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Abstract

We apply a version of the dressing method to a system of four-dimensional nonlinear Partial
Differential Equations (PDEs), which contains both Pohlmeyer equation (i.e. nonlinear PDE
integrable by the Inverse Spectral Transform Method) and nonlinear matrix PDE integrable by
the method of characteristics as particular reductions. Some other reductions are suggested.

1 Introduction

In this paper we apply a properly modified version of the dressing method developed in [1] to
a system of nonlinear Partial Differential Equations (PDEs) which combines some properties of
both nonlinear PDEs integrable by the Inverse Spectral Transform Method (ISTM) (orS-integrable
PDEs) [2, 3, 4, 5] and nonlinear PDEs integrable by the methodof characteristics [6, 7, 8]. The
important feature of this version is that it is based on the integral operator with nontrivial kernel
[8, 9], unlikely the classical̄∂ -dressing method [4, 5, 10]. The system of nonlinear PDEs studied
below can be written as a system of evolution equations,

wt +ux1 p+wx1w = 0, (1.1)

pt +vx1 p+ px1w = 0,

(ut −wux1 −uvx1)x2 = (ux3 −wux2 −uvx2)x1,

(vt − pux1 −vvx1)x2 = (vx3 − pux2 −vvx2)x1,

supplemented by the pair of compatible constraints

wx3 +ux2 p+wx2w = 0, (1.2)

px3 +vx2 p+ px2w = 0,

where fieldsw, p, v andu areQ×Q matrices. This system reduces to Pohlmeyer equation [11, 12]
(which isS-integrable PDE) ifp = u = w = 0,

vtx2 −vx3x1 = [vx2,vx1] ⇔ (J−1Jt)x2 − (J−1Jx3)x1 = 0 (1.3)
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(wherevx1 = J−1Jt , vx2 = J−1Jx3) and to to the pair of compatible matrix first order quasilinear
PDEs integrable by the method of characteristics ifv = p = u = 0, [7]:

wt +wx1w = 0, wx3 +wx2w = 0. (1.4)

An interesting reductions of the system (1.1,1.2) is the following (1+1)-dimensional system:

wt +ux1 p+wx1w = 0, pt +vx1 p+ px1w = 0, (1.5)

ut −wux1 −uvx1 = 0, vt − pux1 −vvx1 = 0.

A distinguished feature of this system is evident in the caseof scalar fieldsw, p, u andv (Q = 1),
when eqs.(1.5) read:

~wt +V~wx1 = 0, ~w =







w
p
u
v







, V =







w 0 p 0
0 w 0 p
0 0 −w −u
0 0 −p −v







(1.6)

In general, 4×4 matrix of this system has 3 different eigenvalues. Thus, this system is intermediate
between PDEs integrable by the generalized hodograph method [13] (which requires four different
eigenvalues) and method of characteristics for matrix equations [7] (which requires two different
eigenvalues).

We will show that solution space to the system (1.1,1.2) is implicitly described by the system
of integral-algebraic equations which mixtures integral equation of the classical̄∂ -problem and
algebraic equations typical for the method of characteristics [7, 8]. In particular cases, this integral-
algebraic system becomes system of algebraic equations, which is quite equivalent to the system
derived in [1], see also [7, 8]. According to [1], this fact demonstrates that our nonlinear PDEs
possess solutions with wave profile breaking.

In the next section, Sec.2, we represent derivation of the system (1.1,1.2) and its reduction (1.5)
by the dressing method. In Sec.3 we describe solution space to the system (1.1,1.2) and give some
remarks on the construction of solutions to the eq.(1.5). Conclusions are given in Sec.4.

2 Dressing method: derivation of nonlinear PDEs

2.1 Dressing and spectral functions

In this subsection we introduce basic functions and operators of the dressing algorithm.

Homogeneous Fredholm equation and general form of the spectral system. We start with
the following integral equation [8]:

∫

D

Ψ(λ ,ν ;x)U(ν ,µ ;x)dν ≡ Ψ(λ ,ν ;x)∗U(ν ,µ ;x) = 0, (2.1)

whereλ andν are complex (either scalar or vector) spectral parameters,”∗” means integration
over some regionD of the spectral parameter space,x = (x1,x2, . . . , t1, t2 . . . ) is a set of all in-
dependent variables of nonlinear PDEs;U is 2Q×Q matrix spectral function depending on two
spectral parameters;Ψ is Q×2Q dressing function and kernel of the integral operator. Following
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the strategy of [8, 1], we assume that the general solution toeq.(2.1) may be represented in the
next form:

U(λ ,µ ;x) = U (h)(λ ,ν ;x)∗ f (ν ,µ ;x), (2.2)

wheref (ν ,µ ;x) is an arbitraryQ×Qmatrix function of arguments andU (h) is a particular nontriv-
ial solution to the homogeneous equation (2.1). This assumption causes the unique linear relation
among any two independent solutionsU ( j), j = 0,1, . . . , of eq.(2.1):

U ( j)(λ ,µ ;x) = U (0)(λ ,ν ;x)∗F ( j)(ν ,µ ;x), (2.3)

whereF ( j) are someQ×Q matrix functions. As we shell see, all solutionsU ( j) are expressed
in terms of the single solutionU through some linear operatorsL( j), either differential or non-
differential: U ( j)(λ ,µ ;x) = L( j)(λ ,ν)∗U(ν ,µ ;x). Thus, eqs.(2.3) represent the general form of
the overdetermined compatible system of linear equations for the spectral functionU (general
form of the spectral system). Besides, we will show in Sec.2.2 thatF( j) may be expressed in terms
of U using an externalQ×2Q dressing matrix functionG(λ ,µ ;x), similar to [8, 1].

x-dependence of the dressing function Ψ. We introduce theQ×Q matrix functionA (λ ,µ)
and 2Q× 2Q matrix functionA(λ ,µ) (both functions are independent onx) by the following
generalized commutation relation:

A (λ ,ν)∗Ψ(ν ,µ ;x) = Ψ(λ ,ν ;x)∗A(ν ,µ) (2.4)

and define operatorsA j andA j as follows:A j = A ∗ · · · ∗A
︸ ︷︷ ︸

j

, A j = A∗ · · · ∗A
︸ ︷︷ ︸

j

. Let x-dependence

of Ψ be given by the equation

Ψtm(λ ,µ ;x)+A (λ ,ν)∗Ψxm(ν ,µ ;x) = 0, (2.5)

which is compatible with eq.(2.4).

External dressing function G. We have to introduce an external dressingQ×2Q matrix func-
tion G(λ ,µ ;x) which was mentioned above and whose prescription will be explored in Sec.2.2.
Let G be defined by the next compatible system of linear equations:

G(λ ,ν ;x)∗A(ν ,µ) = Â(λ ,ν)∗G(ν ,µ ;x)+
2

∑
j=1

H( j)
1 (λ ;x)H( j)

2 (µ ;x), (2.6)

Gtm(λ ,µ ;x)+Gxm(λ ,ν ;x)∗A(ν ,µ) = 0, (2.7)

whereÂ andH( j)
1 , j = 1,2, areQ×Q, while H( j)

2 , j = 1,2, areQ× 2Q matrix functions. We

refer to functionsH( j)
i (λ ;x), i, j = 1,2 as external dressing functions as well. The compatibility

condition of eqs.(2.6) and (2.7) yields:

2

∑
j=1

[(

H( j)
1 (λ ;x)

)

tm
H( j)

2 (µ ;x)+H( j)
1 xm

(λ ;x)H( j)
2 (ν ;x)∗A(ν ,µ)+ (2.8)

H( j)
1 (λ ;x)

(

H( j)
2 tm

(µ ;x)+H( j)
2 xm

(ν ;x)∗A(ν ,µ)
)]

= 0,
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which admits the following solution:

H( j)
1 tm

= H( j)
1 xj

= 0, j = 1,2, (2.9)

H( j)
2 tm

+H( j)
2 xm

∗A = 0, j = 1,2, (2.10)

i.e. functionsH( j)
1 do not depend onx: H( j)

1 (λ ;x) ≡ H( j)
1 (λ ), j = 1,2. In order to derive PDEs

different from the classicalS-integrable systems we require

Â∗H(1)
1 = 0, Â∗H(2)

1 6= 0. (2.11)

2.2 Spectral system for U(λ ,µ;x)

Now we are ready to derive the overdetermined linear system for the spectral functionU(λ ,µ ;x),
i.e. the spectral system. Following the usual strategy of the dressing methods, we have to obtain
set of different solutions to the homogeneous eq.(2.1) expressed in terms of functionsU , A andx-
derivatives ofU . For this purpose we applyA m∗ and(∂tm +A ∗∂xm) to (2.1) and use eqs.(2.4,2.5).
One gets

Ψ(λ ,ν ;x)∗E( j;m)(ν ,µ ;x) = 0, j = 1,2, (2.12)

where

E(1;m)(λ ,µ ;x) = Am(λ ,ν)∗U(ν ,µ ;x), (2.13)

E(2;m)(λ ,µ ;x) = Utm(λ ,µ ;x)+A(λ ,ν)∗Uxm(ν ,µ ;x).

Remember the eq.(2.3) relating any two different solutionsof the homogeneous equation (2.1). Let
U (0) ≡ U in the eq.(2.3) and considerE( j;m) as different solutions of the eq.(2.1). Then eq.(2.3)
yields:

E(1;1)(λ ,µ ;x) = U(λ ,ν)∗ F̃(ν ,µ ;x), ⇒ (2.14)

A(λ ,ν ;x)∗U(ν ,µ ;x) = U(λ ,ν ;x)∗ F̃(ν ,µ ;x),

E(2;m)(λ ,µ ;x) = U(λ ,ν)∗F(m)(ν ,µ ;x), ⇒ (2.15)

Utm(λ ,µ ;x)+A(λ ,ν)∗Uxm(ν ,µ ;x) = U(λ ,ν ;x)∗F (m)(ν ,µ ;x), m= 1,2, . . . .

Eqs. (2.14,2.15) represent a preliminary version of the overdetermined linear system for the spec-
tral functionU(λ ,µ ;x).

Recall thatU(λ ,µ ;x) is not unique solution of the integral equation (2.1). To obtain uniqueness
we have to introduce one more equation for the spectral function U . For instance, using the
external dressing functionG, we may write

G(λ ,ν ;x)∗U(ν ,µ ;x) = Iδ (λ −µ). (2.16)

Now U is the uniquesolution of the system (2.1,2.16). In other words, the equation (2.16) fixes
function f (λ ,µ ;x) in the eq.(2.2). ApplyingG∗ to the eqs.(2.14,2.15) and using eq.(2.16) one gets



Combination of Inverse Spectral Transform Method and ... 441

the expressions for̃F andF(m):

F̃(ν ,µ ;x) = G(λ ,ν ;x)∗E(1;1)(ν ,µ ;x) = (2.17)

Â(λ ,µ)+
2

∑
j=1

H( j)
1 (λ )H( j)

2 (ν ;x)∗U(ν ,µ ;x),

F(m)(ν ,µ ;x) = G(λ ,ν ;x)∗E(2;m)(ν ,µ ;x) =
2

∑
j=1

H( j)
1 (λ )

(

H( j)
2 (ν ;x)∗U(ν ,µ ;x)

)

xm

, m= 1,2, . . . .

Although indexm may take any positive integer value (reflecting the existence of the hierarchy of
commuting flows) we will take only two valuesm= 1,2, which is enough to construct a complete
system of nonlinear PDEs. Unlikely the classical spectral systems, eqs.(2.14,2.15) depend on two
spectral parameters due to the spectral functionU(λ ,µ ;x). However, functions of single spectral
parameter appear in these equations naturally. These functions are following:

V( ji)(λ ;x) = U(λ ,µ ;x)∗ Âi(µ ,ν)∗H( j)
1 (ν), (2.18)

W( ji)(µ ;x) = H( j)
2 (λ ;x)∗Ai(λ ,ν)∗U(ν ,µ ;x), i, j = 1,2.

All in all, substituting eqs.(2.17) and (2.18) into the eqs.(2.14,2.15) one gets:

A(λ ,ν)∗U(ν ,µ ;x) = U(λ ,ν ;x)∗ Â(ν ,µ)+
2

∑
j=1

V( j0)(λ ;x)W( j0)(µ ;x), (2.19)

Utm(λ ,µ ;x)+A(λ ,ν)∗Uxm(ν ,µ ;x) =
2

∑
j=1

V( j0)(λ ;x)W( j0)
xm (µ ;x), m= 1,2. (2.20)

The non-classical type spectral system (2.19,2.20) depending on two spectral parametersλ andµ
gives rise to the classical type spectral system for the spectral functionsV( j0)(λ ;x), j = 1,2 with

single spectral parameter. This system appears after applying ∗H(k)
1 , k = 1,2 to the eqs.(2.19) and

using eqs.(2.11):

A(λ ,ν ;x)∗V (10)(ν ;x) =
2

∑
j=1

V( j0)(λ ;x)w( j1;00)(x), (2.21)

A(λ ,ν ;x)∗V (20)(ν ;x) = V(21)(λ ;x)+
2

∑
j=1

V( j0)(λ ;x)w( j2;00)(x),

V(k0)
tm (λ ;x)+A(λ ,ν)∗V (k0)

xm (ν ;x)−
2

∑
j=1

V( j0)(λ ;x)w( jk;00)
xm (x) = 0, k,m= 1,2,

where fieldsw(i j ;kn) are defined as follows:

w(i j ;kn) = H(i)
2 ∗Ak ∗U ∗An∗H( j)

1 . (2.22)

The definition of fields (2.22) suggests us, for instance, twofollowing reductions:

1. Ân0 ∗H(2)
1 =

n0−1

∑
i=1

Âi ∗H(2)
1 r(i) ⇒ w( j2;kn0) =

n0−1

∑
i=1

w( j2;ki)r(i), ∀ j,k, (2.23)

2. H(2)
2 ∗Ak0 =

k0−1

∑
i=1

r(i)H(2)
2 ∗Ai ⇒ w(2 j;k0n) =

k0−1

∑
i=1

r(i)w(2 j;in), ∀ j,n, (2.24)

wheren0 andk0 are any integer numbers andr(i) are scalar parameters.
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2.3 Nonlinear PDEs

Applying H(i)
2 ∗, i = 1,2 to the system (2.21) we obtain the following system of nonlinear PDEs:

w(i1;10) =
2

∑
j=1

w(i j ;00)w( j1;00), (2.25)

w(i2;10) = w(i2;01) +
2

∑
j=1

w(i j ;00)w( j2;00), (2.26)

E(ik;00;m)
1 := w(ik;00)

tm +w(ik;10)
xm −

2

∑
j=1

w(i j ;00)w( jk;00)
xm = 0, i,k,m= 1,2. (2.27)

Eliminatingw(i1;10) from the eq.(2.27),k = 1, using eq.(2.25) one gets

w(i1;00)
tm +

2

∑
j=1

w(i j ;00)
xm w( j1;00) = 0, i,m= 1,2. (2.28)

Eq.(2.27),k = 2 in view of eq.(2.26) may be given another form,

E(i2;00;m)
2 := w(i2;00)

tm +w(i2;01)
xm +

2

∑
j=1

w(i j ;00)
xm w( j2;00) = 0, i,m= 1,2, (2.29)

which is convenient for imposing the reduction (2.23). Now the complete system of nonlin-
ear PDEs is represented by the eqs.(2.28) and the following combination of eqs.(2.27),k = 2:
(E(i2;00;1)

1 )x2 − (E(i2;00;2)
1 )x1. Introducing new dependent and independent variables

w = w(11;00), p = w(21;00), u = w(12;00), v = w(22;00), t = t1, x3 = t2, (2.30)

we end up with the system (1.1,1.2).

Reductions. Reduction (2.23) yelds quasilinear matrix first order PDEs integrable by the method
of characteristics [7]. Similar PDEs have been considered in [1] as lower dimensional reductions
of appropriate Self-dual typeS-integrable PDEs. It was shown that such lower dimensional PDEs
generate solutions with wave profile breaking. A new type of reductions is represented by the
eq.(2.24). In the simplest examplek0 = 1, the eqs.(2.27) and (2.28) withm= 1 yield the system
(1.5).

3 Implicit description of solutions to nonlinear PDEs

We introduce the next block-matrix representation of the functions,∀ i, j:

Ψ(λ ,µ ;x) = [ψ0(λ ,µ ;x) ψ1(λ ,µ ;x)], U(λ ,µ ;x) =

[
u0(λ ,µ ;x)
u1(λ ,µ ;x)

]

, (3.1)

V(i j )(λ ;x) =

[

v(i j )
0 (λ ;x)

v(i j )
1 (λ ;x)

]

, W(i j )(µ ;x) = w(i j )
0 (µ ;x),

G(λ ,µ ;x) = [g0(λ ,µ ;x) g1(λ ,µ ;x)], H(i)
2 (λ ;x) = [h(i)

20(λ ;x) h(i)
21(λ ;x)],

H(i)
1 (λ ;x) = h(i)

1 (λ ;x).
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Any function in the RHS of the formulae (3.1) isQ×Q matrix function, so thatΨ, G andH(i)
2 are

Q×2Q, U andV(i j ) are 2Q×Q, W(i j ) andH(i)
1 areQ×Q matrix functions. We also have to fix

the functionsA (λ ,µ), A(λ ,µ) andÂ(λ ,µ):

A (λ ,µ) = Â(λ ,µ) = λδ (λ −µ)I , A(λ ,µ) = λδ (λ −µ)I2, (3.2)

whereI and I2 areQ×Q and 2Q× 2Q identity matrices respectively. Eq.(2.4) suggests us the
following structure ofΨ:

Ψ(λ ,µ ;x) = Ψ̂(λ ;x)δ (λ −µ), Ψ̂(λ ;x) = [ψ̂0(λ ;x) ψ̂1(λ ;x)], (3.3)

whereψ̂i , i = 0,1, areQ×Q matrix functions.
The main feature of the spectral system (2.19,2.20) is the presence of the spectral equation

which has no derivatives with respect tox, see eq.(2.19), which suggests us the next representation
for U :

U(λ ,µ ;x) =
∑2

j=1V( j0)(λ ;x)W( j0)(µ ;x)

λ −µ
+U0(λ ;x)δ (λ −µ), (3.4)

U0(λ ;x) =

[
u00(λ ;x)
u01(λ ;x)

]

,

whereu0i , i = 0,1, areQ×Q matrix functions. Remark, that eq.(2.19) after applying∗H(1)
1 yields:

V(10)(λ ;x)(λ I −w(11;00)(x)) = V(20)(λ ;x)w(21;00)(x), (3.5)

which relates spectral functionsV(10) andV(20). Let us write this relation for the case of diagonal-
izablew(11;00), i.e.

w(11;00)(x) = P(x)E(x)P−1(x), (3.6)

Pαα = 1, (3.7)

whereE is the diagonal matrix of eigenvalues,P is the matrix of eigenvectors with normalization
(3.7). Then, multiplying eq.(3.5) byP(λ I −E(x))−1 from the right one gets

V(10)(λ ;x)P = V(20)(λ ;x)w(21)(x)(λ I −E(x))−1 +V̂(λ ;x)δ (λ I −E(x)), (3.8)

V̂ =

[
v̂0

v̂1

]

, w(21) = w(21;00)P.

Similarly, eq.(2.6) yelds

G(λ ,µ ;x) = −
2

∑
j=1

H( j)
1 (λ ;x)H( j)

2 (µ ;x)
λ −µ

+G0(λ ;x)δ (λ −µ), (3.9)

G0(λ ;x) = [g00(λ ;x) g01(λ ;x)],

whereg0i , i = 0,1, areQ×Q matrix functions andG0(λ ;x)δ (λ −µ) is a solution of the eq.(2.7).
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Next, after substitution the eqs.(3.4) and (3.9) into the eq.(2.16), one gets:

1
λ −µ

2

∑
j=1

[

E1 j(λ ;x)W( j0)(µ ;x)+H( j)
1 (λ ;x)E2 j(µ ;x)

]

+ (3.10)

G0(λ ;x)U0(λ ;x)δ (λ −µ) = Iδ (λ −µ),

E1 j(λ ;x) = G0(λ ;x)V ( j0)(λ ;x)−
∫

D

dν ∑2
i=1 H(i)

1 (λ ;x)H(i)
2 (ν ;x)V ( j0)(ν ;x)

λ −ν
−H( j)

1 (λ ;x),

E2 j(µ ;x) = −

∫

D

dν
H( j)

2 (ν ;x)∑2
i=1V(i0)(ν ;x)W(i0)(µ ;x)

ν −µ
−

H( j)
2 (µ ;x)U0(µ ;x)+W( j0)(µ ;x).

The eq.(3.10) must be identity for anyλ andµ . Thus, it must be splited into the following set of
equations:

G0(λ ;x)U0(λ ;x) = I , (3.11)

E1 j(λ ;x) = 0, (3.12)

E2 j(µ ;x) = 0. (3.13)

The last terms in the expressionsE2 j have been introduced in order to eqs.(3.13) coincide with

eq.(3.4) after applyingH( j)
2 ∗ to eq.(3.4), which is necessary condition. The last terms inthe

expressions forE1 j are needed to compensate the last terms ofE2 j in the eq.(3.10).
The system (3.13) may be viewed as 2Q2 scalar equations for 2Q2 elements of the matrix

functionsW( j0), j = 1,2, i.e. W( j0) are completely defined. However, eqs.(3.11,3.12) are not
a complete system forU0 andV( j0), j = 1,2. In fact, eq.(3.11) representsQ2 scalar equations
for 2Q2 elements of the matrix functionU0. Similarly, eq.(3.12) represents 2Q2 scalar equations
for 4Q2 elements of the matrix functionsV( j0), j = 1,2. Thus, both eq.(3.11) and eq.(3.12) are
underdetermined systems.

The rest of equations for the elements ofV( j0) andU0 follows from the eq.(2.1) after substitu-
tion the eq.(3.3) forΨ and the eq.(3.4) forU :

Ψ̂(λ ;x)
∑2

j=1V( j0)(λ ;x)W( j0)(µ ;x)

λ −µ
+ Ψ̂(λ ;x)U0(λ ;x)δ (λ −µ) = 0. (3.14)

Since eq.(3.14) must be identity for anyλ andµ , it is equivalent to the following equations for
V( j0) andU0:

Ψ̂(λ ;x)V ( j0)(λ ;x) = 0, j = 1,2
(3.8)
⇒ Ψ̂(λ ;x)V̂(λ ;x) = 0, (3.15)

Ψ̂(λ ;x)U0(λ ;x) = 0 (3.16)

Each of these matrix equations representsQ2 scalar equations for 2Q2 elements of one of the
matrix functionsV( j0), j = 1,2 andU0. Thus, the system (3.11-3.13,3.15,3.16) is the complete
system for elements ofV( j0)(λ ;x), W( j0)(µ ;x), j = 1,2 andU0(λ ;x). Having these functions, the
spectral functionU(λ ,µ ;x) may be constructed using the formula (3.4).

It is simple to observe, that essentially important for construction ofw(i j ;00) = H(i)
2 ∗V( j0) are

eqs.(3.12) and (3.15) definingV( j0). The following Proposition is valid.
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Proposition 1. If reductions (2.23) and (2.24) have not been involved into consideration, then

1. Eqs.(3.12) and (3.15) are equivalent to the next system ofintegral-algebraic equations:

v(20)
0 (λ ;x)−

∫

D

dν
χ (2)(ν ;x)v(20)

0 (ν ;x)

λ −ν
+ δ (λ )w0(x) = I , (3.17)

w0(x) =

∫

D

dν
χ (1)(ν ;x)v(20)

0 (ν ;x)
ν

,

∫

D

dν χ (1)(ν ;x)v(20)
0 (ν ;x)w(21;00)(x)(ν I −w(11;00)(x))−1 = w(11;00)(x), (3.18)

where

χ ( j)(λ ;x) =

∫

RN

dq e
I

2
∑

m=1
qm(xm−λ tm)

χ ( j)
0 (λ ,q), j = 1,2. (3.19)

Hereχ ( j)
0 , j = 1,2 are arbitrary Q×Q matrix functions, q= (q1, . . . ,qN), parameters qi are

complex in general.

2. Expressions for fields w( j2;00), j = 1,2, and w(21;00) follow from the definition (2.22):

w(21;00)(x) = χ (2)(λ ;x)∗v(10)
0 (λ ;x), (3.20a)

w( j2;00)(x) = χ ( j)(λ ;x)∗v(20)
0 (λ ;x), j = 1,2, (3.20b)

where

v(10)
0 (λ ;x) = v(20)

0 (λ ;x)w(21)(x)(λ I −w(11;00)(x))−1 (3.21)

3. Eqs.(3.17,3.18,3.20) represent the complete system of integral-algebraic equations which
defines fields w(i j ;00), i, j = 1,2.

Proof. To satisfy the eqs.(2.9) and (2.11) withÂ given by the first of eqs.(3.2) we take

H(1)
1 (λ ;x) = δ (λ )I , H(2)

1 (λ ) = I . (3.22)

Note that this form ofH(2)
1 may be used unless reduction (2.23) is involved. Then eqs.(3.15) and

(3.16) yield respectively

v( j0)
1 (λ ;x) = −ψ̂−1

1 (λ ;x)ψ̂0(λ ;x)v( j0)
0 (λ ;x), j = 1,2, (3.23)

v̂1(λ ;x) = −ψ̂−1
1 (λ ;x)ψ̂0(λ ;x)v̂0(λ ;x), (3.24)

u01(λ ;x) = −ψ̂−1
1 (λ ;x)ψ̂0(λ ;x)u00(λ ;x). (3.25)

Thus, eq.(3.12),j = 2, gets the next form:

φ(λ ;x)v(20)
0 (λ ;x)−

∫

D

dν

(

χ (2)(ν ;x)+ δ (λ )χ (1)(ν ;x)
)

v(20)
0 (ν ;x)

λ −ν
= I , (3.26)
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where

φ(λ ;x) = g00(λ ;x)−g01(λ ;x)ψ̂−1
1 (λ ;x)ψ̂0(λ ;x), (3.27)

χ ( j)(λ ;x) = h( j)
20 (λ ;x)−h( j)

21 (λ ;x)ψ̂−1
1 (λ ;x)ψ̂0(λ ;x), j = 1,2.

Requiring φ(λ ;x) = I we get eq.(3.17). Functionχ (2) must provide uniqueness ofv(20)
0 as a

solution of eq.(3.17). Classical̄∂ -problem for Pohlmeyer equation corresponds toχ (1) = 0 (and,
as a consequence,w0 = 0) [15, 16].

Multiplying eq.(3.12),j = 1, byP from the right, substituting eq.(3.8) forV(10)P, using eqs.(3.23)
with j = 1 and eq.(3.17) forv(20)

0 (λ ;x) we obtain:

v̂0(λ ;x)δ (λ I −E)+ δ (λ )





∫

D

dν χ (1)(ν ;x)v(20)
0 (ν ;x)w(21)(x)(ν I −E)−1E−1+ (3.28)

∫

D

dν
χ (1)(ν ;x)v̂0(ν ;x)

ν
δ (ν I −E)−P(x)



 = 0,

which is equivalent to the next pair of equations:

(v̂0(Eβ ;x))αβ = 0, α ,β = 1, . . . ,Q, (3.29)
∫

D

dν χ (1)(ν ;x)v(20)
0 (ν ;x)w(21)(x)(ν I −E(x))−1E−1(x) = P(x). (3.30)

The matrix equation (3.30) is a system of scalar equations for the elements ofE andP. We may
replace the matricesE andP by w(11;00) in the eq.(3.30). For this purpose we multiply eq.(3.30)
by EP from the right resulting in the eq.(3.18).

Thus, we have derived an integral equation (3.17) forv(20)
0 and algebraic eq.(3.18) as an equa-

tion relating fieldsw(i1;00), i = 1,2. One more equation relating these two fields follows from the
eqs.(2.22) (withi = 2, j = 1, k = n = 0) and may be written as eq.(3.20a). Eq.(3.21) follows from
the eq.(3.8) after applyingP−1 from the right and using eqs.(3.23) and (3.29). Two more fields
w(i2;00), i = 1,2, may be calculated using eqs.(2.22) withi = 1,2, j = 2, k = n= 0, see eqs.(3.20b).

Functionsχ ( j), j = 1,2, satisfy the linear PDEs which follow from the linear PDEs for the

functionsψ̂i andh( j)
2i , i = 0,1. These PDEs are eqs.(2.5) and (2.10), which may be written as a

single linear PDE

ϕtm(λ ;x)+ λϕxm(λ ;x) = 0, m= 1,2, (3.31)

whereϕ is one of the functionŝψi or h( j)
2i , i = 0,1 j = 1,2. This means thatχ ( j) are solutions of

the same PDE as well, i.e.χ ( j) may be written in the form (3.19). �

Reductions. There is a remarkable sub-manifold of particular solutionscorresponding to the
reduction (2.23). System of integral-algebraic equations(3.17,3.18,3.20) will be replaced by the
system of algebraic equations. In the simplest casen0 = 1,A(λ ,µ) = λδ (λ −µ), Â(λ ,µ) = λ (λ −

a)δ (λ − µ), H(1)
1 (λ ) = δ (λ )I , H(2)

1 (λ ) = δ (λ − a)I , a = const. Then eq.(2.19) after applying

∗H(1)
1 and∗H(2)

1 yields:

λV(λ ;x) = V(λ ;x)w(x), V = [V(1) V(2)], w =

[
w(11;00) w(12;00)

w(21;00) w(22;00)

]

. (3.32)
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In result we will get the next algebraic system implicitly describing some family of solutions:

wαβ =
Q

∑
γ=1

[
Fαγ(x1−wt1,x2−wt2)

]

γβ , α ,β = 1, . . . ,Q, (3.33)

which may be derived by the algebraic method [7]. HereF(z1,z2) is arbitrary Q×Q matrix
function.

The second reduction, eq.(2.24), is assotiated with more complicated form of functionsA(λ ,µ),

Â(λ ,µ), H(1)
1 (λ ) andH(2)

2 (λ ). The possible choice might be two-component spectral parameter

λ = (λ1,λ2), A(λ ,µ) = λ1δ (λ1−µ1)δ (λ2−µ2), Â(λ ,µ) = λ2δ (λ1−µ1)δ (λ2−µ2), H(1)
1 (λ ) =

δ (λ2)I , H(2)
2 (λ ;x) = δ (λ1)I . However, we postpone the detailed study of this reduction.

4 Conclusions

We represent a simplest example of nonlinear PDEs which may be treated by a version of the
dressing method and admits reductions to Self-dual typeS-integrable PDEs as well as to PDEs
integrable by the method of characteristics. Remember, that similar joining ofS- andC-integrable
models (see [17] for definition ofC-integrability) has been represented in [14]. In [8] we have
considered a version of the dressing method joiningC-integrability and integrability by the method
of characteristics. It is remarkable, that system (1.1,1.2) admits reduction to the system (1.5),
which may not be referred to neither PDEs integrable by the generalized hodograph method nor
to PDEs integrable by the method of characteristics. All these examples demonstrate flexibility of
the dressing method.
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