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Abstract

The Banach fixed point theorem is used to prove the existence of a uniqueω periodic solution
of a new type of nonlinear impulsive delay differential equation with a small parameter.

1 Introduction

It is now recognized that real world phenomena which are subject to short-time perturbations
whose duration is negligible in comparison with the duration of the process are more accurately
described using impulsive differential equations; see forinstance [1, 3, 4, 8, 16]. Also in certain
circumstances, the future state of a physical system might depend not only on the present state
but also on its past history. Thus incorporating delay in theconsidered equations ensures that the
model provides a better description for the process involved. We refer the reader to the papers
[2, 5, 6, 7, 18] and the references cited therein.

In the last two decades there has been much research activityconcerning the qualitative behav-
ior of impulsive delay differential equations, see for example the papers [9, 10, 11, 13, 15, 20, 21]
where stability, oscillation, controllability and periodicity of solutions of these equations have been
investigated. Due to its vast importance in applications, the existence of periodic solutions, how-
ever, has attracted the interest of many authors who studiedthis issue by using various methods
and by applying different techniques [12, 14, 20].

The aim of this paper is to investigate the existence of periodic solutions of a new type of
nonlinear impulsive delay differential equation with a small parameter, of the form

x′(t) = A(t)x(t)+B(t)x(t − τ)+ f (t)+ εg(t,x(t),x(t − τ),ε), t 6= θi ,

∆x(θi) = Cix(θi)+Dix(θi− j )+ fi + εgi(x(θi),x(θi− j ),ε), i ∈ Z.
(1.1)

By employing the Banach fixed point theorem, we shall prove that equation (1.1) has a uniqueω
periodic solution. Our approach is based on the technique used in [16, p.37] where the existence
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of ω periodic solutions for impulsive differential equations without delay has been investigated.
The equation under consideration in this paper allow delay terms not only at the continuous state
but also at the fixed jumps. The main feature which distinguishes our equation from the ones in
[21, 22] is the fact that the solution of equation (1.1) at thejump points will also depend ont
previous data.

2 Preliminaries

Here we introduce some notations and provide some auxiliaryresults that will be needed in next
section. Letm,n∈N, E ⊆R be an interval and{θi}i∈Z be a fixed sequence inE such thatθi+1 > θi

with lim i→∞ θi = ∞. Denote byPLC(E,Rn×m) the set of all functionsϕ : E → R
n×m which are

piecewise left continuous fort ∈ E having discontinuous of the first kind atθi ∈ E. Let h > 0 and
define the setΩh = {x∈ R

n : ‖x‖ < h} where‖ · ‖ is any norm inRn.
We consider equation (1.1) with the following conditions:

(i) τ is a positive real number,j is a fixed positive integer number andε ∈ J = [−ε∗,+ε∗]
is a small parameter;

(ii) A,B∈ PLC(R,Rn×n), f ∈ PLC(R,Rn) andg∈ PLC(R×Ωh×Ωh×J,Rn) areω peri-
odic functions int, ω > τ ;

(iii) Ci ,Di ∈ R
n×n, fi ∈ R

n andgi ∈C(Ωh×Ωh× J,Rn) arep periodic sequences ini and
{θi}i∈Z satisfiesθi+p = θi + ω , p∈ N;

(iv) There existk1 > 0 andk2 > 0 such that

‖g(t,x,y,ε)−g(t,x,y,ε)‖ ≤ k1(‖x−x‖+‖y−y‖),

‖gi(x,y,ε)−gi(x,y,ε)‖ ≤ k2(‖x−x‖+‖y−y‖),

for t ∈ R, i ∈ Z andx,x,y,y∈ Ωh.

By a solution of (1.1) on an intervalE, we mean a functionx ∈ PLC(E,Rn) that satisfies (1.1).
One can easily show that for any givenσ ≥ 0 and any given functionφ(t) ∈ PLC([−τ ,0],Rn),
there is a unique solutionx(t) of (1.1) which satisfies

x(t) = φ(t), t ∈ [σ − τ ,σ ]. (2.1)

Equation (1.1) has been first considered in [17, 18] and in more general form in [19]. In these pa-
pers, the uniform asymptotic stability of the trivial solution and the existence of periodic solutions
have been studied.

Consider the inhomogenous equation

x′(t) = A(t)x(t)+B(t)x(t − τ)+ f (t), t 6= θi ,

∆x(θi) = Cix(θi)+Dix(θi− j )+ fi, i ∈ Z,
(2.2)

and the corresponding homogenous equation

x′(t) = A(t)x(t)+B(t)x(t − τ), t 6= θi ,

∆x(θi) = Cix(θi)+Dix(θi− j ), i ∈ Z.
(2.3)

Definition 1. A matrix solutionX(t,α) of (2.3) satisfyingX(α ,α) = I andX(t,α) = 0 for t < α
is called a fundamental matrix of (2.3).
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It was shown in [17, Lemma 2.2] that forσ ≥ 0 the solutions of (2.2) has the form

x(t) = X(t,σ)x(σ)+
∫ σ

σ−τ
X(t,α + τ)B(α + τ)x(α)dα

+ ∑
n(σ)− j≤i<n(σ)

X(t,θ+
i+ j)Di+ jx(θi)

+

∫ t

σ
X(t,α) f (α)dα + ∑

n(σ)≤i<n(t)

X(t,θ+
i ) fi , (2.4)

where
n(t) = min{i ∈ Z : θi ≥ t}.

Define an operatorU : PLC([−τ ,0],Rn) → PLC([−τ ,0],Rn) = B through the relationUφ(t) =
x(t +ω ;φ) wherex(t;φ) is a solution of (2.3) defined fort ≥ 0 by the functionφ given in[−τ ,0].
In view of (2.4), we have

Uφ(t) = X(t + ω ,0)φ(0)+

∫ 0

−τ
X(t + ω ,α + τ)B(α + τ)φ(α)dα

+ ∑
− j≤i<0

X(t + ω ,θ+
i+ j)Di+ jφ(θi).

The operatorU is compact: it maps every bounded set into a relative compactset. Indeed, from
‖φ‖ ≤ M we obtain‖Uφ‖ ≤ M1 and fromω > τ we obtaint + ω > 0 for t ∈ [−τ ,0], therefore

d
dt

x(t + ω ;φ) = A(t)x(t + ω)+B(t)x(t + ω − τ), t ∈ (θk,θk+1)

hence‖ d
dt x(t + ω ;φ)‖ ≤ M2. Thus, the set of functions{Uφ} forms a set of uniformly bounded

and quasi-equicontinuous functions, consequently, on thebasis of Arzela-Ascoli Lemma, it is a
relative compact set.

The following lemma generalizes a fundamental result to equations of form (2.2).

Lemma 1. Let conditions (i)–(iii) (excluding conditions onε , g and gi) be satisfied. Then, equa-
tion (2.2) has a uniqueω periodic solution if and only if equation (2.3) does not haveω periodic
solutions different from the zero solution.

Proof. Let x0(t;φ) be the solution of (2.2) defined fort ≥ 0 by the functionφ given in [−τ ,0].
From conditions (i)–(iii) (excluding conditions onε , g and gi), it follows that x0(t + ω ;φ) is
likewise a solution of (2.2) defined fort + ω ≥ τ . Thenx0(t + ω ;φ) = x0(t;φ) for all t ≥ −τ
and hence the solution is periodic. Thus, the periodicity condition of the solution is written as
x0(t + ω ;φ) = φ(t) for t ∈ [−τ ,0]. Let V be the operator defined byVφ = x0(t + ω ;φ); the
function φ is an initial function for a periodic solution of the equation if and only ifVφ = φ , in
other words, the periodic solutions of the equation correspond to the fixed points of the operator
V. Let z(t;φ) be the solution of (2.3), defined fort ≥ 0 by the initial functionφ given in [−τ ,0].
Then

x0(t;φ) = z(t;φ)+

∫ t

0
X(t,α) f (α)dα + ∑

0≤i<n(t)

X(t,θi) fi .

If U is the operator defined by the relationUφ = z(t + ω ;φ), we have

Vφ = Uφ +
∫ t+ω

0
X(t + ω ,α) f (α)dα + ∑

0≤i<n(t+ω)

X(t + ω ,θi) fi , (2.5)
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wheren(ω) = p. The periodicity condition implies that

(I −U)φ =

∫ t+ω

0
X(t + ω ,α) f (α)dα + ∑

0≤i<n(t+ω)

X(t + ω ,θi) fi ,

or,

x0(t) = φ(t) = (I −U)−1
{∫ t+ω

0
X(t + ω ,α) f (α)dα + ∑

0≤i<n(t+ω)

X(t + ω ,θi) fi
}

. (2.6)

The operatorU is compact, hence,I −U has inverse if and only if the equation(I −U)φ = 0 has
no nontrivial periodic solutions of periodicω . The proof is complete. �

The following result provides the representation of solutions of equation (1.1). It is an imme-
diate consequence of Lemma 2.2 in [17] and hence we omit the proof.

Lemma 2. Let X(t,α) be a fundamental matrix of (2.3) andσ ≥ 0 be a real number. If x(t) is a
solution of (1.1), then

x(t) = X(t,σ)x(σ)+
∫ σ

σ−τ
X(t,α + τ)B(α + τ)x(α)dα

+ ∑
n(σ)− j≤i<n(σ)

X(t,θ+
i+ j)Di+ jx(θi)

+

∫ t

σ
X(t,α)

[
f (α)+ εg(α ,x(α),x(α − τ),ε)

]
dα

+ ∑
n(σ)≤i<n(t)

X(t,θ+
i )

[
fi + εgi(x(θi),x(θi− j ),ε)

]
. (2.7)

3 The Main Results

Chooseρ > 0 such thatρ +m< h. For each functionx∈ PLC(R,Rn), we define the norm

‖x‖ω = sup
t∈[0,ω ]

|x(t)|.

Set
M = sup

t,α∈[0,ω ]

|X(t,α)|, b1 = sup
α∈[0,ω ]

|B(α)|, b2 = sup
i=1,...,p

|Bi|

and

µ = sup
t∈[0,ω ],|ε |≤ε∗

∣∣∣
∫ t

σ
X(t,α)g(α ,x0(α),x0(α − τ),ε)dα

+ ∑
n(σ)≤θi<n(t)

X(t,θ+
i )gi(x0(θi),x0(θi− j),ε)

∣∣∣.

Fix ε ∈ [−ε0,+ε0] whereε0 ∈ (0,ε∗) is such that

γ = 2ε0M(k1ω +k2p)[M‖(I −U)−1‖τ(b1τ +b2 j +1)+1] < 1, (3.1)
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and

ε0µ [M‖(I −U)−1‖τ(b1ω +b2p)+1] ≤ (1− γ)ρ , (3.2)

where‖x‖τ = supt∈[−τ ,0] |x(t)|. The setBω = {x∈PLC(R,Rn) : x(t) is ω periodic} with the norm
‖x‖ω is evidently a Banach space.

Theorem 1. Assume that

(a1) Conditions (i)–(iv) hold;

(a2) Equation (2.3) has no nontrivial solutions;

(a3) The uniqueω periodic solution x0(t) of equation (2.2) is such that

m= sup
0≤t≤ω

|x0(t)| < h. (3.3)

Then there existsε0 ∈ (0,ε∗) such that for eachε ∈ [−ε0,+ε0] equation (1.1) has a uniqueω
periodic solution x(t,ε). Moreover, x(t,0) = x0(t) and

lim
ε→0

x(t,ε) = x0(t) uniformly in t∈ R. (3.4)

Proof. Let E = {x∈ Bw : ‖x−x0‖ ≤ ρ}. We define the operatorF : E →Bω , x→ Fx= u by the
formula

u(t) = X(t,σ)u(σ)+
∫ σ

σ−τ
X(t,α + τ)B(α + τ)u(α)dα

+ ∑
n(σ)− j≤i<n(σ)

X(t,θ+
i+ j)Bi+ ju(θi)

+

∫ t

σ
X(t,α)

[
f (α)+ εg(α ,x(α),x(α − τ),ε))

]
dα

+ ∑
n(σ)≤i<n(t)

X(t,θ+
i )

[
fi + εgi(x(θi),x(θi− j ),ε)

]
. (3.5)

We note that ifx∈ E then‖x‖ ≤ ‖x−x0‖+‖x0‖ ≤ ρ +m< h and the operatorF is well defined.
Moreover, form (3.5) it follows that the functionFx(t) is ω periodic andFx∈ Bω .

Let Fx0 = u0. Then from (2.4) and (3.5) we obtain

u0(t)−x0(t) = X(t,σ)
[
u0(σ)−x0(σ)

]

+

∫ σ

σ−τ
X(t,α + τ)B(α + τ)

[
u0(α)−x0(α)

]
dα

+ ∑
n(σ)− j≤i<n(σ)

X(t,θ+
i+ j)Bi+ j

[
u0(θi)−x0(θi)

]

+ ε
[∫ t

σ
X(t,α)g(α ,x(α),x(α − τ),ε)dα

+ ∑
n(σ)≤i<n(t)

X(t,θ+
i )gi(x(θi),x(θi− j ),ε)

]
. (3.6)

It follows that

‖u0−x0‖ω ≤ M‖u0−x0‖τ +Mb1τ‖u0−x0‖τ +Mb2 j‖u0−x0‖τ + |ε |µ .
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In view of (2.6) and (2.7), one can see that

‖u0−x0‖τ ≤ |ε |Sµ ,

whereS= ‖(I −U)−1‖τ . This implies that

‖Fx0−x0‖ω ≤ |ε |µ [MS(b1τ +b2 j +1)+1]. (3.7)

Hence, from (3.1) and (3.2), we have

‖Fx0−x0‖ω ≤ (1− γ)ρ < ρ . (3.8)

Let x,y∈ E andFx = u, Fy = v. Then from (3.5), we get

u(t) − v(t) = X(t,σ)[u(σ)−v(σ)]

+
∫ σ

σ−τ
X(t,α + τ)B(α + τ)[u(α)−v(α)]dα

+ ∑
n(σ)− j≤i<n(σ)

X(t,θ+
i+ j)Bi+ j

[
u(θi)−v(θi)

]

+ ε
{∫ t

σ
X(t,α)

[
g(α ,x(α),x(α − τ ,ε)−g(α ,y(α),y(α − τ),ε)

]
dα

+ ∑
n(σ)≤i<n(t)

X(t,θ+
i )

[
gi(x(θi),x(θi− j ),ε)−gi(y(θi),y(θi− j ),ε)

]}
. (3.9)

Using (3.9) and condition(iv) we obtain the estimate

‖u−v‖ω ≤ M(b1ω +b2p+1)‖u−v‖τ + |ε |M(2k1ω +2k2p)‖x−y‖ω .

In view of (2.6) and (2.7), one can see that

‖u−v‖τ = |ε |SM(2k1ω +2k2p)‖x−y‖ω .

This implies that

‖Fx−Fy‖ω ≤ 2|ε |M(k1ω +k2 j)[MS(b1τ +b2 j +1)]‖x−y‖ω . (3.10)

In virtue of (3.1), we have

‖Fx−Fy‖ω ≤ γ‖x−y‖ω . (3.11)

If x∈ E thenFx∈ E since by (3.8) and (3.11) we obtain

‖Fx−x0‖ω ≤ ‖Fx−Fx0‖ω +‖Fx0−x0‖ω ≤ γ‖x−x0‖ω +(1− γ)ρ ≤ ρ .

HenceFE ⊆ E andF is a contraction. Then by the Banach fixed point theorem, the operatorF
has a unique fixed point̃x = x(t,ε) ∈ E such thatFx̃ = x̃, that is,

x̃(t) = X(t,σ)x̃(σ)+

∫ σ

σ−τ
X(t,α + τ)B(α + τ)x̃(α)dα

+ ∑
n(σ)− j≤i<n(σ)

X(t,θ+
i+ j)Bi+ j x̃(θi)

+
∫ t

σ
X(t,α)

[
f (α)+ εg(α , x̃(α), x̃(α − τ),ε)

]
dα

+ ∑
n(σ)≤i<t

X(t,θ+
i )

[
fi + εgi(x̃(θi), x̃(θi− j),ε)

]
. (3.12)
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It follows thatx(t,ε) is the uniqueω periodic solution of equation (1.1). Obviously,x(t,0) = x0(t).
Moreover, from (3.8) and (3.10) we obtain the estimate

‖x̃−x0‖ω ≤
|ε |µ [MS(b1τ +b2 j +1)+1]

1−2|ε |M(k1ω +k2q)[MS(b1τ +b2 j +1)+1]

which proves (3.4). �

Define successively the sequence of functionsxn(t) = xn(t,ε), n= 0,1,2, . . ., wherex0(t,ε) = x0(t)
is the uniqueω periodic solution of equation (2.2) andxn+1 is the uniqueω periodic solution of
equation

x′n+1(t) = A(t)xn+1(t)+B(t)xn+1(t − τ)+ f (t)+ εg(t,xn(t),xn(t − τ),ε), t 6= θi,

∆xn+1(θi) = Cixn+1(θi)+Dixn+1(θi− j)+ fi + εgi(xn(θi),xn(θi− j),ε), i ∈ Z.
(3.13)

In view of Lemma 1 and Lemma 2, equation (3.13) has a uniqueω periodic solution of the form

xn+1(t) = X(t,σ)xn+1(σ)+
∫ σ

σ−τ
X(t,α + τ)B(α + τ)xn+1(α)dα

+ ∑
n(σ)− j≤k<n(σ)

X(t,θ+
k+ j)Dk+ jxn+1(θk)

+

∫ t

σ
X(t,α)

[
f (α)+ εg(α ,xn(α),xn(α − τ),ε)

]
dα

+ ∑
n(σ)≤k<n(t)

X(t,θ+
k )

[
gk + εgk(xn(θk),xn(θk− j),ε)

]
. (3.14)

Corollary 1. Let the assumptions of Theorem 1 be fulfilled. Then

lim
n→∞

xn(t,ε) = x(t,ε) uniformly in t ∈ R, ε ∈ [−ε0,+ε0], (3.15)

wherexn(t,ε) are the uniqueω periodic solutions of equation (3.13).

Proof. It is easy to verify that the functionsxn = xn(t,ε) defined by (3.14) are such thatxn =
Fxn−1, n = 1,2, . . .. Then using (3.11) we obtain

‖xn− x̃‖ω ≤
γn

1− γ
‖x1−x0‖ω , n = 1,2, . . . .

The last inequality proves (3.15). �

Remark 1. In view of (3.10), it follows that

‖xn− x̃‖ω ≤
β n

1−β
‖x1−x0‖ω , n = 1,2, . . . , (3.16)

where
β = 2|ε |M(k1τ +k2 j)[MS(b1τ +b2 j +1)+1].

Acknowledgments.The author thanks Prince Sultan University for their financial support during
the preparation of this paper.



20 J O Alzabut

References

[1] A NGELOVA J, DISHLIEV A and NENOV S, I-Optimal Curve for Impulsive Lotka-Volterra Predator-
Prey Model,Comput. Math. Applic.43 (10–11) (2002), 1203–1218.

[2] L IU X and BALLINGER G, Boundedness for Impulsive Delay Differential Equationsand Applica-
tions to Population Growth Models,Nonlinear Anal.53 (7–8) (2003), 1041–1062.

[3] N IETO J J, Impulsive Resonance Periodic Problems of First Order,Appl. Math. Lett.15 (4) (2002),
489–493.

[4] SUN J, ZHANG Y and WU Q, Less Conservative Conditions for Asymptotic Stability of Implusive
Control Systems,IEEE Trans. Automat. Control48 (5) (2003), 829–831.

[5] TANG S and CHEN L, Global Attractivity in a ”Food-Limited” Population Model with Impulsive
Effects,J. Math. Anal. Appl.292(1) (2004), 211–221.

[6] T IAN Y P, YU X and CHUA O L, Time-Delayed Impulsive Control of Chaotic Hybrid Systems,
Internat. J. Bifur. Chaos Appl. Sci. Engrg.14 (3) (2004), 1091–1104.

[7] ZHANG S, DONG L and CHEN L, The Study of Predator-Prey System with Defensive Abilityof
Prey and Impulsive Perturbations on the Predator,Chaos Solitons Fractals23 (2) (2005), 631–643.

[8] SAMOILENKO A M and PERESTYUK N A, Impulsive Differential Equations, World Scientific, Sin-
gapore, 1995.

[9] A NOKHIN A, BEREZANSKY L and BRAVERMAN E, Exponential stability of Linear Delay Impulsive
Differential Equations,J. Math. Anal. Appl.193(1995), 923–941.

[10] L I X, L IN X, JIANG D and ZHANG X, Existence and Multiplicity of Positive Periodic Solutions to
Functional Differential Equations with Impulse Effect,Nonlinear Anal. 62 (2004), 683–701.

[11] L I W and HUO H, Existence and Global Attractivity of Positive Periodic Solutions of Functional
Differential Equations with Impulses,Nonlinear Anal. 59 (2004), 857–877.

[12] BALLINGER G and LIU X, Existence and Uniqueness Results for Impulsive Delay Differential Equa-
tions,Dyn. Contin. Discrete Impuls. Syst.5 (1999), 579–591.

[13] BEREZANSKY L and BRAVERMAN E, On Oscillation of a Second Order Impulsive Linear Delay
Differential Equation,J. Math. Anal. Appl.233(1) (1999), 276–300.

[14] L IU Y and GE W, Stability theorems and existence results for periodic solutions of nonlinear impul-
sive delay differential equations with variable coefficients, Nonlinear Analysis57 (3) (2004), 363–
399.

[15] PENG M, GE W and XU Q, Preservation of nonoscillatory behavior of solutions ofsecond-order
delay differential equations under impulsive perturbations,Appl. Math. Lett., 15 (2) (2002), 203–210.

[16] BAINOV D D and COVACHEV V, Impulsive Differential equations with a Small Parameter, World
Scientific 1994.

[17] ALZABUT J O, A Stability Criterion for Delay Differential Equationswith Impulse Effects, Applied
Analysis and Differential Equations, 1-10, World Scientific 2007. Editors: O Carja and I Varbie.

[18] AKHMET M U, A LZABUT J O, and ZAFER A, On Periodic Solutions of Linear Impulsive Differential
Systems, Dyn. Contin. Discrete Impuls. Syst., to appear.



Nonlinear Impulsive Delay Differential Equations with a Small Parameter 21

[19] AKHMET M U, A LZABUT J O, and ZAFER A, Perron’s Theorem for Linear Impulsive Differential
Equations with Distributed Delay,J. Comput. Appl. Math.193(1) (2006), 204-218.

[20] SAKER S H and ALZABUT J O, Existence of Periodic Solutions, Global Attractivity and Oscillation
of Impulsive Delay Population Model,Nonlinear Anal.: Real World Appl.8 (4), (2007), 1029-1039.

[21] SAKER S H and ALZABUT J O, Periodic Solutions, Global Attractivity and Oscillation of Impulsive
Delay Host Macroparasite Model,Math. Comput. Modelling, 45 (5–6) (2007), 531–543.

[22] GOPALSAMY K and ZHANG B G, On Delay Differential Equations with Impulses,J. Math. Anal.
Appl.139(1989), 110–122.


