi et. al. [13].

Now, it is of some interest to consider the solution of (5.10)in its own right. The solution
method of section 4 applied in this case leads to (4.9) being simplified to the (single-valued)
mapping̃u = t∗ ·u. The solution itself can be written explicitly as

u(n) =

{
t∗(0)n/2 · t∗(1)n/2 ·u(0), n even,
t∗(0)(n+1)/2 · t∗(1)(n−1)/2 ·u(0), n odd.

(5.11)

Note that the parametert∗ that was defined originally in terms of(u(0),v(0)) is now defined in
terms of(u(0),u(1)) because we have chosenv = ũ, so that in particular,v(0) = u(1).

Remark 5

Adler’s equation [4] is the superposition principle for BTsof the Krichever-Novikov (KN) equa-
tion [5, 6]. In Jacobi form the KN equation is

uy −uxxx +
3

2ux

(
u2

xx −u4−1+(k +1/k)u2) = 0, (5.12)

wherex,y ∈ R are the independent variables. The BT for (5.12) found in [4]can be written

uxvx = Hl(u,v) (5.13)

wherel is the Bäcklund parameter.
Now, the equations that define the 2-cycle of the BT (5.13) are

uxvx = Ht1(u,v), uxvx = Ht2(u,v). (5.14)

This actually constrains the initial data, i.e., by eliminating derivatives we see thatHt1(u,v) =
Ht2(u,v) which fixesv in terms ofu for all x. In fact eliminatingv from (5.14) the resulting
equation foru is

u2
x = Ht1·t2(u,u). (5.15)

This is nothing but the defining equation for the fixed-point of the BT of the KN equation (the
seed solution given in [3]) with Bäcklund parametert1 · t2 ∈ Γ. Therefore for the KN equation the
2-cycle of the BT and the fixed-point of the BT essentially coincide.

6 Conclusion

The solutions of Adler’s lattice equation found in this article as 2-cycles of the Bäcklund trans-
formation (BT) have been shown to generalise the solutions we found previously as fixed-points
(or 1-cycles) of the BT. Like those solutions, the 2-cycles of the BT are in terms of shifts on a
deformation of the elliptic curve associated with the equation itself. The new features in this case
are that the deformation of the curve depends on the choice ofinitial data, and the shifts on the
deformed curve are themselves non-autonomous (in fact theyoscillate with period 2).
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In the continuous case, i.e., for the Krichever-Novikov equation, we have found that the solu-
tions which arise as 2-cycles of the BT essentially coincidewith the solutions we found previously
as fixed-points of the BT. This is in contrast to the situationfor Adler’s equation and reveals a
notable difference between the compatible discrete and continuous systems.

In this article we have also defined theN-cycles of the BT for Adler’s equation, of which the
1-cycles and 2-cycles discussed above are special cases. Itis natural to conjecture that the rank-N
2-valued mapping that arises in this more general case is integrable.
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