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Abstract

In this paper we apply truncated Painlevé expansions thdkeair of a PDE to derive gauge-
Backlund transformations of this equation. It allows usadostruct an algorithmic method to
derive solutions by starting from the simplest one. Actyalle use this method to obtain an
infinite set of lump solutions that can be classified by medria/o integer numbersl and
M. Two different PDE’s are used to check the method and conthanesults.

1 Introduction

Real valued solutions with rationally decay or lumps havenbextensively studied in recent years.
For the KPI equation were found in [1] and later a study fromghectral point of view appeared
in [2] (see also [3]). Lumps in DSII and three dimensionaleStdordon are described in [4] and
[5]. In references [6], [7] and [8] nontrivial dynamics ohiys of KPI are studied. These solutions
exhibit interesting scattering properties that were ficgiaed in [9]. The extension of these ideas
and solutions to DSII equation via spectral analysis of thra@®operator on the plane is considered
in [10], while a complete study based on direct methods ifopmed in [11]; see also [12] for
related ideas. For some interacting solutions in the Yaiiltsquation framework, see [13].

Many of the above cited papers include an expansion of thengigtions in terms of poles.
This fact strongly suggests a connection with Painlevéhous. This is actually the point that we
would like to explore in this paper. We shall try to prove tta truncation of the Painlevé series
gives us an algorithmic procedure to obtain solution. Thethmad can be iterated. In the case
of lumps two iterations can be applied in such a way that therss provides us a wave number
that is the complex conjugate of the first and therefore ttatisa can be real. We shall apply
this method to two different PDE: KPI [14] and the complexsien of the Generalized dispersive
long wave equation derived in [15] that we shall name GDLW].[#8s we shall see the method
works exactly in the same way for both equations.

We briefly review the contents of this paper:

e Section 2 is devoted to the description of the truncationhef Painlevé series and, the
subsequent iteration method, for KPI

Copyright(©) 2008 by P G E&ivez and J Prada



Lump Solutions for PDE’s: Algorithmic Construction and &d#ication 167

e In Section 3, the former procedure is applied to the obtamiblumps. An infinite set of
such solutions is obtained

e The same method is applied in section 4 to GDLW with similauhes.

2 Truncation of the Lax pair for KPI equation
The well known KPI equation [14]

(U + Uxyx + 6UL ), — Suyy = 0 (2.1)
can be also written in potential form by setting

u=2my (2.2)
In this case equation (2.1) reads

(M + Mo+ 6ME) —3myy =0 (2.3)

The Lax pair [14] can be written as:

[Py + Yux+2mp = 0 (2.43)

Uk + Al + 12my Py + 6Myy ) — 6l mylll =0 (2_4b)

or the complex conjugate

—l ¢y + Pxx+2mp =0 (2.5a)

Pt + Adxxx + 12mypy + 6Myp +- 6lmy¢p =0 (2.5b)

wherel = 1/—1 is the complex unit.

2.1 Truncated expansion of the Lax pair

The main idea in our method is to perform a truncated Pagngxpansion in the Lax pair that
involves both the fieldnand the eigenfunctiong and¢. As it is well known the Painlevé property
of a PDE requires that all its solutions can be expanded irergéimed Laurent series around
an arbitrary manifold depending on the initial conditiohattis called the movable singularity
manifold. When the Laurent series truncates at the conlgegitthe manifold is namesingular
manifold. This is on the basis of the Weiss Singular Manifold Metho@][117] that we shall
apply in the following.
As it has been shown in many papers truncated Painlevé sigparwhen applied to the Lax

pair, can be consider as a binary Darboux transformatioretiomas called gauge-Backlund trans-
formation. To this end, let us consider a seed solutifhas well as two different couples of seed

eigenfuntions(tpio, ¢£0> ((,UZ(O, ¢§0). It means that:

| ‘l’i(,g + Lﬂi(,gx + 2m>(<0‘l’i(0 =0, Wi(,? + 4‘l’i(,gxx+ 12m>(<OWi(,g +6 (m((?( - Im§,0> ‘l’i(o =0 (2.63)
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—I ¢i(,3 + ¢i(,gx+ 2m>(<0¢i(0 =0, ¢i(,? + 4¢i(,gxx+ 1ZT‘§<O¢i(,g +6 <m§<9<—|— |m3(/o) ¢i(0 =0 (2.6b)

i=12

Truncated Painlevé expansion of (2.4)-(2.5) can theedferwritten as:

©
mt=m®+ % (2.73)
&)
Q(0 Q(O
st =yl - wioﬁ, o5t = 93~ ¢£°§ (2.70)

where(pf0 is the singular manifold. Substitution of (2.7) in (2.4)4Rprovides several polynomi-
als in (pl(o whose coefficients should be 0. We have manage the diffecerations with MAPLE
and the result is that we can define a maﬁfg whose exact derivative is given by:

QS = ¢y %dx+1 [¢i<°w,-<§ - ll/j(ofl’i(g] dy+

+ [0 (31— %) — 0 (3165 + 01%) + 4055 at (2.8)
such that
‘Pfo = Q:(L(,)l’ ‘Pz(o = Q(z(,)z (2.9
Therefore, the knowledge of two seed solutic(nﬁ(o, ¢i(0) ,1 =12 of the Lax pair allows us

to compute the matrix elemerﬁz{c} given by (2.8) and yields the transformation (2.7) that can b
understood as a Darboux transformation in the sense thegpes the Lax pair by transforming

the seed functionéwi(o, .°, m(O) into new squtions(t,Ui(l, o, m(1>.

2.2 lteration

It is a trivial exercise (It only requires a lot of calculai® easily managed by MAPLE) to prove
that the matrimf? defined in (2.8) can be also expanded in truncated Paintxiéssof the form

050y

Qi{lj — Qi{? e (2.10)

%)
In particular, for the diagonal elements
o !
ol =l — 72;;1( 2 (2.11)

We have therefore, thaﬂi(l, ¢i(l, i =1,2 defined by (2.7b) anqiz(1 defined in (2.11) are respec-
tively eigenfunctions and singular manifold fort. It allows us to takemt, t,Ui(l, q)i(l as the new
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seed solutions of the Lax pair and expand it again in trudcRegnlevé expansion by takimé1
as singular manifold. It just means that:

m2=mt4+ G (2.12a)
%)
(1 (1
Q. Q.
T I S A T (2.12b)
%)
By combining (2.12a) with (2.7a) the second iteration cawliden as:
@ — mo 4 (T2 (2.13)
12
wheret; s = (p§1<pl(0. By using (2.11) and (2.9), we get:
T12—|Q |.i,j=1,2 (2.14)

Therefore, all that we need to obtain the first and seconatiter of m® is to compute the matrix
Qi(c} given in (2.8).

3 Lump solutions of KPI

Now, we shall apply the above described method to obtain lsmhytions of KPI. Let us start with
the trivial seed solution
m®=0

Solutions of Lax pair (2.6) are in this case

= IQUIIZIN oyt k) (3.1a)

¢j(o — & MQuyLN;) 7IN] (X, —y,t,—n;) (3.1b)
where

QX Yit,kj) = X+ Ikjy — 4k%t (3-2)

andzN/(x,y,t,k;) are polynomials of ordeN in x that can be written as:

ZN (x,y,t, ki) = zh”“r1 h(y.t k)X ", e =1 (3-3)

Functionsen(y,t,k;) can be obtained through the recursion relation

03h+1
ay

= 1(h+1) [2K; &n + hen_4] (3.4a)
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‘?f;t” = —4(h+ 1) [3k%en + 3kjhen_1 + h(h— 1)&n_5) (3.4b)

The first three elements of this expansion are:

e1(yt,kj) = 2Ikjy — 126t (3.5a)
2
e(ytk)=e2+8 =—z2= (zm) 5 (3.5h)
3
eyt k) =i +358+8% = 29yt = (2) +352 + & (3.50)
where
52(y,t,kj) = 2Iy—24kjt, 53(y,t,kj) = 24t (3.6)

In order to have polynomial solutions for the singular maldi$ defined in (2.8)-(2.9), it is neces-
sary to haven; = kj to suppress the exponentialsgfl. On the other hand from (3.2), it is easy
to check thatQ(x,y,t,kj)* = Q(x,y,t,—k]-‘). It suggests us that if we takg for the first itera-
tion, we should seledt; = —k; for the second one in order to have a real expression for)2.13
Furthermore it would be necessary to hafe= (¢°)".

With the above requirements, the form of the seed eigerfnstin which we are interested,
whould be:

WP =e@zlN(q),  pl0=e ki (ZM(—i)) 3.72)

pP = e MAUZM(—ig), ¢ =% (ZN()) (3.7b)
where we have defined

Q1= Q(x,,t, k1) = X+ Ikgy — 4K2t (3.8a)

ZN (k) = ZN(x y,t k), ZM(—ki) = ZM(xyt, —kj) (3.8b)

and we have used the obvious relations (check (3.3))
Z[N](X) _yatak?li) = <Z[N] (Xayatakl)>*a Z[M](X)y)t)_k?li) = <Z[M](Xa _y) )_kl))* (39)

One important property of the above defined polynomials (pinoperty is very useful because
it allows us to perform integration by parts) is that:

9z
94" _ NzZIN-Y
o =Nz

Actually, we have an infinite set of solutions that can besifeesi in terms of two integer numbers
N andM. Let us compute the first three cases

(3.10)
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31 N=M=0

In this case, we have:
Z0(ky) =1, Z9(-k)=1

and the eigenfunctions (3.1) are:
N

Integration of (2.8) gives trivially

— [k Q1+K; Q5]
Q.<9>( po k+k)

i elkaQ1+K1 Q]

S (k)
According to (3.3) and (3.5)
ZW(Kky) = x+ e1(y,t, k1) = x+ 2lkyy — 122t

Therefore, (2.14) gives us the following real positive dedirexpression

* 1 2
1

that can be explicitly written as:

1 2
T1,2 - X12+Y12+ (2—a1>

where
ki = a1 + by, ZM (k) = Xg + 1Yy
X; =x—2byy—12(a8 —b?), Y, =2a(y—12bst)

32 N=1,M=0

In this case, we need to use:

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17a)

(3.17b)

Z8(ky) = (ZY (k)2 +8(y,t ki), ZW (k) = x+ea(y,t ki), ZO(—kj) =1 (3.18)

and the eigenfunctions (3.1) are:

Pl =dazllky),  pl0=eh@ = (¢£0) .9y

Integration of (2.8) yields

2
S z
, 1 * 1 1
e ((z[l] - k1+|q> ((z[l]) - k1+|q> T (k1+|q> >

=(¥’) G

e [kaQu+kQj]
k1+k3‘_

(z2)° (3.20)
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Therefore

Z[Z](kl) (Z[Z](kl))*
N12 = 2

() e gte) (@ ke) (et o
ket K; Ykt kg V) k) T Utk '

and finally, from (3.3) and (3.5), we have for, the real positive defined expression:

X2 2 Y2 £ X5)2 4 (2X1Y1 + Yo)2 1\? 1\? 1\?
rip= OISR EAARRE ()T (- ) v (5 ) | 622
1

2—3.1 2a1

where we have used (3.6) to define

RVt k) =Xo+1Y2, Xo= —24aqt, Y =2y—24oit (3.23)

33 N=1M=1
From (3.5a) it is easy to see thal! (—k;) = (z! (k;))" Therefore, the eigenfunctions (3.1) are:

W =@z, ¢ —eM@Zia), ¢ = (¢f°) of=(4’) @24

Integration of (2.8) with these eigenfuncions yields

11 2 6’ 22—

— ki Q1 +k; Q] 1 * 1 1 2
o__°¢ (1] (4
Ql,Z kl—l—k’]‘_ ((Z + k1+ k?[) ((Z ) T k1+ k:T_ + k1+ k:T_ (325b)

k1 Q1+k; Q7] N 2
o _ el [/ 1 my __1 1
221 ki +kj ((Z ki +k; (Z ) ki +k; + kit K; (3.25¢)
Thereforery , is the real positive defined expression:
zZWz@  zBY\ [zUz@  zB\"
R U -a B - B
1 2 1 * 1 1 2
i [ [1
- <k1+k;> {(Z * k1+k;> (<Z ) +7k1+ki> + (qu) } (3.26)
1 * 1 1 2
i) () ) (i)
{< ki + kg ( ) k1 4 Ki * ka + ki

that with the aid of (3.3) and (3.5) can be explicitly writtast

772l 73 %
Q% — Q) = (%) (3.25a)
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2
—3X Y2 -2 3X2Y; — Y3 —
r1,2:< 5 2) <11 L >+ (3.27)
2

(o) { (o) oo () H{ (o) e+ () ]

where we have:

S =Xg+ Vs = Xg=—24, Y;3=0 (3.28)

4 GDLW equation

A different case in which the above described method candtedss the following Lax pair

lx + Px+ 2y = 0 (4.1a)

2my Yy + (I / Myydt — mxy> Yy + 2”\2/4’ =0 (4.1b)
and its complex conjugate

~l ¢t + Pxx+2myp =0 (4.22)

2y fry — (' / Myydt + me> $y+2m¢ =0 (4.2b)
This spectral pair appears in [18] and yields to the equation

G (Mt + Mioocy) + My (0 + M) —my (0§ -+ mEg) -+ Amymyc (4.3)

It was proved in [18], that this equation is related througiufel transformations to the dispersive
wave equation proposed by Boiti et al in [15], as well as tosystem proposed by Fokas in [19].

4.1 Truncation of the Lax pair

Let bem(© a seed solution of (4.3) ar(d;i(o, ¢i(0) eigenfuntions of the Lax pair. Truncation of the
Lax pair can be understood as the gauge-Backlund tranafmm

0 <

‘Pl Q
m(l == m + (6(7 "lél = WZ wlo l 27 ¢£l - ¢£0 - ¢§.o% (44)

%) ‘Pl %)

Straightforward calculation yields:
(4°), ()
= 0w %dx— | 25— | dy+ [¢i<° (w°) ~w°(4°) } dt (4.58)
my y y

a’'=0n ¢’ =0 (4.5b)
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4.2 Lump solutions

As it is easy to see in (4.5a), the matfb?ﬂ is not defined f0|m§,0 = 0. Therefore, we shall use as
seed solution

=1
In this case the Lax pair gives us:
(0 0y _ (@ 0_
(), + (), =0 = ("), +u’=0 (4.62)
1 (e 0y _ — (¢ 0_
1(67)+ (0), =0 —(6)) =0/ =0 (4.60)
The solutions of (4.6) can be written as:
P = QkIZN(x vt k;), ¢ = e MNmIZN(x y —t —n;) (4.7)
where
Q(x,y,t,kj):x+%+lkjt (4.8)

J

and zN/ (x,y,t,kj) can be written as the expansion (3.3) whose coefficients dieyecursion
relations

0&ni1 . (h—l— l) .dSh
y ka &+ K; dy (4.9a)
¢ .
(;t“ = 1(h+1)[2Kj&n+ j&n 1] (4.9b)
The first three elements of this expansion are:
e1(y.tk) = —%+2ijt (4.10a)
i
2
otk =e+e —24=(Z1)"+5 (4.10b)
3
Ea(ytK) = €3+ 3861+ 83 =78 = (zm) +352Y + 5 (4.10c)
where
2y —6y
== +2t =7 4.11
% k3 + ) 53 kjl ( )

i
Therefore ther o-functions are given by the expressions (3.16), (3.22) 8§ where we have:

a2 — b2 2a1b1
X =X——2 Ly oyt Yy= Tyt (4.12a)
(@157 (@57
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a2 —3b? b? — 3a2
X2 - 2alm y, Y2 == 2blm y+ 2t (412b)
af + b} — 6a2b? b? — a2
T e Y T e
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