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Abstract

Recently using a Madelung fluid description a connectiowbeh envelope-like solutions of
NLS-type equations and soliton-like solutions of KdV-typguations was found and inves-
tigated by R. Fedele et al. (2002). A similar discussion iegifor the class of derivative
NLS-type equations. For a motion with stationary profilereat velocity the fluid density
satisfies generalized stationary Gardner equation, artdrgolvave solutions are found. For
the completely integrable cases these are compared wihrexsolutions in literature.

1 Introduction

Eighty years ago Madelung [1] gave a hydrodynamic desonptif quantum mechanics. Writing
the wave function a9’ = \/ﬁelﬁe the Schrodinger equation (1-D case)
oV R oW
ih——=——— W
N = " 2mae TMIX

is equivalent with the pair of coupled equations

Jp 0
EJrE((pV) =0 (1.2)
0 0 R o (1 9d%/p\ oU
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wherep = |¥|? is the fluid density and = %% is its current velocity. The first is a continuity

equation for the fluid density and the second an Euler equétiquation of motion) for the fluid
velocity. The last one contains a force term proportion&héogradient of the "quantum potential”,
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2
%%#%7\/5, also known as Bohm'’s potential. The interpretatiorvaf a fluid velocity comes
from the previous expression of the continuity equation finch the expression taken by the

current densityj in this representation

LU T SETTUA A W
1= om X X =P

The Madelung fluid description of quantum mechanics proeduttan useful approach in a num-
ber of applications ranging from stochastic mechanics tangun cosmology (for a historical
review see [2]). In the last decade it was succesfully agptiedescribe quantum effects in meso-
scopic systems, in plasma physics and for discussing gueagpects of beam dynamics in high
intensity accelerators (for many references see [3]).

Recently in a series of papers Fedele et al [4] have used alivagiuid description to discuss
the following generalized 1-D nonlinear Schrodinger diua(gNLS)
ov a? 9?

' — UV W= 1.
a—+ =55 U(wPw=o0 (1.3)
HereU (|W¥|?) depends only oft¥|2. ForU = |¥|? (1.3) transformed into the usual NLS equation.
Writing W = \/ﬁeée, the densityp and the current velocity = 06/0dx are satisfying the same
equations (1.1) and (1.2) respectively, witheplaced byx. By a series of transformations [4] the

equation (1.2) is transformed into

ov dp ov,]ap du dp  a?d%p
—pﬁ+vd—t+2[(¢o(t)— d_tdx}ﬂ_(pﬁJrZU)W—FTW_o (1.4)

wherecy(t) is an integration constant (it may dependprin the case of a motion with a stationary
profile current velocity, when both(x;t),v(x,t) are depending only o& = x— ugt, the equation
(1.1) is integrating giving

Ao
V(&) =Up+—— 1.5
(&) =Uo (&) (1.5)
with Ag an integration constant, (for instance, solutions vaniglait infinity require thaf\g = 0),
and the equation (1.4) transforms into

a’dp du dp ,dp
?d—p—<p$+2u>&+[200+uo]&_0 (1.6)

which is a generalized stationary KdV equation. Severatesglwave solutions were obtained
and discussed in [4] assumiklf p) = gop" (bright, dark and gray solitons). Once a non-negative
solution of (1.6) is known the phagkx,t) is given by

0(x1) = tof +Ao [ % ot + 6 (L.7)

and the corresponding solution of gNLS equation is comjyletetermined.
It deserves to mention also the use of Madelung fluid degoniph discussing another com-
pletely integrable NLS-type equation, the so called "restmonlinear Schrodinger equation”.
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This has been introduced to study low dimensional gravitget®y and appears also in plasma
physics (see [5] and the references therein).

In the present paper the same procedure will be used to ditweiglass of derivative nonlinear
Schrodinger type equations. Two distinct types of suctaggns will be considered, namely

é'LIJ a? 0%y 17}

inY 2 _
dt +—= A +|B0X(U(M W)=0 (1.8)
called in the followings generalized derivative NLS eqoiatof first kind (gdNLS-1), and
. oY a? leP le

which will be called generallzed derivative NLS equationsetond kind (gdNLS-2). Fdd =
|W|? they become completely integrable equations (denoted lyseNand dNLS-2 respectively),
namely

dLIJ a? 0%y )
dt + —= 5 e —|—IB \LIJ] lJJ) 0 (2.10)
and
v a? dZLIJ le
00— + — L|J2 1.11

Especially the dNLS-1 equation is well known in plasma ptysilt describes the evolution of
small but finite amplitude Alphén waves propagating quasillel to a magnetic field in a low
B-plasma [6]. Recently the same equation was found to destivéobehaviour of large-amplitude
magnetohydrodynamic waves, propagating in an arbitrasgction with respect to the magnetic
field, in a highf-plasma [7]. Also in nonlinear optics for propagating ofwehort pulses the
typical Kerr nonlinearity has to be supplemented with awdéiie term [8].

The dNLS-1 equation (1.10) is a completely integrable sysiad was solved by IST method
by Kaup and Newell [9] for vanishing boundary conditions dydKawata and Inoue [10] for
nonvanishing condition [11]. Alternative methods can bedu® find N-soliton solutions of dNLS
equations. We mention Hirota’s bilinear formalism [12],rDaux transformation technique [13],
or the approach of Backlund transformations [14]. Pedatilutions of NLS-type equations are
carefully investigated by Kamchatnov [15].

In the next section the basic equations describing the gdbidusations (1.8) and (1.9) in
Madelung’s fluid description will be derived. In section Betsolitary solutions vanishing at
infinity will be calculated in the case &f = pY, with v > 0. In the particular case of completely
integrable equation dNLS-1 (1.10) a comparison with theakmeolutions will be done. In sec-
tion 4, periodic solutions of dNLS-1 and dNLS-2 will be detémed using this approach. Finally,
remarks and conclusions are given in section 5.

2 Basic equations

In the Madelung fluid representation we write= ﬁe%a. Introducing it in equation (1.8) and
(1.9) and separating the real and the imaginary part, orerabthe continuity equations

ap  d 3 B
Sp T3PV T, C(P) =0 (2.1)
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for the fluid densityp and the equation of motion for the fluid velocity= %

17} 7} a’?o (1 0%/p B o
(dt+ &) =72 dx<\/_ e >_E&(Vu(p)) @2
In (2.1)G(p) is defined by
dG du
and
dG
% =U (2.4)

for gdNLS-1 and gdNLS-2 respectively. The equation (2.2hésame for both cases. Following
Fedele et al [4] the equation (2.2) is transformed into

ov a2d%p B ov B du\ dp
‘Pm+w—+2[ /ﬂ }“*Z?ﬁ‘am%&+a(:Uiﬂm>5;—

(2.5)

with (+) sign for gdNLS-1 and (-) for gdNLS-2 respectivelyhd equations (2.1) and (2.5) are the
basic equation for the subsequent discussion.

A first remark showing the difference between the gdNLS antd$Nases is the following.
For gNLS equations a class of solutions (bright, dark sadijds obtained assuming a constant
velocity v=vg [4]. Then from the continuity equation (1.1) one obtaind tha densityp depends
only on the variablé€ = x— vgt. Here, for the gdNLS, the same assumption should give, mgusi
Eq. (2.1),

op BdG\ dp
dt+< +adp>ﬁ_o (2.6)

which is a dispersionless nonlinear equation whose (iritpiolution is given by

=f - 2.7
p(xt) = fix—(vo+ g1 (2.7)
where f(x) is just the initial conditionf (x) = p(x,t = 0). This result and the equation (2.6) are
incompatible with the dispersive equation (2.5). Therefsolution with constant velocity is not
possible in the case of dNLS-type equations.

3 Stationary profile current velocity

The next choice is a stationary profile current velocity wheth p(x,t) andv(x,t) depend only
on & = x— upt. Then (2.1) can be integrated giving

v—upt o _BGP) (3.1)

pa p
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HereAp is an integration constant. In this section we consider ¢iméycaseJ (p) = p¥. From
(2.3) and (2.4) we obtain

_ 2v+1 v+1
for gdNLS-1, and
1 v+1
G(p)=—=p (3.3)

v +1
for gdNLS-2. Note that for localized solutions satisfyirtng tooundary conditions

im p(£)=0

EH:I:OO

the following conditions for (3.1) are required:
Ap=0 and v > 0.

For gdNLS-1 the partial differential equation (2.5) becarttee ordinary differential equation

a2d3p 2 dp B vdp B 22V+l 2vdp

jd—g,‘i‘(zco—i‘uo)&—UoE(V‘i‘Z)P ﬁ—i‘(a) vi1P aE (3.4)
Integrating twice withp, g—g’ andg%’; vanishing até | — c one obtains

aZ dp 2 _ 2 B 2 1 2v B 1 v 2

7 <¥> =—P [(a mp —ZUOEV—HP + (Ug + 2co) (3.5)
With the change of variable= p—lv it becomes

a? [ dz\? 5 B 1 B\? 1

a2 (&) = (U5 +200)2° + 20 - g2 (a) VT2 (3:6)
Let us assume first that

2 w2

ug+2co=-b"<0 3.7)

Then the second order polynomial in the r.h.s. of (3.6) hasreal roots, one positive;) and the
other negativéz ). Also the r.h.s. has to be positive, and because in the asyimptgionp — 0
and consequently — oo, the region of interest on z-axisis (z, ). Denoting

2v
A2V (3.8)
laj
the equation (3.6) writes
dz
AV (z—n)(z-2) (3.9)

i
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Its solution is
Z(&) = zm+zv coshA& (3.10)
where
B
n+z 1 |gl . B
7 byril tsiong)
B
-z 1l /5. -
5 _bv+lw/uo+b (3.11)
Then
p(8) = : (3.12)
(Zm+z.v|coshAE)% '

If u(2)+ 2cy > 0 the second order polynomial in the rhs of (3.6) has compdeyugated roots, and
the polynomial is negative everywhere, so this situatioofiso interest. It is easily shown that
the same equation (3.5) is obtained also in the case of gdNe&uation, although the starting
equation (the equivalent of (3.4)) is slightly different.

In the casev = 1 when gdNLS-1 becomes the completely integrable equatioSdl, the
equation (3.4) becomes

a?dp dp . B dp  3(B\* ,dp
?d—gg-!—(UO‘l—ZCo)&—?’UOEP&‘Fé(E) p &—O (3.13)
which is the stationary Gardner’s equation. The solution is
1
e — 14
p Zm+ 2 COShAE (3.14)

with A, zy, zy obtained from (3.8) and (3.11) for= 1.
In order to calculate the phagk¥x,t) the expression (3.12) @f(&) is introduced in (3.1). We
get

9 B2+l 1

V=48 T G V1 Znt 2 COSPAS

(3.15)

which is easily integrated giving

B2v+1 1 1 1-a. A
B(x,t) = Upé — = tan| /= tan=& | — 2cot — 3.16
(%,t) = Uo& — V1 A 2\/marcan ira anz¢& | —2cot — 6 (3.16)

Here we denoted

Zn —U signg

U
L Y |
Mo B4 b2 \/ U3+ b2

andé6, is an initial phase (integration constant).

a (3.17)
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The results for dNLS-type equatiom & 1) are similar with those existing in the literature [6],
[9], [12]. We remind here the result for the 1-soliton sadatiobtained by Kaup and Newell using
IST method for dNLS-1 equation

dq 09%q
ﬁ*ﬁ“_('q' q) = (3.18)
namely
e AOXT)ROXT)
q(X,T) =4Asin y T v it (X.T)

where
O(X, T)=n(X—Xo)—4EnT,  o(X,T)=EX+2(§2—n?T+ 0o

e ey
Herel = & +in is the eigenvalue of the spectral problem @nd/ are defined by

§ = —N?cosy, n=~N?siny
It is easily seen that

8AZsirty

T A
cosy—+ cosh® (3.19)

ja? =
is exactly of the form (3.14). The same expression is alsadduwy other authors (see [6], [13],
[14])

4 Periodic solutions of dNLS-1

Besides the solitons, another interesting solutions ofptetaly integrable equations are the pe-
riodic ones. The problem of finding periodic solutions iswndfor a long time in mathematical
literature. Different methods than in the soliton case havbe used (most used is the "finite
band method”; for a review see [16]), but many times the esgioms obtained are rather com-
plicated. Therefore several simplifications were deveaddpesolve the problem in a simpler way.
Such an approach was adopted by Kamchatnov and simple sixpres$or periodic solutions were
found for a number of important equations, inclusive the 8NL (see [15], [17] and references
therein). Very similar expressions will be found here forldBN1 equation using Madelung’s fluid
description presented in the previous section.
The starting point is Gardner’s equation.

a?d®p B B dp  3(B\* pdp _
?d—f:,)—i-(uo—i-ZCo—i— Ao)df Uapﬁ‘i‘i(a) P&—O (4.1)

with Ag # 0. After twice integrations one obtains

HEL
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whereP4(p) is a fourth order polynomial ip

B

a

B

4_ 4B (U3 +2co+ EAo)p2+ Bp+C (4.3)

Pa(p) = p* —4_wop°+4

With B,C other integration constants. We are interested in positiees ofp for which the rhs
of (4.2) is positive also. Keeping this in mind we requiretttiee polynomialP,(p) has at least
two positive roots. Let us denote lpy > p, > ps > p4 the roots ofP4(p) and at least the first two
are positive. We list below the interesting situations.

In the case of four real roots wiity > p, > 0 the solutions of (4.2) fop, < p < p1 is given

by

il Bl (4.4)

p
/Pz Vt—pa)(t—pa)t—p2)(pr—t) a2
When all the roots are positive besides (4.4) another isti@ig situation foips < p < p3 is
P dt _IB]

/p4 Vt—paps—tpz—t)t—pr) 2

It is possible to have two positive real rogisandp, and two complex conjugated. Then

/P dt _ 1Bl
pe /(2+at+b)(t—po)(p1—t) 02

'3 (4.5)

'3 (4.6)

wheret? + at+ b = 0 has complex roots andc*. We mention also the situation when we have
four real roots, two of them positive; > p» >, and the other two equak = p4. Then we get

p dt 18l .
/pz (t—ps)y/(t—p2)(p1—t) a?t @9

In the cases (4.4)-(4.6) the integral in the rhs is an eflipttegral and the solutions can be ex-
pressed through Jacobi elliptic functions [18]. Indeedfo4) the |.h.s. is given bgF (¢, k) = gu,
([18], formula 256.00), where

2 (p1—pP2)(P3—pa) 2 _ P1—pP2

ke = _ k2 5
(p1—p3)(P3—pa)’ H 01— 03’ <p?<1
_ 2 g
’ V(p1—p3)(p2—pa)’ =3 2%
sirf @ = srfu = (Pr—p3)(P—p2) s

(p1—p2)(P— Ps3)
from which we get

_ P2~ pspPsrru

1— u2srfu (4.9)

HereF (@,k) is the elliptic integral of first kind of moduluk, andsn(u, k) is Jacobi elliptic sinus
of amplitudeu and modulusk. From (4.9) we see thaa = p, for u=0 andp = p; for p =
K(k), K(k) being the complete elliptic integral of first kind.
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The integral (4.5) is of the same form, but with other defimi§ only foru and sinp (see [18],
formula 252.00)

S 0 — srlu — (Pl—PS)(P—P4)’ 2_ P3—Pa 410
¢ (P3— pa)(PL—P) K= o ps (4.10)
Then
_ Pa+ p1p®sru
- 1—p2sréu (4.11)
When we have two complex roots c* the result is (see [18] formula 259.00)
(Pr—pP)B—(p—p2)A
COSQ =cn u= 4.12
Y (PL—P)B+(p—p2)A #.12)
where
A = (p—b1)* +af B* = (p2—b1)*+&f
1 . 1 .
a%:—z(c—c)z by = 5(c+c")
1
= —— 4.13
9= A8 (4.13)
2 (PpL—p2)®— (A—B)? _ aalBl
= 4AB U= VAB
From (4.12) one obtains
_ Ap2+Bp1+ (A2 —Bpyjen u (4.14)

(A+B)+(A—B)cnu

andp = p, foru= 0 andp = p; for u= 2K (k). In the case of (4.7) the result is a rather complicate
expression with trigonometric functions which we shall prgsent here.
In order to calculate the phagkx,t) we start from

de A 3B
For p given by (4.11) one obtains
(P 8B g P2—Ps ¢ 3B, /9
B(xt) = (Uo+ 03 2ap3)£ P3 Ao/pz—pguzsn?u 2a(p2 Ps) 1— u2srtu %
Asdé = gf’Tf'du, and using the integral ([18], formula 363.02)
du u 1 shu
/1—nsn u 2" (1—n)arCtan[(l_n)cnudnJ (4.16)

wheren = %uz in the first integral and) = p? in the second (in both cases< 1) finally we
obtain

o(x,t) = [Uo—i—%(é—f—%)—%%(ﬁz—%)]f—@o
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S5 2l 22).T
———g¢g(1-=)arctan| | 1- = PR 417
205181°\" " p2 P ) enudny -
s B 1 .. shu
_Z\a\&gna(pz—l)s)gl_—uz arctan{(l—u )WJ

As is easily seen the functiap(u) = (1—n) 34w IS @ periodic function of periodk, vanishing
atu= 0 andu = 2K and becommingte atu = K. Therefore as is expected arctaiu) € (0, 1)
whenu € (0,2K) and0(xt) is well behaved. In the same way the ph&$g t) can be calculated

for other expressions @(&).

5 Remarks and Conclusions

In the present paper the solitary wave solutions for a cldgpeperalized derivative nonlinear
Schrodinger equations (gdNLS egs.) were investigatedadédung’s fluid description. Explicit
solutions for vanishing boundary conditions at infinity eebtained for stationary profile current
velocity. For arbitrary space and time dependenc@(@©ft) andv(x,t), when these functions
satisfy the coupled set of nonlinear equations (2.1) ars),(2he problem is still open. In the
case of the derivative NLS-1 equation (1.10), using thisnfdism, the 1-periodic solutions were
determined. As expected they are expressible through Uettitic functions and very similar
with those existing in literature. Extension to other gdNtghiations are under way. They are not
straightforward because in the rhs of equation (4.2) a higtaker polynomial inp should appear
and the integration leads to hyperelliptic functions. Redhbly, conclusion is that Madelung’s
fluid description is an useful approach to find special clesdesolutions of nonlinear evolution
equations.
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