
Incremental Data Migration for Multi-Database Systems 

Based on MySQL with SPIDER Storage Engines 

Naoyuki Miyamoto 

Graduate school of engineering, University of Fukui,  

3-9-1 Bunkyo, Fukui City, Fukui Prefecture 910-8507, Japan 

Ken Higuchi 

Graduate school of engineering, University of Fukui,  

3-9-1 Bunkyo, Fukui City, Fukui Prefecture 910-8507, Japan 

E-mail: higuchi@u-fukui.ac.jp 

Tatsuo Tsuji 

Graduate school of engineering, University of Fukui, 

 3-9-1 Bunkyo, Fukui City, Fukui Prefecture 910-8507, Japan 

E-mail: tsuji@u-fukui.ac.jp 

 

 

 

Abstract 

In this paper, an incremental data migration technique is evaluated in the multi-database system based on MySQL 

with SPIDER storage engine and the improvement of the turn-around times of other operations is proved in this 

systems. In this method, a large data migration is divided into small data migrations and other operations are 

inserted between these small data migrations. This technique is easy to implement in the multi-database system.  

Keywords: distributed database system, multi-database system, data migration, incremental data migration. 

1. Introduction 

Nowadays, database systems are used frequently in 

every field because the costs of introduction and 

running of the database system became low. What is 

more, network systems are being developed as well as 

database systems. Based on these backgrounds, a 

demand for sharing existent databases system grows. 

However, it is difficult to stop existent databases system 

to reorganize into one large database because database 

systems usually are used as mission-critical system such 

as the management system for goods in stock.  Thus, an 

integrated system that consists of many existent 

databases is necessary, such as the multi-database 

system. Thereby, users can access to any data subset in 

International Journal of Networked and Distributed Computing, Vol. 3, No. 2 (April 2015), 119-127

Published by Atlantis Press 
Copyright: the authors 

119



N. Miyamoto et al. 

all existent databases though the multi-database system 

and this operation can be processed in parallel. 

On the other hand, there are some problems in the 

distributed database system including the multi-database 

system. One of the problems is performance decrement 

from load imbalance among individual databases. Thus, 

it is important to reorganize data partition in multi-

database systems.  

   Reorganization of data partition includes data 

migration. Because data migration includes large 

amount data deletion and data insertion, it has a bad 

influence on processes for other queries in the multi-

database system. There are some suggestions improving 

influence caused by data migration.1,2,3,4,5 These 

suggestions are based on snapshot function, however, 

all database systems don’t have this function because 

the capability to make snapshot is quite special. Then, 

not all multi-databases system can use these techniques 

for data migration.   

 One way to solve this problem is incremental data 

migration9. This method was originally based on 

incremental on-line reorganization scheme8 for 

distributed index system6,7. It is only needs transaction 

function which implemented in many database systems. 

This method is based on typical operation such as 

insertion and deletion, and does not use snapshot 

function. Thus, this method is implemented easily in 

any multi-database system, but the research in Ref. 9 

evaluated only on the set of independent database 

systems, not on the proper multi-database system with 

respect to the distributed transaction. Thus, it is 

necessary to evaluate the incremental data migration 

technique on the proper multi-database system.  

In this paper, we implement the multi-database 

system based on MySQL with SPIDER storage engine, 

and evaluate the incremental data migration technique 

on it. The experimental result proves the improvement 

of turn-around times of other operations. 

 

TIME
SEQUENCE

moving the 
target data

DATA
MIGRATION

QUERIES using 
the target data

making
snapshot

query 
processing

LOCKED BY
SNAPSHOT

query
processing

QUERIES not 
using the target 

data

 

Fig. 1.   a data migration operation and other operations in the data migration scheme with making snapshot 

Published by Atlantis Press 
Copyright: the authors 

120



 Incremental Data Migration 

2. Data Migration in Multi-Database Systems 

Multi-database system is united several database 

systems on network without physical reorganization. 

Users can access to the data in the multi-database 

system as one database system. It is one kind of 

distributed database systems, but it is different from 

typical distributed database systems that each 

component databases systems are able to provide their 

own service while operating as integrated database 

system. 

When we use a multi-database system, it is 

necessary to reorganize data partition in the multi-

database system in several purposes as mentioned in 

Sec. 1. Many reorganization techniques are already 

proposed.1,2,3,4,5 These typical techniques use the 

snapshot function. However, the time to make snapshot 

is not short, what is worth, all database systems don’t 

have this function. Therefore, it is not easy for multi-

database systems to implement snapshot function. Then, 

another technique is necessary in multi-database 

systems. Fig. 1. shows the data migration operation 

using the snapshot function.  

One of these solutions is classical data migration 

technique which only uses typical transaction function. 

It only uses the operation of insertion and deletion. 

However, in order to execute data migration safely, it is 

necessary to avoid conflicts with other processes by 

using exclusive access control, such as the locking table. 

Thus, as Fig. 2. shows, by executing the data migration 

operation, the turn-around times of other queries are 

more degraded than that without the data migration 

operation. So it is important to execute data migration 

more effectively. 

3. Incremental Data Migration 

In Ref. 9, the incremental on-line reorganization scheme 

for distributed index system8 is adapted to the data 

migration operation in multi-database systems. This 

solution is named incremental data migration. Fig. 3. 

shows an overview of incremental data migration. This 

method divides one large data migration into small data 

migrations. By inserting other queries between small 

data migrations, the turn-around times of other queries 

are improved. However, some small data migrations are 

repeated incrementally until all target data are moved. 

In this method, the number of exclusive control 

including locking operation is increased. But by 

dividing the data migration operation, these locking 

areas are expected to become small and the increase of 

the total cost of these locking operations is expected to 

be not so much. Furthermore, the inserted queries can 

be started early and turn-around times can be improved. 

However, incremental data migration in multi-database 

system causes other problems. In multi-database system, 

these data migrations can be considered as data 

migrations between component tables in local 

databases. When some small data migrations have been 

finished but other small data migrations are not started  

TIME
SEQUENCE

moving the 
target data

DATA
MIGRATION

QUERIES using 
the target data

query 
processing

query 
processing

TARGET 
LOCKED BY

DATA 
MIGRATION

query
processing

QUERIES not 
using the target 

data

 

Fig. 2.   a data migration operation and other operations in the data migration scheme without making snapshot. 
Published by Atlantis Press 

Copyright: the authors 
121



TIME
SEQUENCE

data migration

ORIGINAL DATA
MIGRATION

INCREMENTAL 
DATA MIGRATION

queryoperations

query operations
query operations

data migration

data migration

data migration
query operations

query operations

query operations

 

Fig. 3.   the incremental scheme for the data migration 

multi           DBMS

table

DB1
table A

SPIDER
table A

DB2
table B

DB3
table C

SPIDER
table B

SPIDER
table C

 

Fig. 4.   a structure of multi-database system using the SPIDER storage engine.. 

Published by Atlantis Press 
Copyright: the authors 

122



N. Miyamoto et al. 

yet, inserted queries are processed by using these 

halfway tables.  Then, the correctness of these queries 

which use only one local component table is not 

ensured. These problems include foreign key constraint 

also. However, in multi-database system, since these 

component tables are regarded as one large table, these 

data migrations are regarded as internal data migration 

in one big table. Thus, by transforming the query only 

using component table into the query for multi-database 

system, these problems are ignored. 

4. Multi-Database Based on MySQL with 

SPIDER Storage Engine 

MySQL10 is the relational database management system 

developed and provided by Oracle. One of the biggest 

features of MySQL is that users can choose various 

storage engines depending on their purposes. For 

example, a user can choose Memory storage engine if 

he wants to access database table rapidly. 

The SPIDER storage engine11 is one of the MySQL 

storage engines developed by Kentoku Shiba. It doesn’t 

have its own data record, and only has reference records 

to other databases by using table links. In other word, 

the SPIDER storage engine is the collection of links 

such as symbolic links of UNIX file systems. The 

reference record is not only the link to the table in the 

same computer but also the link to the table in other 

computer. Users can accesses to tables in many 

computers as one table by using SQL statements 

without special descriptions. However, the SPIDER 

storage engine is not a default storage engine of 

MySQL, so, it is necessary to recompile the existing 

MySQL server. 

In addition, the table defined by the SPIDER storage 

engine performs as the original table that is linked. For 

example, the table linked to the table defined by the 

InnoDB storage engine has the same ability as the 

InnoDB, which includes the record-level lock function 

and the transaction function. On the other hand, the 

table linked to the MyISAM table doesn’t have row-

level lock function and the transaction function.  

Furthermore, the SPIDER storage engine supports XA 

transaction internally. Then, it supports distributed 

transaction.   

By using the SPIDER storage engine, the multi-

database system is implemented easily. Fig. 4. shows a 

structure of multi-database using the SPIDER storage 

engine. This multi-database system has three links to 

tables on other database servers. In this multi-database, 

a query of the multi-database system is divided to sub-

queries of DB1, DB2, and DB3. The each sub-query is 

processed in the corresponding database in parallel and 

the results of sub-queries are unified and processed in 

the multi-database system. In addition, the SPIDER 

storage engine ensures synchronization of update among 

linked tables on other database systems by using 

distributed transaction function internally. Thus, a user 

can update record keeping the consistency of multi-

database systems. Furthermore, transactions on the 

multi-database system satisfy ACID property by 

SPIDER storage engine, not only for each database but 

also for the multi-database systems, that is, concurrency 

control capability is realized in this system. In this 

paper, transaction isolation level is set 

SERIARIZABLE. 

5. Experiments 

In this experiment, we implement a multi-database 

systems based on MySQL with SPIDER storage engine, 

and evaluate the improvement by using our incremental 

data migration in multi-database systems. 

Experiment conditions are listed below: 

 

(i) The number of remote databases server is 4 and 

each database server has 4 tables. 

(ii) Each table consists of 5 attributes (integer(4), 

character(20), double(8), double(8), double(8)) and 

stores 1,000,000 records. 

(iii) The number of databases in the multi-database 

system is 4 and each database has table link to each 

Published by Atlantis Press 
Copyright: the authors 

123



 Incremental Data Migration 

remote database server. Then, each database has 4 

table links. 

(iv) Only one node controls whole data migration. But 

plural operations can be processed in parallel if 

possible. 

(v) Data migrations are executed 4 times in the multi-

database system. Each data migration moves 

500,000 records to other table cyclically in same 

multi-database system. 

(vi) The number of clients for queries is 16 and each 

client requests queries repeatedly. Each query has 

to be access to tables in only one database system 

and the client change the target node in order. 

(vii) The specification of each node is written in Table 1. 

 

Here, a set of successive 4 queries is called a cycle. 

In one cycle, query processing accesses 4 tables in one 

multi-database system. 

As shown in the Fig. 5., in this condition, the 

number of steps of the incremental data migration is 1, 5, 

and 10. Here, 1-step data migration is equal to the data 

migration without incremental scheme. 

Table 1.  specification of nodes 

ITEM VALUE 

the number of nodes 21 

CPU Intel Core I 5  - 650 (3.2GHz) 

OS Fedora 14 (x86) 

MEMORY 4GB 

NETWORK 1G bps Ethenret 

DATABASE SYSTEM MySQL 5.5.14 

5.1. Results of Experiment 

Fig. 6. and Fig. 7. show the results of experiment. 

Horizontal axis is the cycle number. One curve is the 

average of the total execution times of 16 clients. Here 

the total execution time means the finish time of some 

cycle and not a turn-around times of that cycle. Fig. 6 

shows the result to 30 cycles and Fig. 7. is the 

magnification of Fig. 6. 

In this result, the curves of the 1-step data migration 

have one small step between 2nd cycle and 4the cycle. 

It is clearer in Fig.7. It caused by competition among 

queries and the large data migration which costs long 

time. On the other hand, the curves of the 5-steps data  

TIME
SEQUENCE

1‐step
(ORIGINAL)

5‐steps

10‐steps

500,000 records move

100,000

records
100,000 

records
100,000 

records
100,000 

records
100,000 

records

50,000 records move 
 

Fig. 5.   the incremental data migration in this experiment 

Published by Atlantis Press 
Copyright: the authors 

124



N. Miyamoto et al. 

 

Fig. 6.   result of the experiment 

 

Fig. 7.   magnification of Fig. 6. 

Published by Atlantis Press 
Copyright: the authors 

125



 Incremental Data Migration 

migration and the 10-steps data migration are smooth 

and lower than that of 1-step data migration. Total 

execution time of queries in the 5-steps data migration 

is a little shorter than that in 1-step data migration, but 

that in the 10-steps data migration is a little longer than 

that in the 1-steps data migration as queries are 

processed. Table 2. shows the performance gain at 4th 

cycle, which is ratio to 1-step performance. Table 3. 

shows the performance gain at 30th cycle. These results 

mean the response time of the query inserted between 

data migrations is clearly improved. On the other hand, 

the response time of the query after the whole data 

migration is degraded in 10-step data migration. Then, 

5-step data migration is the best solution in this 

experiment because total performance gain is a little 

better than that of 1-step data migration. 

In these circumstances, by dividing data migration, 

turn-around times of other queries are surely improved. 

If a data migration is divided appropriately (i.e. 

appropriate number of division), some good effect is 

expected. But if a data migration is divided 

inappropriately (i.e. too many number of division), 

negative effect is expected because of the increase of 

the number of exclusive control executions including 

locking operations. The appropriate number of division 

depends of the cost of exclusive control and the amount 

of data migration.. 

6. Conclusions 

We evaluated the incremental data migration technique 

on the multi-database system based on MySQL with 

SPIDER storage engine. From the experimental result, 

our incremental data migration technique is effective for 

the improvement of the execution time (except for some 

situation). Because this multi-database system ensures 

serializability, the execution time in this situation is 

longer than that in Ref. 9, which doesn’t ensure 

serializability. On other hand, we proved the 

effectiveness of incremental data migration in this 

system. 

For future works, evaluation of the performance of 

our scheme in more real situations is necessary.  

Table 2.  performance gain at 4th cycle 

number of step power 

1-step 1.000000 

5-steps 1.334172 

10-steps 1.376289 

Table 3.  performance gain at 30th cycle 

number of step power 

1-step 1.000000 

5-steps 1.010725 

10-steps 0.975545 

References 

1. B. Salzberg, and A. Dimock, Principles of Transaction-

Based On-line Reorganization, in Proc. 18th 

International Conf. on Very Large Data Bases (1992), pp. 

511-520. 

2. K. Achyutuni, E. Omiecinski, and S. Navathe, Two 

techniques for on-line index modification in shared 

nothing parallel database, in Proc. the 1996 ACM 

SIGMOD International Conf. on Management of Data 

(1996), pp. 124-136. 

3. E. Omiecinski, Concurrent File Reorganization: 

Clustering, Conversion and Maintenance, Data 

Engineering Bulletin, 19(2) (1996), pp. 25-32. 

4. C. Zou and B. Salzberg, Safely and Efficiently Updating 

References During On-line Reorganization,  in Proc. 24th 

International Conf. on Very Large Data Bases (1998), 

pp. 512-522. 

5. M. K. Lakhamraju, R. Rastogi, S. Seshari, and S. 

Sudarshan, On-line Reorganization in Object databases, 

in Proc. the 2000 ACM SIGMOD International Conf. on 

Management of Data (2000), pp.58-69. 

6. K. Higuchi and T. Tsuji, and T. Hochin, Distributed 

Index System for Complex Objects with On-line 

Modification, IPSJ Trans. of Databases, 43, SIG12 

(TOD16) (2002),  pp.64-79. 

7. K. Higuchi and T. Tsuji, On-line Reorganization for 

Distributed Index System for Complex Objects, IPSJ 

Trans. of Database, 45, SIG10 (TOD23) (2004), pp. 1-17. 

Published by Atlantis Press 
Copyright: the authors 

126



N. Miyamoto et al. 

8. K. Higuchi, T. Nomura, and T. Tsuji, Incremental 

reorganization for distributed index system, Systems 

Modeling and Simulation, in Proc. Theory and 

Applications Asia Simulation Conference (2006), pp.223-

227. 

9. K. Higuchi, W. Wang, and T. Tsuji, Incremental Data 

Migration for Multi-Database Systems, in Proc. 13th 

ACID international Conference on Software Engineering, 

Artificial Intelligence, Networking and 

parallel/Distributed Computing (2012), pp. 716-720. 

10. Oracle Corp., MySQL.com, http://www.mysql.com/ 

11. K.  Shiba, SpiderForMySQL.com, 

http://spiderformysql.com/ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Published by Atlantis Press 
Copyright: the authors 

127




