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Abstract

We apply a version of the dressing method to a system of fonewssional nonlinear Partial
Differential Equations (PDEs), which contains both Pohjareequation (i.e. nonlinear PDE
integrable by the Inverse Spectral Transform Method) amiimear matrix PDE integrable by
the method of characteristics as particular reductionmesather reductions are suggested.

1 Introduction

In this paper we apply a properly modified version of the dngssnethod developed in [1] to
a system of nonlinear Partial Differential Equations (PP&hBich combines some properties of
both nonlinear PDEs integrable by the Inverse Spectralsfoam Method (ISTM) (oiS-integrable
PDEs) [2, 3, 4, 5] and nonlinear PDEs integrable by the metfazharacteristics [6, 7, 8]. The
important feature of this version is that it is based on thegral operator with nontrivial kernel
[8, 9], unlikely the classicaf-dressing method [4, 5, 10]. The system of nonlinear PDEsiextiu
below can be written as a system of evolution equations,

W + Uy, P+ Wy, W = 0, (1.2)
Pt + Vg P+ P, W =0,
(Ue — WUy — UV )y, = (Uxg — W, — Uk )xq
(Ve — Pl — Wi )x, = (Vg — P, — VW ) 5
supplemented by the pair of compatible constraints

Wy, + Uy, P+ Wy,W = 0, (1.2)
Pxs + Vi, P+ P, W = 0,

where fieldsw, p, vandu areQ x Q matrices. This system reduces to Pohlmeyer equation [11, 12
(which isSintegrable PDE) iip=u=w=0,

Voo — Vig, = Voo Vie) € (3710 — (371 )x =0 (1.3)
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(Wherevy, = J713, w, = J71J,,) and to to the pair of compatible matrix first order quasiine
PDEs integrable by the method of characteristios=f p=u=0, [7]:

We + Wy, W =0, Wy, +Wy,W = 0. (1.4)
An interesting reductions of the system (1.1,1.2) is thio¥ahg (1+1)-dimensional system:

W + Uy, P+Wi,W =0, pr+Vx, P+ P,W=0, (1.5)
U — WUy, — UV, =0, W% — ply, —VV, =0.

A distinguished feature of this system is evident in the adszalar fieldsw, p, uandv (Q = 1),
when eqgs.(1.5) read:

w w O p O

= e A | P 0w 0 p

W + VW, =0, W= u , V= 0 0 -w —u (1.6)
v 0 0 —p —v

In general, 4 4 matrix of this system has 3 different eigenvalues. Thus system is intermediate
between PDEs integrable by the generalized hodograph ahgtBb(which requires four different
eigenvalues) and method of characteristics for matrix gops [7] (which requires two different
eigenvalues).

We will show that solution space to the system (1.1,1.2) lieitly described by the system
of integral-algebraic equations which mixtures integrgliaion of the classical-problem and
algebraic equations typical for the method of characies$?, 8]. In particular cases, this integral-
algebraic system becomes system of algebraic equationsh vghquite equivalent to the system
derived in [1], see also [7, 8]. According to [1], this facthdenstrates that our nonlinear PDEs
possess solutions with wave profile breaking.

In the next section, Sec.2, we represent derivation of thiery(1.1,1.2) and its reduction (1.5)
by the dressing method. In Sec.3 we describe solution spabe system (1.1,1.2) and give some
remarks on the construction of solutions to the eq.(1.5ndimions are given in Sec.4.

2 Dressing method: derivation of nonlinear PDEs
2.1 Dressing and spectral functions

In this subsection we introduce basic functions and opesatbthe dressing algorithm.

Homogeneous Fredholm equation and general form of the spectral system. We start with
the following integral equation [8]:

/W()\,v;x)U(v,u;x)dv =WYA,v;x)xU(v,u;x) =0, (2.1)
D

whereA andv are complex (either scalar or vector) spectral parametefaneans integration
over some regio of the spectral parameter spase= (x1,Xo,...,t1,t2...) is a set of all in-
dependent variables of nonlinear PDBsjs 2Q x Q matrix spectral function depending on two
spectral parameter¥ is Q x 2Q dressing function and kernel of the integral operator. dvalhg
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the strategy of [8, 1], we assume that the general soluti@yif2.1) may be represented in the
next form:

U, ;) =UM A v;x)* F(v, 1;x), (2.2)

wheref (v, 4;x) is an arbitraryQ x Q matrix function of arguments andl" is a particular nontriv-
ial solution to the homogeneous equation (2.1). This assompauses the unique linear relation
among any two independent solutida§), j = 0,1,..., of eq.(2.1):

UDA, ;) =UQ 0, vix) «FD (v, u;x), (2.3)

whereF () are someQ x Q matrix functions. As we shell see, all solutiod$!) are expressed

in terms of the single solutiob through some linear operatots$!), either differential or non-
differential: U (A, u;x) = LW(A,v) «U (v, u;x). Thus, egs.(2.3) represent the general form of
the overdetermined compatible system of linear equationghie spectral functiotd (general
form of the spectral system). Besides, we will show in Séd!?atF (1) may be expressed in terms
of U using an externdD x 2Q dressing matrix functio®s(A, ;x), similar to [8, 1].

x-dependence of the dressing function W. We introduce the) x Q matrix function.e? (A, )
and 2 x 2Q matrix function A(A, i) (both functions are independent ah by the following
generalized commutation relation:

A (A,v)«W(v,u;x) =W(A,v;X)«A(V, 1) (2.4)

and define operators’| andAl as follows:.71 = o % --- .o/, Al = Ax---x A. Letx-dependence

j i
of W be given by the equation

Lptm(Avu;X)+’Q{(Avv)*wxm(vvu;x):07 (25)

which is compatible with eq.(2.4).

External dressing function G.  We have to introduce an external dressipig 2Q matrix func-
tion G(A, 4;X) which was mentioned above and whose prescription will béoegd in Sec.2.2.
Let G be defined by the next compatible system of linear equations:

2

~

G(A,v;X) xA(v, 1) = A(A, V) *G(V, U;X) + Z Hij)()\ ;x)Hz(j)(u;x), (2.6)
=1
Gty (A, H5X) + Gy (A, ViX) xA(V, 1) =0, (27)
whereA and Hij), j=1,2, areQ x Q, while Héj), j =1,2, areQ x 2Q matrix functions. We
refer to functionsl—|i(’)()\;x), i,j = 1,2 as external dressing functions as well. The compatibility

condition of egs.(2.6) and (2.7) yields:

f [(Hi”u:x))t H (1) +HL”, (Ai)Hg! (vix) <A, )+ (2:8)
= m

P00 (R, (0 + B, (i) =AW, )| =0,
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which admits the following solution:

HJ(-J)tm — Hi”xj =0, =12 (2.9)
HY +HY, xA=0, =12, (2.10)
i.e. functionsH{j) do not depend ox: H{j)()\;x) = Hij)()\), j =1,2. In order to derive PDEs

different from the classicé-integrable systems we require

~

AsHV =0, AxH{ 0. (2.11)

2.2 Spectral system for U (A, u;X)

Now we are ready to derive the overdetermined linear systeriné spectral functiob) (A, u;x),

i.e. the spectral system. Following the usual strategy efditessing methods, we have to obtain
set of different solutions to the homogeneous eq.(2.1)esgmd in terms of functiong, A andx-
derivatives ofJ . For this purpose we appky ™« and(d,, + 7 *dy,,) to (2.1) and use egs.(2.4,2.5).
One gets

WAL v;x) EUM (v %) =0, j=1,2, (2.12)
where

EC™ (A, ix) = AT(A,v) U (v, 1;X), (213)
EGM (A, ;%) = U, (A, 145%) + AR, v) Uy, (V, 15 X).

Remember the eq.(2.3) relating any two different solutmfitte homogeneous equation (2.1). Let
U© =U in the eq.(2.3) and consid&' "™ as different solutions of the eq.(2.1). Then eq.(2.3)
yields:

EEVA, u;x) =UA, V) «F (v, 1;X), = (2.14)
AA,V;x)xU (v, 1;x) =U (A, v;x) «F (v, 1;X),
EGMW, ;%) =U A, v)«FM (v, 1;x), = (2.15)

Ut (A H5X) -+ AL V) Uy (v, 15X) = U (A, Vi)« F ™ (v, 1ix), m=1,2,....

Egs. (2.14,2.15) represent a preliminary version of thedatermined linear system for the spec-
tral functionU (A, ; X).

Recall that) (A, ;) is not unique solution of the integral equation (2.1). Teadbtiniqueness
we have to introduce one more equation for the spectral ifuméi. For instance, using the
external dressing functio@, we may write

G(A,v;x)«U (v, ;xX) =10(A — ). (2.16)

Now U is the uniquesolution of the system (2.1,2.16). In other words, the eéqunaR.16) fixes
function f (A, u; x) in the eq.(2.2). Applyin@sx to the egs.(2.14,2.15) and using eq.(2.16) one gets
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the expressions fdf andF(™:
F(v,i;x) = G(A,v;x)«EXY (v, u;x) = (2.17)

2 .
A1)+ S HP ORI (vix) U (v, 1),
=1
FMv, u;x) = G()\ v;X)« EGM (v p:x) =

ZH ( vx)*U(vux)>X, m=12....
Although indexm may take any positive integer value (reflecting the existasfche hierarchy of
commuting flows) we will take only two valuea= 1,2, which is enough to construct a complete
system of nonlinear PDEs. Unlikely the classical specysiesns, egs.(2.14,2.15) depend on two
spectral parameters due to the spectral fundtioa, u; x). However, functions of single spectral
parameter appear in these equations naturally. Thesadnadre following:

VI A5x) = U (A, ;%) « Al (p,v) = HEP (v), (2.18)
WO (%) = HY (A %) < AL (A,v) <U (v, pix), 1,j = 1,2

All'in all, substituting egs.(2.17) and (2.18) into the €8sl4,2.15) one gets:
2 . .
A, V) #U (v, %) =U A, vix) «Av, 1) + 5 VIO (AW 0% (s ), (2.19)
=1
2 .
Uty (A, 15%) + A, V) Ui (v, 153) = 5 VIO W0 (%), m=1,2. (2.20)
=1

The non-classical type spectral system (2.19,2.20) depgrh two spectral parameteksand
gives rise to the classical type spectral system for thetspéanctionsV % (A;x), j = 1,2 with
single spectral parameter. This system appears afteriagpdlyiik), k=1,2to the egs.(2.19) and
using egs.(2.11):

A, v;x) «V 3O (y:x) VIO (2 x)w109 (), (2.21)

HMI\J

A, V;x) VO (v:x) =VEIA:x) + T VD (A w200 (x),

e

Mm

=1

where fieldsmv K are defined as follows:
wlikn — HIV sy AU s« AT HD. (2.22)
The definition of fields (2.22) suggests us, for instance ftwowing reductions:

np—1

1. AviH? ZA‘*H r = wiizko) — ZWJM » Yk, (2.23)

2. HPxpo— Zr()Hé)*Ai = widikon) — Z w@in) v n, (2.24)

whereng andkg are any integer numbers andl are scalar parameters.
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2.3 Nonlinear PDEs
Applying Héi)*, i = 1,2 to the system (2.21) we obtain the following system of nmeedr PDEs:

2
W(il;lO) _ Z W(ij;OO)W(jl;O )’ (225)
=1
W(|2;10) _ W(|2;01) + W(I];OO)W(jZ;OO)’ (2.26)
=1
. . . 2 .
ELROOM = W00 W10 w100y 0 — gk m=1,2. (2.27)

1

J

Eliminatingw(119 from the eq.(2.27)k = 1, using eq.(2.25) one gets
W%+ 3 i Wit o, i m=1,2 (2.28)
=1

Eq.(2.27) k= 2 in view of eq.(2.26) may be given another form,

Eéiz;oom)

= w200 w2 4 N Wil 001200 — g i m=1,2, (2.29)
=1

which is convenient for imposing the reduction (2.23). Ndwe tomplete system of nonlin-

ear PDEs is represented by the egs.(2.28) and the follovongbmation of egs.(2.27k = 2:

(B[00 (E{%992) Introducing new dependent and independent variables

w=w00  p= w00 = 1200y w2200t xg=t,, (2.30)

we end up with the system (1.1,1.2).

Reductions. Reduction (2.23) yelds quasilinear matrix first order PDisgrable by the method
of characteristics [7]. Similar PDEs have been considendd]ias lower dimensional reductions
of appropriate Self-dual typ&integrable PDEs. It was shown that such lower dimensiobé&t $>
generate solutions with wave profile breaking. A new typeeafuctions is represented by the
eq.(2.24). In the simplest examptg = 1, the egs.(2.27) and (2.28) with= 1 yield the system
(1.5).

3 Implicit description of solutionsto nonlinear PDES

We introduce the next block-matrix representation of thecfions,v i, j:

WO = oA, ) XL U = | 2R 61)
) (i) ). ) )
VI(Asx) = [ X?‘”E/\;:i ] WO (1;3) = o (1),

G(A, ;%) = [Go(A, 1;X) 1A, 5xX)],  Hy (A;x) = [h33(Ai%) hS)(A;x)],
Hf)()\;x) = h(li)()\;x).
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Any function in the RHS of the formulae (3. 1)@>< Q matrix function, so tha®, G andH ) are

Q x 2Q,U andV) are 23 x Q, Wil andH areQ x Q matrix functions. We also have to fix
the functionse” (A, 1), A(A, 1) andA(A, p):

A (A1) =AN, 1) =A8A —p)l, A, 1) =A8(A - p)l, (3.2)

wherel andl, areQ x Q and 2Q x 2Q identity matrices respectively. Eq.(2.4) suggests us the
following structure of¥;

WA, X)) =PAX3A - ), PAX) = [Po(A;x) da(A;x)], (3.3)

where(;, i = 0,1, areQ x Q matrix functions.

The main feature of the spectral system (2.19,2.20) is teeanmce of the spectral equation
which has no derivatives with respectd¢asee eq.(2.19), which suggests us the next representation
forU:

2 _y(i9) (i0)
U(Avu X) - zjilv J (A)h_X)W J (u X) +U0()\1X)5()\ _I"l)v (34)
. Uoo(A;X)
UO(A’X) = [ ug(l)()\;x) :|7

whereug;, i = 0,1, areQ x Q matrix functions. Remark, that eq.(2.19) after applykhtfl) yields:
VT (A1 = w99 (x)) =V O (A;wH99 (x), (3.5)

which relates spectral functiohs1? andV (29, Let us write this relation for the case of diagonal-
izablew(11:00 je.

w00 (%) = P(X)E(x)P~1(x), (3.6)
Paa = 1, (3.7)

whereE is the diagonal matrix of eigenvalueB js the matrix of eigenvectors with normalization
(3.7). Then, multiplying eq.(3.5) bi(Al — E(x))~* from the right one gets

VAT AP = VYA WY () (A1 —E(X) 1+ V(A;x)3(Al —E(X)), (3.8)
VvV — [ g(; ] . 2D — w(2100p

Similarly, eq.(2.6) yelds

H (A H”(u X)

2
G(A, U;X) Z +Go(A;X)0(A — ), (3.9)

=1
Go(A;X) = [doo(A;X) 901(/\?X)]7

wheregg, i = 0,1, areQ x Q matrix functions andsg(A;x)0(A — ) is a solution of the eq.(2.7).
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Next, after substitution the egs.(3.4) and (3.9) into th¢2:16), one gets:

T 2 B OWIV (k) + HE 0By (1] + (3.10)
=1

Go(A;X)Uo(A;X)0(A — ) =18(A — ),
E1j(A;%) = Go(A;x)V UV (A;x) —

2 HO A 0HY (vix)v (9 (v:x -
/d 2imiHj A2‘_‘/ ( )—H](_J)()\;X),

(i0) (-
o (%) = /d w5t VW)
Hé (15 )0Uo( ;%) + WO (%)

The eq.(3.10) must be identity for adlyand . Thus, it must be splited into the following set of
equations:

Go(A;X)Up(A;x) =1, (3.11)
E1j(A;x) =0, (3.12)
Eoj(u;x) =0. (3.13)

The last terms in the expressioBs; have been introduced in order to egs.(3.13) coincide with

eq.(3.4) after applying-|£”* to eq.(3.4), which is necessary condition. The last termthén
expressions foE;; are needed to compensate the last ternts,pin the eq.(3.10).

The system (3.13) may be viewed a@?2scalar equations for@ elements of the matrix
functionsW(9, j = 1,2, i.e. W9 are completely defined. However, egs.(3.11,3.12) are not
a complete system fddg andV(9, j = 1,2. In fact, eq.(3.11) represen€ scalar equations
for 2Q? elements of the matrix functiodo. Similarly, eq.(3.12) represent€?2 scalar equations
for 4Q? elements of the matrix functioné(i9, j = 1,2. Thus, both eq.(3.11) and eq.(3.12) are
underdetermined systems.

The rest of equations for the elements/6f% andUj follows from the eq.(2.1) after substitu-
tion the eq.(3.3) fokY and the eq.(3.4) fau:

32 VU (A, WO (u; x)
A—u

Since eq.(3.14) must be identity for aayand , it is equivalent to the following equations for
v (9 anduy:

(A;x) P(A;x)Uo(A;X)8(A — ) =0. (3.14)

PAxVIOax) =0, j=1,2 & d:xV2A:x) =0, (3.15)

W(A;x)Uo(A;x) =0 (3.16)
Each of these matrix equations represe@fsscalar equations for@ elements of one of the
matrix functionsvV %, j = 1,2 andUo. Thus, the system (3.11-3.13,3.15,3.16) is the complete
system for elements &% (A;x), W% (u;x), j = 1,2 andUp(A ; x). Having these functions, the
spectral functiord (A, u; x) may be constructed using the formula (3.4).

It is simple to observe, that essentially important for ¢angion ofw(!/:0% = H V(9 are
egs.(3.12) and (3.15) defining 9. The following Proposition is valid.
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Proposition 1. If reductions (2.23) and (2.24) have not been involved imtes@eration, then
1. Egs.(3.12) and (3.15) are equivalent to the next systentegjral-algebraic equations:

20,,).
V29 (A:x) /d v: X"O WiX) L 5 wo(x) = 1. (3.17)

D) (v )29 (-
0= [ay XD vix)
J v

/dv XD (v )VE? (v; X)WL () (w1 — w100 (x)) =1 = w1100 (x) (3.18)
where
I Z Om(Xm—Atm) () .
J(A;%) /dq em=1 Xo (A,q), j=12 (3.19)

Herex(j), j =1,2 are arbitrary Qx Q matrix functions, g (qs,...,qn), parameters gare
complex in general.

2. Expressions for fieldsW%0, j = 1,2, and w219 follow from the definition (2.22):

w200 () = x (D (A;x) « V22 (A;x), j=1,2, (3.20b)
where
V5O (A5) = V20 (AW () (AT — witto0 (x)) -2 (3.21)

3. Egs.(3.17,3.18,3.20) represent the complete systemtefral-algebraic equations which
defines fields W%, i j =1,2.

Proof. To satisfy the egs.(2.9) and (2.11) wilfgiven by the first of egs.(3.2) we take
HiY(Aix) =31, HP () =1. (3.22)

Note that this form oH{z) may be used unless reduction (2.23) is involved. Then eds)and
(3.16) yield respectively

WO =~ A0go(Aigng” (Aix). j=1.2 (3.:23)
V1 (A;%) = =@ (A ) Po(A;X)% (A5 X), (3.24)
Uo1(A;%) = — P (A5 %) Bio(A s X)Ugo(A 5 X). (3.25)

Thus, eq.(3.12)j = 2, gets the next form:

2 : o(A 1) : (20) :
(p()\;x)vgzo)()\;x)—/dv( Vi ORX (Y X)>VO v =1, (3.26)

A—vV
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where
@(A:%) = goo(A:X) — Gor(A: )Py (A %) o (A %), (3.27)
XD:x) =A%) — W (A @ (A9 Go(A; %), j=1.2
Requiring @(A;x) = | we get eq.(3.17). Functiog(® must provide uniqueness of?” as a
solution of eq.(3.17). Classica-problem for Pohlmeyer equation correspondgth = 0 (and,
as a consequenceyp = 0) [15, 16].
Multiplying eq.(3.12),j = 1, by P from the right, substituting eq.(3.8) fof19P, using egs.(3.23)
with j = 1 and eq.(3.17) fov'2” (A ; x) we obtain:

To(A;X)3(A1 —E) +3(A) { / dv X (v v (vixwY (x) (vl — E)TE Lt (3.28)
D

/dv X(l)(v;);)%(v;x) 5(vI —E)— P(x)] —0,
D

which is equivalent to the next pair of equations:
(VO(EB1X))C!B :07 avB:]-v"'vQ7 (329)
/dv X (vivE? (v )W (x) (VI — E(x) E (%) = P(X). (3.30)
D

The matrix equation (3.30) is a system of scalar equationthfoelements oE andP. We may
replace the matrice® andP by w1199 in the eq.(3.30). For this purpose we multiply eq.(3.30)
by EP from the right resulting in the eq.(3.18).

Thus, we have derived an integral equation (3.17)/@69) and algebraic eq.(3.18) as an equa-
tion relating fieldsm1:99 | j = 1,2. One more equation relating these two fields follows from th
egs.(2.22) (with = 2, j = 1, k= n=0) and may be written as eq.(3.20a). Eq.(3.21) follows from
the eq.(3.8) after applying~! from the right and using egs.(3.23) and (3.29). Two more sield
w200 j =1 2 may be calculated using egs.(2.22) with1,2, j = 2,k=n=0, see egs.(3.20b).

Functionsy(l), j = 1,2, satisfy the linear PDEs which follow from the linear PDBs the

functions (s and h(zf), i =0,1. These PDEs are egs.(2.5) and (2.10), which may be writen a
single linear PDE

Pt (A X)+ AP, (A;X) =0, m=1,2, (3.31)
where¢ is one of the functiong}; or hY),i=0,1j=1,2. This means tha( are solutions of
the same PDE as well, i.&)) may be written in the form (3.19). [ |

Reductions. There is a remarkable sub-manifold of particular solutioogesponding to the
reduction (2.23). System of integral-algebraic equati@$7,3.18,3.20) will be replaced by the
system of algebraic equations. In the simplest cgsel, A(A, ) =Ad(A — ), A(A,U) =A(A —
a)d(A — ), H{l)()\) =0(A)l, H{Z)(A) = 0(A —a)l, a=const Then eq.(2.19) after applying
*Hil) and*Hiz) yields:

Ww(l100 (12,00
AVAX) =V xw(x), V=NV v@] w= w2100 (2200 |- (3.32)
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In result we will get the next algebraic system implicitlysdgbing some family of solutions:

Q
WaB = zl [FGV(Xl_\NtlaXZ_\NtZ)] YB’ a7B = 17" . 7Q7 (333)
y=

which may be derived by the algebraic method [7]. HEf@;,2) is arbitrary Q x Q matrix
function.
The second reduction, eq.(2.24), is assotiated with morgtoated form of function&(A, ),

AA, ), Hil)()\) and Héz)()\). The possible choice might be two-component spectral patem
A = (A, A2), AN 1) = Ad(Ar — p)d(A2 — k), AA, 1) = A28(M — p11)8(Az — o), HiP (A) =
o(A2)l, Héz)(}\ ;X) = &(A1)l. However, we postpone the detailed study of this reduction.

4 Conclusions

We represent a simplest example of nonlinear PDEs which realydated by a version of the
dressing method and admits reductions to Self-dual &jgegrable PDEs as well as to PDEs
integrable by the method of characteristics. Remembdrsthmlar joining of S andC-integrable
models (see [17] for definition dE-integrability) has been represented in [14]. In [8] we have
considered a version of the dressing method joiirigtegrability and integrability by the method
of characteristics. It is remarkable, that system (1.),adInits reduction to the system (1.5),
which may not be referred to neither PDEs integrable by thmegdized hodograph method nor
to PDEs integrable by the method of characteristics. Ab¢hexamples demonstrate flexibility of
the dressing method.
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