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Abstract

The Banach fixed point theorem is used to prove the existeframiquew periodic solution
of a new type of nonlinear impulsive delay differential egoiawith a small parameter.

1 Introduction

It is now recognized that real world phenomena which areesilip short-time perturbations
whose duration is negligible in comparison with the duratid the process are more accurately
described using impulsive differential equations; sedrstance [1, 3, 4, 8, 16]. Also in certain
circumstances, the future state of a physical system migperd not only on the present state
but also on its past history. Thus incorporating delay indbesidered equations ensures that the
model provides a better description for the process inebl\/e refer the reader to the papers
[2, 5, 6, 7, 18] and the references cited therein.

In the last two decades there has been much research activitgrning the qualitative behav-
ior of impulsive delay differential equations, see for exdarthe papers [9, 10, 11, 13, 15, 20, 21]
where stability, oscillation, controllability and perioiy of solutions of these equations have been
investigated. Due to its vast importance in applicatiohs, éxistence of periodic solutions, how-
ever, has attracted the interest of many authors who studisdssue by using various methods
and by applying different techniques [12, 14, 20].

The aim of this paper is to investigate the existence of parigolutions of a new type of
nonlinear impulsive delay differential equation with a diparameter, of the form

() = A + BOL 1) £ (0 + E9UXO X1 T)€), L7, Wy
AX(8) = CiX(8) + DiX(B_) + fi + £ (X(8).X(B_;), &), i€ Z. '

By employing the Banach fixed point theorem, we shall proat éguation (1.1) has a uniqae
periodic solution. Our approach is based on the techniqad ims[16, p.37] where the existence
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of w periodic solutions for impulsive differential equationghvout delay has been investigated.
The equation under consideration in this paper allow dedan$ not only at the continuous state
but also at the fixed jumps. The main feature which distirffgegsour equation from the ones in
[21, 22] is the fact that the solution of equation (1.1) at jum@p points will also depend on
previous data.

2 Preliminaries

Here we introduce some notations and provide some auxilesyits that will be needed in next
section. Lem,ne N, E C R be aninterval and6 }i-z be a fixed sequence isuch thab,, 1 > 6
with lim;j_.. 6 = . Denote byPLC(E,R™™) the set of all functiong : E — R™™ which are
piecewise left continuous fdare E having discontinuous of the first kind &t< E. Leth > 0 and
define the se®, = {x € R": ||x|| < h} where|| - || is any norm inR".
We consider equation (1.1) with the following conditions:
(i) 7is apositive real numbey,is a fixed positive integer number apd J = [—€*,+-€*]
is a small parameter;
(i) A,BePLC(R,R™"), f € PLC(R,R") andg € PLC(R x Qn x Qn x J,R") arew peri-
odic functions int, w > T;
(i) G;,Dij € R™" fi e R"andg; € C(Qn x Qn x J,R") are p periodic sequences irand
{6 }iez satisfiesfi . p= 6+ w, peN;
(iv) There existk; > 0 andky, > 0 such that
lat.xy.e) —gt.xy. &) < ka(llx=x+[ly=¥l),
Hgi(xvyv )_gI(X7y7 )H < kZ(HX—)_(H—f—Hy—VH)’
fort e R,i € Z andx,X,y,y € Q.

By a solution of (1.1) on an intervdt, we mean a functiox € PLC(E,R") that satisfies (1.1).
One can easily show that for any given> 0 and any given functiomp(t) € PLC([—1,0],R"),
there is a unique solutiox(t) of (1.1) which satisfies

X(t)=o(t), telo—r1,0]. (2.2)

Equation (1.1) has been first considered in [17, 18] and irergeneral form in [19]. In these pa-
pers, the uniform asymptotic stability of the trivial satut and the existence of periodic solutions
have been studied.

Consider the inhomogenous equation

KO = AOXO BOXL-D) £ 1(0, 126, 22)
AX(6) =Cix(6)+Dix(6_j)+ fi, i€Z, '

and the corresponding homogenous equation

X(t) =At)x({t)+Bt)x(t—1), t+#8, 2.3)
AX(6) =Cix(8)+Dix(B_)), i €Z. |

Definition 1. A matrix solutionX(t, o) of (2.3) satisfyingX(a,a) =1 andX(t,a) =0 fort < o
is called a fundamental matrix of (2.3).
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It was shown in [17, Lemma 2.2] that far > 0 the solutions of (2.2) has the form

X(t) = X(t,o)x +/ X(t,a+1)B(a + 1)x(a)da
o-T
+ Z X(t’eij)DlH (GI)
n(o)—j<i<n(o)
+ /x ta)f(ada+ T X(t,6)f, (2.4)
n(o)<i<n(t)
where

nit)=min{i € Z: 6 >t}.

Define an operatdd : PLC([—1,0],R") — PLC(]—T1,0],R") = % through the relatiotJ ¢(t) =
X(t + w; @) wherex(t; @) is a solution of (2.3) defined fdar> 0 by the functionp given in[—1,0].
In view of (2.4), we have

Ugp(t) = X(t+ w,0)9(0)+ 0X(t+w,a+r)B(a+r)cp(a)da

-1
+ Y X(t+w81)Diye(6).
—-j<i<0
The operatotJ is compact: it maps every bounded set into a relative cormgegtctindeed, from
loll <M we obtain||U ¢|| <Mz and fromw > T we obtaint +w > 0 fort € [—1,0], therefore

5 XU 0,0) = AUX(E+ @) + BOX(E+ 0 T), 1€ (B Bet)

henceHdt X(t 4 w; @)|| < Ma. Thus, the set of functionfJ ¢} forms a set of uniformly bounded
and quasi-equicontinuous functions, consequently, orb#isis of Arzela-Ascoli Lemma, it is a
relative compact set.

The following lemma generalizes a fundamental result tagqaos of form (2.2).

Lemma 1. Let conditions (i)—(iii) (excluding conditions an g and g) be satisfied. Then, equa-
tion (2.2) has a uniguev periodic solution if and only if equation (2.3) does not havgeriodic
solutions different from the zero solution.

Proof. Let xo(t; @) be the solution of (2.2) defined for> 0 by the functiong given in[—1,0].
From conditions (i)—(iii) (excluding conditions og, g and g;), it follows that xo(t + w; @) is
likewise a solution of (2.2) defined fdr+ w > 1. Thenxo(t + w; @) = %o(t; ) for allt > —1
and hence the solution is periodic. Thus, the periodicitydition of the solution is written as
Xo(t + w; @) = @(t) for t € [-1,0]. LetV be the operator defined BYyp = xo(t + w; @); the
function ¢ is an initial function for a periodic solution of the equatid and only if V¢ = ¢, in
other words, the periodic solutions of the equation cowadpo the fixed points of the operator
V. Letz(t; @) be the solution of (2.3), defined for> 0 by the initial functiong given in[—1,0].
Then .
%t9) =29+ [ Xtayf@da+t Y X8

0<i<n(t)
If U is the operator defined by the relatiop = z(t + w; @), we have

t+w
Vo= U(p+/ (t+w,a)f(a)da+ z X(t+ w, 6)fi, (2.5)
o<i<n(t+w)
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wheren(w) = p. The periodicity condition implies that

14w
(I—U)(p:/o Xtroaf@da+ 5 Xt+w8)f,

0<i<n(t+w)
or,

Xo(t) = o(t) = (1 ~U) 0”“’x<t+w,a)f(a)da+ Z( )X(t+w,9.)fi}. 2.6)
o<i<n(t+w

The operatol is compact, hencé,— U has inverse if and only if the equatigh— U )@ = 0 has
no nontrivial periodic solutions of periodw. The proof is complete. |

The following result provides the representation of solusi of equation (1.1). It is an imme-
diate consequence of Lemma 2.2 in [17] and hence we omit thed.pr

Lemma 2. Let X(t,a) be a fundamental matrix of (2.3) arl> 0 be a real number. If{t) is a
solution of (1.1), then

a

X(t) = X(t,o)x(o)+ X(t,a+1)B(a + 1)x(a)da

g—-T

+ z (t 6I+j)D|+J (9.)
n(o)—j<i<n(o)
+ tXtor a)+eg(a,x(a),x(a —1),¢)|da
Z X(t,9i+)[fi—I—Sgi(X(G,),X(G,,j),S)]. (2.7)
n(o)<i<n(t)

3 The Main Results

Choosep > 0 such thap + m < h. For each functioxx € PLC(R,R"), we define the norm

X[l = sup [x(t)].

te0,w]
Set
M= sup [X(t.a)], b= sup [B(a)|, bp=_sup [B
t,a€[0,w] ael0 =1, p
and
o= sup /Xtag<a Xo(a1),%o(a — T),€)dat
te[0,w],e|<e*
+ Y X(68N)6I(x(8),%(6-)),)|-
n(o)<e<n(t)

Fix € € [—&o, +&] Wheregg € (0,€%) is such that

y = 260M (ki + ko) M| (1 =U) Y| (br T+ bpj + 1) + 1] < 1, (3.1)
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and

o M||(1 =U) 7| (brow+bop) +1] < (1—y)p, 3.2)

where||X||r = Supe[_r g [X(1)|- The setB, = {x € PLC(R,R") : X(t) is w periodic} with the norm
||IX||, is evidently a Banach space.

Theorem 1. Assume that

(al) Conditions (i)—(iv) hold;
(a2) Equation (2.3) has no nontrivial solutions;
(a3) The uniquew periodic solution ¥(t) of equation (2.2) is such that

m= sup |[x(t)] <h. (3.3)

0<t<w

Then there existsg € (0,&*) such that for eacle € [—&, +&] equation (1.1) has a unique
periodic solution Xt, ). Moreover, Xt,0) = xo(t) and

Ilmox(t €) =Xo(t) uniformly inte R. (3.4)
E—
Proof. LetE ={xe Ay : |[x—Xo|| < p}. We define the operatdi : E — A, X — Fx=uby the

formula
ag

ult) = X(t,a)u(a)+ X(t,a+r)B(a+r)u(0{)da

FS xearEue)
n(o)—j<i<n(o)
tX t,a)[f(a)+eg(a,x(a),x(a —1),¢))|da

><<t,ei+>[fi+sgi<x<a>,x<afj>,s>]. (3.5)
n(o)<i<n(t)
We note that ik € E then||x|| < |[|[Xx—Xol| + ||Xo|| < p +m < hand the operatdF is well defined.
Moreover, form (3.5) it follows that the functidRx(t) is w periodic andFx € A,.
Let Fxg = Up. Then from (2.4) and (3.5) we obtain
Uo(t) —Xo(t) = X(t,0)[Uo(0) —X0(0)]

a

+ G_Tx(t,a+r)B(Or+T)[Uo(a)—XO(a)]da
+ Z . X(t,67)Bis [Uo(8) — Xo(8)]
—j<i<n
n /Xtor (a,x(a),x(a —1),&)da
X(t. 6, (x(8).x(61_).£)]. (3.6)
n(o )<|<n(t)

It follows that

[[Uo —Xol|w < Ml|to —Xol|z +Mbx |uo — Xol[r +Mbg [0 —Xol|r + |€[ -
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In view of (2.6) and (2.7), one can see that
[[Uo —Xol[r < [€|S,

whereS= ||(I —U)~Y||;. This implies that

IFX0 —Xollw < [€[HMS(b1T + b2 +1) +1]. 3.7
Hence, from (3.1) and (3.2), we have

IFX0—Xollw < (1-Y)p <p. (3.8)
Letx,y € E andFx=u, Fy=v. Then from (3.5), we get

u(t) — v(t) =X(t,0)u(o) —v(o)]

g

+ B X(t,a+71)B(a+T1)[u(a) —v(a)|da
+ Z o )X(t ,6)Birj [u(8) —v(6)]
—j<i<n
/Xtor (a,x(a),x(a —1,&) —g(a,y(a),y(a —1),¢)|da
DI RICIECH X(8-1),€) = G(¥(8).¥(8-1).€)] }. 3.9)
<i<n(t

Using (3.9) and conditiofiiv) we obtain the estimate
Ju=V]o <M(biw+bzp+ 1)[[u— V][ + |€[M (210 + 2kzp) [ X - Y| -
In view of (2.6) and (2.7), one can see that
Ju=Vllr = |e[SM(Zk10+ 2kzp) [ X = V]| o>
This implies that
IFX—FYl||o < 2/&|M(kyw+ K2 j) [MS(by T + b2 4+ 1)]|[X — Y| - (3.10)
In virtue of (3.1), we have
IFx=FYllo < VIX=Ylo- (3.11)
If x € E thenFx € E since by (3.8) and (3.11) we obtain
[Fx—Xollw < [[FX—FXollw+ [IF X0 — ol < VI[X—Xollw+ (1~ ¥)p < p.

HenceFE C E andF is a contraction. Then by the Banach fixed point theorem, gegatorF
has a unique fixed point= x(t, €) € E such thaFx =X, that is,
g

X(t) = X(t,0)X(o)+ X(t,a+1)B(a+1)X(a)da

+ Z X(t, 6|+J)Bi+j¥(el)
(0)—j<i<n(o)
+ /X (t,a)[f(a)+eg(a,X(a),x(a —1),&)|da
+ Y (Leﬁ)[f.+sgi(Y(6.),Y(&—j),€)]- (3.12)

n(o)<i<t
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It follows thatx(t, €) is the uniquew periodic solution of equation (1.1). Obviouskft,0) = Xp(t).
Moreover, from (3.8) and (3.10) we obtain the estimate

|| uMS(by T + bpj + 1) + 1]
M(kl(;)—i- kQC])[MS(blT—i-sz + 1) —l—l]

X — <

which proves (3.4). |

Define successively the sequence of functixyis) = X, (t,€),n=0,1,2,..., wherexy(t, €) = Xo(t)
is the uniquew periodic solution of equation (2.2) ang, ; is the uniquew periodic solution of
equation

X1 (t) = At)Xnr1(t) + B(t) X2 (t — 7) + f(t) + €9(t, Xn(t), X (t — T), ), t # 6, (3.13)
DMXni1(6) =CiXni1(6) + DiXny1(6-j) + fi + €01 (% (6), % (6 _j),€), i € Z. '

In view of Lemma 1 and Lemma 2, equation (3.13) has a unigygeriodic solution of the form
g

%) = X(t00ea(0)+ [ X(ta+DB(a+Dxeua(a)da

+ z X(t’eaj)Dk-‘ranJrl(ek)

n(o)—j<k<n(o)
/X(t,a)[f(a)+sg(a,xn(or),xn(or—r),s)]da
> X(1,6) gk + EGk(Xn(6k), Xn (B ). €)]. (3.14)

n(o)<k<n(t)

_l’_

Corollary 1. Letthe assumptions of Theorem 1 be fulfilled. Then

lim x(t,€) = x(t,€) uniformly int € R, € € [—&o, +&), (3.15)

n—oo

wherex,(t, €) are the uniquev periodic solutions of equation (3.13).

Proof. It is easy to verify that the functions, = x,(t,€) defined by (3.14) are such that =
FX,—1, n=1,2,.... Then using (3.11) we obtain

o =Rl < 2ot el 1= 12

The last inequality proves (3.15). |

Remark 1. In view of (3.10), it follows that

n

40— Rl < =2 x4 — xollers N=1,2,..., (3.16)

B
1.8
where

B = 2|€|M(k1T—|—k2j)[MS(b1T—|—b2j +1)+l].
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