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Abstract

In this paper, the family of BBM equation with strong nonlinear dispersiveB(m,n) is con-
sidered. We apply the classical Lie method of infinitesimals. The symmetry reductions are
derived from the optimal system of subalgebras and lead to systems of ordinary differential
equations. We obtain for special values of the parameters ofthis equation, many exact so-
lutions expressed by various single and combined nondegenerative Jacobi elliptic function
solutions and their degenerative solutions (soliton, kinkand compactons).

1 Introduction

Benjamin et al [2] proposed the regularised long wave (RLW) equation, or Benjamin-Bona-
Mahony equation (BBM),

ut +ux +uux−uxxt = 0,

as an alternative model to the Korteweg–de Vries equation for the long wave motion in nonlin-
ear dispersive systems. These authors argued that both equations are valid at the same level of
approximation, but that BBM does have some advantages over the KdV from the computational
mathematics viewpoint.

In order to understand the role of nonlinear dispersion in the formation of patterns in an un-
dular bore, Yalong [17] introduced and studied a family of BBM-like equations with nonlinear
dispersion, B(m,n) equations

ut +(um)x− (un)xxt = 0, m,n > 1.

In [17], the exact solitary-wave solutions with compact support and exact special solutions with
solitary patterns of the equations were derived.

In [12] the authors introduced the family of BBM equation with strong nonlinear dispersive
B(m,n) equation:

ut +ux +a(um)x +(un)xxt = 0, (1.1)

by using an algebraic method and they obtained solitary pattern solutions. The casen = 1 and
m= 2 corresponds to the BBM equation, [2]. This equation is an alternative to the Kortewegde

Copyright c© 2008 by M S Bruźon, M L Gandarias and J C Camacho



82 M S Bruzónet al.

Vries (KdV) equation, and describes the unidirectional propagation of small-amplitude long waves
on the surface of water in a channel. The BBM equation is not only convenient for shallow
water waves but also for hydromagnetic and acoustic waves, and therefore it has some advantages
compared with the KdV equation.

Clarkson [6] showed that the similarity reduction of the equation (1.1) form= 3, n = 1 and
a = 1

3, obtained by using the classical Lie group method reduces the partial differential equation
(PDE) to an ordinary differential equation (ODE) of Painlevé type; whereas the partial differential
equation doesn’t possesses the Painlevé property for partial differential equations as defined by
Weisset al[13]. The author proved that the only non-constant similarity reductions of this equation
obtainable either using the classical Lie method or the direct method, due to Clarkson and Kruskal
[7], are the travelling wave solutions.

In this paper we study similarity reductions of the equation

ut +bux +a(um)x +(un)xxt = 0, (1.2)

wherea,b are constants,b 6= 0, andn,m∈ R
∗ with m or n 6= 1, by using the Lie method of in-

finitesimals. The fundamental basis of this method is that, when a differential equation is invariant
under a Lie group of transformations, a reduction transformation exists. Though the method is
entirely algorithmic, it involves a large amount of algebraand of auxiliary calculations. Some
symbolic manipulations programs have been developed to simplify the calculations. We use the
MACSYMA program symmgrp.max [5] and we have checked the results by using the MATH-
EMATICA program SYM.nb [8, 9]. In order to find all invariant solutions with respect tos-
dimensional subalgebras, it is sufficient to construct invariant solutions for the optimal system of
orders. The set of invariant solutions obtained in this way is called anoptimal system of invari-
ant solutions. For PDEs with two independent variables a single group reduction transforms the
PDE into a ODEs, which are generally easier to solve. The required theory and description of the
method can be found in [3, 10, 11, 14].

The outline is as follows: in§2 we obtain the symmetry reductions, similarity variables and
reduced ordinary differential equations (depending ona,b,m andn); in §3 we derive, for special
values of the parameters, exact solutions which can be expressed by various single and combine
nondegenerative Jacobi elliptic function solutions and their degenerative solutions (soliton, kink
and compactons); finally, in§4 some conclusions are presented.

2 Lie Symmetries

To apply the classical method to Eq. (1.2) we consider the one-parameter Lie group of infinitesimal
transformations in(x, t,u) given by

x∗ = x+ εξ (x, t,u)+O(ε2),

t∗ = t + ετ(x, t,u)+O(ε2),

u∗ = u+ εη(x, t,u)+O(ε2),

whereε is the group parameter. We require that this transformationleaves invariant the set of so-
lutions of (1.2). This yields to an overdetermined, linear system of equations for the infinitesimals
ξ (x, t,u), τ(x, t,u) andη(x, t,u). The associated Lie algebra of infinitesimal symmetries is the set
of vector fields of the form

v = ξ (x, t,u)∂x + τ(x, t,u)∂t + η(x, t,u)∂u. (2.1)
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Invariance of Eq. (1.2) under a Lie group of point transformations with infinitesimal generator
(2.1) leads to a set of twenty six determining equations. Solving this system we obtainξ = ξ (x),

τ = τ(t) andη =
α(x, t)
un−1 −

k1 u
2n

+
ξxu
2n

whereξ , τ andα are related by the following conditions:

ξxxxn2 u2n +k1nun+1 +3ξxnun+1−k1un+1 + ξxun+1−2α n2 u+2α nu= 0,

aξxxmum+n +2aαxnmum+bξxxun+1 +2αtxxn2 un +2αxbnu+2αtnu= 0,

−ak1 m2um+n +aξxm2 um+n +ak1nmum+n +2aτtnmum+n +aξxnmum+n

+2aα nm2 um−2aα n2mum+bk1 nun+1 +2bτtnun+1

+bξxnun+1−bk1un+1 +bξxun+1−2α bn2 u+2α bnu= 0.

The solutions of this system depend on the parameters of equation (1.2) and we can distinguish
the following cases:
1. If a andb are arbitrary constants, the only symmetries admitted by (1.2) are the group of space
and time translations, which are defined by the infinitesimalgenerators

v1 = ∂x, v2 = ∂t .

• For λv1 + v2 the similarity variables and similarity solution are:

z = x−λ t

u = h(z) (2.2)

whereh(z) satisfies
λ (hn)′′′ + λh′−amhm−1h′−bh′ = 0.

This equation, after integrating once with respect toz, can be reduced to

λ (hn)′′ = ahm+(b−λ )h+k1, (2.3)

wherek1 is an integrating constant.

2. The cases for which Eq.(1.2) withb 6= 0 have extra symmetries are given in the Table 1.

Table 1: Symmetries for a Generalization of a Family of BBM Equations.

i constants V i
3 vi

∞

1 a· (m−1) = 0 (n−1)x∂x +(n−1)t∂t +2u∂u

2 m= 1, a = −b (n−1)x∂x +2u∂u τ(t)∂t

3 m= 2, n = 1 −t∂t +
(

u+ b
2a

)

∂u

whereτ(t) is an arbitrary function.

In order to determine solutions of PDE (1.2) that are not equivalent by the action of the group,
we must calculate the one-dimensional optimal system [10].Next we construct a table showing
the separate adjoint actions of each element as it acts over all the other elements. This construction
is done by summing the Lie series.
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Table 2: Commutator table for the Lie algebra{v1
i }.

[vi,v j ] v1 v2 v1
3

v1 0 0 (n−1)v1

v2 0 0 (n−1)v2

v1
3 −(n−1)v1 −(n−1)v2 0

Table 3: Adjoint table for the Lie algebra{v1
i }.

Ad v1 v2 v1
3

v1 v1 v2 v1
3− ε(n−1)v1

v2 v1 v2 v1
3− ε(n−1)v2

v1
3 e(n−1)εv1 e(n−1)εv2 v1

3

Table 4: Commutator table for the Lie algebra{v2
i }.

[vi ,v j ] v1 v2 v2
3

v1 0 0 (n−1)v1

v2 0 0 0

v2
3 −(n−1)v1 0 0

Table 5: Adjoint table for the Lie algebra{v2
i }.

Ad v1 v2 v2
3

v1 v1 v2 v2
3− (n−1)εv1

v2 v1 v2 v2
3

v2
3 e(n−1)εv1 v2 v2

3

Table 6: Commutator table for the Lie algebra{v3
i }.

[vi ,v j ] v1 v2 v3
3

v1 0 0 0

v2 0 0 −v2

v3
3 0 v2 0

Table 7: Adjoint table for the Lie algebra{v3
i }.

Ad v1 v2 v3
3

v1 v1 v2 v3
3

v2 v1 v2 v3
3 + εv2

v3
3 v1 e−εv2 v3

3

The generators of the nontrivial one-dimensional optimal system are the set

v1, λv1 + v2, v1
3, λv2 + v2

3, λv1 + v3
3.

Since equation (1.2) has additional symmetries and the reductions that correspond tov1 andv2

have already been derived, we must only determine the similarity variables and similarity solutions
corresponding to the remaining generators:
• For v1

3 the similarity variables and similarity solution are:

z= x
t , u = h(z) t

2
n−1 ,

the reduced ODE is

(n−1) z(hn)′′′−2(hn)′′ +h′ (n−1) (z−a−b)−2h = 0.

For n = 2 andb = −a, after integrating once with respect toz, h(z) must satisfy

hh′′−2
(

h′
)2

−h4+k1zh3 = 0, (2.4)

wherek1 is an arbitrary constant.
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• For λv2 + v2
3 + v2

∞ the similarity variables and similarity solution are:

z= δ (t)− lnx, u = h(z)e
2

n−1 ,

whereδ =
∫ n−1

λ+τ(t)dt andh(z) satisfies the ODE

(

hn+2 n3−2hn+2n2 +hn+2n
)

h′′′ +
(

3hn+1 h′ n4 +hn
(

−9hh′−3h2
)

n3 +hn (9hh′

+2h2
)

n2 +hn
(

h2−3hh′
)

n
)

h′′ +hn (h′)3 n5 +hn
(

−5 (h′)3−3h (h′)2
)

n4

+hn
(

9 (h′)3 +5h (h′)2 +2h2 h′
)

n3 +
(

hn
(

−7 (h′)3−h (h′)2 +2h2 h′
)

+h3h′
)

n2

+
(

hn
(

2 (h′)3−h (h′)2
)

−2h3 h′
)

n+h3h′ = 0.

• For λv1 + v3
3 the similarity variables and similarity solution are:

z= x+ λ ln(t), u =
h(z)

t
−

b
2a

,

andh(z) satisfies the ODE

λh′′′−h′′ + λh′ +2ahh′−h = 0. (2.5)

Equation (2.5) is invariant under translations, this allowus to reduce the order by one. By means of
the change of variables{y = h,g = 1

h′ }, the following second order ordinary differential equation
for g(y) is obtained:

λgg′′−λg4 +k1g5−g2g′−3λ (g′)2−2ayg4 +yg5 = 0.

3 Exact Solutions

By making the change of variables

hn = y (3.1)

equation (2.3) becomes

λy′′ = ay
m
n +(b−λ )y

1
n +k1. (3.2)

After multiplying (3.2) by 2y′ and integrating once with respect tozwe get

λ (y′)2 =
2an

m+n
y

m
n +1 +

2(b−λ )n
n+1

y
1
n+1 +2k1y+k2, (3.3)

wherek2 is an integrating constant.
Let us assume that equation (3.3) has solution of the form

y(z) = α f β (z), (3.4)

whereα andβ are parameters to be determined later.
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By substituting (3.4) into (3.3) we obtain

( f ′)2 =
2an

(m+n)λαβ 2 f
βm
n −β+2+

2(b−λ )n
(n+1)λαβ 2 f

β
n−β+2+

2k1

αβ 2λ
f−β+2+

k2

α2β 2λ
f−2β+2

. (3.5)

In the following we will determine the exponents and coefficients of equations (3.5). So that
equation (3.5) is solvable in terms of Jacobi elliptic function, that is equation (3.5) becomes

( f ′)2 = r + p f2 +q f4
, (3.6)

wherer, p andq are constants.
Comparing the exponents and the coefficients of equations (3.5) and (3.6) we distinguish the

following cases:
Case 1: If k1 = 0 andk2 = 0.

Subcase 1.1: β =
2

m−1
, n = 1 andm 6= 1.

α =
(b−λ )(m−1)2

4pλ
, a =

(m+1)q(b−λ )

2p
.

Subcase 1.2: β =
2m

1−m
andn = m.

α =
(b−λ )(m−1)2

2m(m+1)qλ
, a =

2mp(b−λ )

(m+1)q
.

Subcase 1.3: β =
2n

n−1
andn = m.

α =
(b−λ )(m−1)2

2m(m+1)rλ
, a =

2mp(b−λ )

(m+1)r
.

Subcase 1.4: β =
2n

n−1
andm= 2n−1.

α =
(b−λ )(n−1)2

2n(n+1)rλ
, a =

(3n−1)q(b−λ )

(n+1)r
.

Subcase 1.5: β =
2

1−m
andn = 1.

α =
(b−λ )(m−1)2

4pλ
, a =

(m+1)r(b−λ )

2p
.

Subcase 1.6: β =
2n

n−1
andm= 2n−1.

α =
(n−1)2(b−λ )

2n(n+1)pλ
, a =

(3n−1)q(b−λ )

(n+1)pλ
.

Subcase 1.7: λ = b, β is arbitrary andm= n.

α is arbitrary, a = αβ 2pb.

Subcase 1.8: λ = b, β = 2n
m−n.
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α =
a(n−m)2

2bn(n+m)q
.

Subcase 1.9: λ = b, β = 2n
n−m.

α =
a(n−m)2

2bn(n+m)r
.

Case 2: If k1 6= 0 andk2 = 0.
Subcase 2.1: β = 2, n = 1 andm= 2.

α =
k1

2rλ
, b =

2k1p
r

+ λ , a =
3qk1

r
.

Subcase 2.2: β = −2, n = 1 andm= 2.

α =
k1

2qλ
, b =

2k1p
q

+ λ , a =
3k1r

q
.

Subcase 2.3: β = −2, n = m= 1
2.

α =
k1

2qλ
, b =

3k1r
q

+ λ , a =
2k1p

q
.

Subcase 2.4: β = 2, n = m= 1
2.

α =
k1

2rλ
, b =

3k1q
r

+ λ , a =
2k1p

r
.

Case 3: If k1 = 0 andk2 6= 0.
Subcase 3.1: β = 1, n = 1 andm= 3.

α = ±

(

k2

rλ

)
1
2

, b = λ

[

1± p

(

k2

rλ

)
1
2

]

, a = ±2qλ
(

k2

rλ

)
1
2

.

Subcase 3.2: β = −1, n = 1 andm= 3.

α = ±

(

k2

qλ

)
1
2

, b = λ

[

1± p

(

k2

qλ

)
1
2

]

, a = ±2rλ
(

k2

qλ

)
1
2

.

Subcase 3.3: β = 1, n = m= 1
3.

α = ±

(

k2

rλ

)
1
2

, b = λ

[

1±2q

(

k2

rλ

)
1
2

]

, a = ±pλ
(

k2

rλ

)
1
2

.

Subcase 3.4: β = −1, n = m= 1
3.

α = ±

(

k2

qλ

)
1
2

, b = λ

[

1±2r

(

k2

qλ

)
1
2

]

, a = ±pλ
(

k2

qλ

)
1
2

.
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Since in all these cases,r, p andq are arbitrary constants, we may choose them properly such
that the corresponding solutionf of the ODE (3.6) are expressed in terms of the Jacobian elliptic
functions. In the following we present some exact solutions.
• If r = 1, p = −(1+c2), q = c2, then

y = α (sn(z|c))β
,

where sn(z|c) is the Jacobi elliptic function, is a solution of equation (3.3), [1].
From Subcase 3.1 for λ = k2, n = 1, m= 3, a = 2k2c2 andb = −k2c2 we obtain the particular
solution of equation (3.3)

y = sn(z|c).

From (3.1) and (2.2) forc = 1, n = 1, m= 3 anda = −2b we obtain the exact solution of (1.2)
given by

u(x, t) = tanh(x+bt). (3.7)

If b = −1
2, (3.7) describes a kink solution (see Fig.1).

-20
-10

0

10

20

x
-20

-10

0

10

20

t

-0.2

0

0.2
u

-20
-10

0

10x

Figure 1: Solution (3.7) forb = −1
2.

From Subcase 2.4 for λ = k1
2 , a = −2k1(c2 + 1) andb = k1(3c2 + 1

2) we obtain the solution of
equation (3.3)

y = sn2(z|c).

From (3.1) and (2.2), forc = 0, m= n = 1
2 anda = −4b, to yield

u(x, t) = sin4(x−bt). (3.8)

• If r = 1−c2

4 , p = 1+c2

2 , q = 1−c2

4 , f = nc(z|c)±sc(z|c) is solution of equation (3.6), [1]. Then

y = α [nc(z|c)±sc(z|c)]β

is solution of equation (3.3), whereα andβ are arbitrary functions, nc(z|c) = 1
cn(z|c) , sc(z|c) =

sn(z|c)
cn(z|c) where sn(z|c) and cn(z|c) are the first and the second Jacobian elliptic functions, respec-
tively (the elliptic sine and the elliptic cosine).
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From Subcase 1.7 for λ = b, a = bβ 2 andn = m we obtain the particular solution of equation
(3.3)

y = [nc(z|1)±sc(z|1)]β .

From (3.1) and (2.2) ifm= n anda = bβ 2 we obtain the solution of equation (1.2)

u(x, t) = [cosh(x−bt)±sinh(x−bt)]β . (3.9)

• If p = 1 andq = −1,
y = α (cn(z|1))β

is solution of equation (3.3).

From subcase 1.1 for λ =
b(m−1)2

m2−2m+5
, n = 1 anda = −

2b(m+1)

m2−2m+5
, the solution of equation

(3.3) is
y = sech

2
m−1(z).

From (3.1) and (2.2) we obtain the solution of equation (1.2)

u(x, t) = sech
2

m−1 (x−λ t) . (3.10)

For m= 2 andλ = 1, (3.10) describes a soliton moving along a line with constant velocity (see
Fig.2).
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Figure 2: Solution (3.10) form= 2, λ = 1 anda = −6.

Solutions (3.7) and (3.10) were first found in [12]. As far as we know, solutions (3.8) and (3.9)
are new and have not been previously described in the literature.

4 Concluding remarks

In this paper we have seen a classification of symmetry reductions of a family of BBM equations,
depending on the values of the constantsa,b,n andm, by making use of the theory of symmetry
reductions in differential equations. We have constructedall the invariant solutions with regard
to the one-dimensional system of subalgebras. Besides the similarity reduction travelling wave
solution, we find new similarity reductions for this family of equations. We have constructed
all the ODE’s to which (1.2) is reduced. We obtain for specialvalues of the parameters of this
equation, many exact solutions expressed by various singleand combined nondegenerative Jacobi
elliptic function solutions and their degenerative solutions (soliton, kink and compactons).
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