
Integrated Usage of Heterogeneous Databases
for Novice Users

Ayano Terakawa
Dept. of Information Science, Kyoto Institute of Technology, Matsugasaki Goshokaido-cho, Sakyo-ku

Kyoto, 606-8585, Japan

Teruhisa Hochin, Hiroki Nomiya
Dept. of Information Science, Kyoto Institute of Technology, Matsugasaki Goshokaido-cho, Sakyo-ku

Kyoto, 606-8585, Japan
E-mail: {hochin, nomiya}@kit.ac.jp

Abstract

This paper proposes the system enabling users to use heterogeneous databases in an integrated manner without any
conversion and servers. In order to treat a variety of sources in a unified manner, this system is realized by using
Java Database Connectivity (JDBC) in accessing databases on the user’s computer. It also joins and/or projects
them as required. The syntax identifying a kind of database or file is introduced. The system maintains data by
using ArrayLists in Java. It is experimentally shown that there is no practical problem in the equijoin of three tables
having 100,000 rows in heterogeneous databases.

Keywords: heterogeneous databases; JDBC; unified usage; table name specification

1. Introduction

With the spread of computer technology, users handling
their data as electronic data on computers have
increased. Archaeologists are included in such users.
They also handle their data as electronic data on their
computers.

In many cases, archaeologists determine where they
store data in their own discretion. Therefore, the data
may not be stored in the unified system. Data stored in
this way become heterogeneous information sources.

Moreover, data are stored in the different databases due
to the change of database administrators even in a
department. Each department might use various
databases for each.

In order to integrally handle these data, a method of
converting the data stored in a database to the data in
another database is employed. However, data
conversion is a time-consuming task. The data
conversion is also cumbersome in maintaining
consistency between the copy and the original data
when the original data are frequently changed.

International Journal of Networked and Distributed Computing, Vol. 3, No. 2 (April 2015), 109-118

Published by Atlantis Press
Copyright: the authors

109

The system based on mediators and wrappers1 can
integrate heterogeneous information sources without
data conversion. Wrappers provide access to
heterogeneous information sources by converting
application queries into source-specific commands or
queries. Mediators are used to integrate heterogeneous
information sources. Mediators integrate and refine the
information provided by wrappers. This method is
premised on the heterogeneous information sources
distributed across a network. For this system,
heterogeneous information sources are required to be on
server computers. It is, however, often difficult for
archaeologists to make their computers servers.
Moreover, they may want to handle heterogeneous
information sources in a single computer.

Management of distributed and heterogeneous
databases has been studied.2,3 Many types of
heterogeneities including heterogeneities due to the
differences in DBMSs and semantic heterogeneity have
been treated. General solution is the mapping from local
schemas to global one. In these studies, large-scale
systems are assumed. A database is managed on a server.
Several databases on several servers can be used in the
integrated manner. The methods proposed in the
literatures seem to be too heavy-weight for a small-scale
system to adopt. It is considered that the light-weight
system is good for a small-scale system. The meanings
of the light-weight system include the server-less
system. Integration of heterogeneous databases without
any servers is required for the small-scale system.

Wang et al. allow users to handle various
information sources without copying user’s data to a
server computer.4 By making connections to MySQL,
PostgreSQL, SQLite, an Excel file, and a CSV file
through Java Database Connectivity (JDBC), databases

and files can be used in a unified manner. Although
heterogeneous information sources are dealt with, their
simultaneous treatment is not considered.

This paper proposes the system enabling users to use
heterogeneous information sources unifiedly and
simultaneously without any data conversion. The
proposed system uses JDBC to obtain data from
databases and files. It also joins and/or projects them as
required. The syntax identifying a kind of database or
file is introduced. Table names as well as kinds of
databases are required to be put to column names in
order to uniquely identify them during query processing.
This system maintains data by using ArrayLists in Java.
It is experimentally shown that there is no problem in
the equijoin of three tables with 100,000 rows in
heterogeneous databases.

The remaining of the paper is as follows: Section 2
describes the tools used in the proposed system. Section
3 describes a specific design of the system. Section 4
describes implementation. Section 5 shows an example
of the execution of the system. Section 6 experimentally
evaluates the system. Lastly, Section 7 gives concluding
remarks.

2. Preliminary

2.1. Java Database Connectivity

Java Database Connectivity (JDBC)5 is an API for the
connection of a relational database and the program in
Java. It has standardized the ability to connect with
relational database management system by using the
SQL language in Java. In order to use JDBC, it is
necessary to prepare a JDBC driver for each database
management system. By using JDBC, schema

Fig. 1. An example of database connection through JDBC.

1 Class.forName("com.sqlite.JDBC").newInstance();
2 Connection con = DriverManager.getConnection("jdbc:sqlite:/Users/SQLite/school.db");
3 Statement st = con.createStatement();
4 ResultSet rs = st.executeQuery("SELECT * FROM student");

Published by Atlantis Press
Copyright: the authors

110

information and the data stored in a database can easily
be obtained.

An example of the usage of JDBC is shown in Fig. 1.
This is an example for SQLite. The driver class is
loaded at Line 1. A database is connected to at Line 2.
An instance object for a statement is created at Line 3.
A query is executed and the result is stored in an
instance object for a Resultset. We can use various

database systems or files only by changing Line 1 and
Line 2.

When data are obtained from an Excel file, Apache
POI6 is needed because the JDBC driver for Excel needs
it.

2.2. Schema information

We get schema information to confirm whether the
required table and the columns exist. In case of MySQL,
PostgreSQL, and SQLite, we can get the schema
information by sending a query using JDBC. If Apache
POI is available, we can get the schema information by
using Apache POI in Excel. In case of CSV files, we
must read the CSV files and get the column names from
them.

3. Design

In this system, a user enters the required information
through the special window called the “information
input-output window.” The system extracts the join
condition from the information input, and makes a
connection to each database. Next, this system obtains
the required table and joins them as needed. Finally, the
join result is displayed in the information input-output
window. Fig. 2 shows the flow of the process of join,
which is the most complex process.

3.1. Information input-output window

Users specify the information for connecting databases
or files. They get the join result through this information
input-output window. This window has the following
components:
(i) Input fields of the required informations for

connecting to databases, and files.
(ii) Input field of projection column names.

(iii) Input field of the join condition.
(iv) Output field of execution result.
By providing (i) to (iv), we can do everything in a single
window.

3.2. Join condition

The join condition is the condition for the join operation.
It is the form of “<DBKind>delimiter<Table
name> <Alias name>delimiter<Column

name>”, where <DBKind> is a kind of a database or
file, and is one of “MySQL,” “PostgreSQL,” “SQLite,”

Fig. 2. Flow of join process.

Published by Atlantis Press
Copyright: the authors

111

“Excel,” or “CSV.” <Table name> is a sheet name in an
Excel file. It is a file name in a CSV file. The delimiter
is “:”. The character “:” cannot be included in the alias
name, which is optional. Join conditions are connected
with “AND”.

An example of the specification of the join condition
is shown in Fig. 3. In this example, the table student in a
MySQL database, the table student in a PostgreSQL
database, and the table student in an SQLite database
are joined.

Comparison operators “<=”, “>=”, “<”, “>”, “=”,
“!=”, “NOT LIKE”, and “LIKE” can be used with
numbers or strings in MySQL, PostgreSQL, and SQLite.
Only equijoin of columns of each other is supported for
Excel and CSV.

3.3. Use of schema information

This system uses schema information as follows:
(i) Confirmation of the existence of the column:

Before getting the data, the system checks whether
the required table and the columns exist. If a table
or column does not exist, the system depicts which
database or file's table or column is missing.

(ii) Add a kind of database or file, and a table name
(and an alias name): Since a table name is not given
to the result of the query from each database
management system, the system has to put a table
name, and a kind of database or file to the query
result in order to identify them.

3.4. Management of data

This system gets all of data as String data type, and
manages them in an ArrayList. Also, the data newly
created by join or projection are stored in the order of
acquiring the data. Since the number of rows of the
result of join and projection cannot be predicted, we use
an ArrayList for a variable number of elements. The

data structure is shown in Fig. 4. There are (n+1) tables
in Fig.4. The table “Table 0” has (m0+1) rows. The first
row consists of (c0+1) columns.

Fig. 4. Data structure.

4. Implementation

4.1. Extraction of join condition

From the information input-output window, the system
gets the join condition. First, the system partitions the
join conditions and creates lists of required tables and
required columns. Next, the system creates the query
based on the list of tables. The format of the query
depends on the kinds of database as follows:
(i) MySQL, PostgreSQL, and SQLite: A query

“SELECT * FROM <From List> WHERE

<Condition>” is created, where <From List> is
a list of one or more <Table name> separated by
commas.7

Fig. 3. An example of the join condition.

MySQL:student:sno = PostgreSQL:student:sno AND PostgreSQL:student:sno = SQLite:student:sno

Published by Atlantis Press
Copyright: the authors

112

(ii) Excel and CSV: A query “SELECT * FROM
<Table name>” is created per table.

4.2. Join Operation

Sort merge join8 and quick sort are used in this system.
If rows are sorted, the system does not sort them again.

4.3. Projection

The column name projected is obtained from the
information input-output window. In the same manner
as in the join condition, the column name must be the
form of “<DBKind>:<Table name> <Alias

name>:<Column name>.” When the user wants to
project more than one column, columns are separated by
commas. If blank space or “*” is specified, the system
obtains a full set of results.

The information input-output window has a check
box to allow the user to select removing duplicates. If
this check box is not checked, duplication is not
removed and the system outputs a full set of results. If it
is checked, the system outputs the projection result
without duplication.

5. Execution example

When the system is started, the information input-output
window appears. An example of specification is shown
in Fig. 5. The information needed to connect to the
databases is specified in the text boxes on the left side
of the window. In the SELECT section, a column name
is specified. In the WHERE section, join condition is
specified for MySQL, PostgreSQL, SQLite, Excel, and
CSV file.

Next, pressing the Join button invokes the join
process. The results appear in the text area of the right
bottom of the screen as shown in Fig. 6. The projected
table information is displayed under the last binding
result. Since the scroll bar is on it, it is possible to see
all of the results even if join result is long.

Using a list (JComboBox) under the Join button, the
user selects the join process and can see the process
selected.

6. Performance evaluation

In order to clarify the performance of the constructed
system, we evaluate the performance on the actual
machine.

6.1. Experimental method

The data acquisition time and the join operation one are
measured three times on a personal computer (2.7GHz
Intel Corei5, 8GB memory). The results are evaluated in
the average. Unit of time is milliseconds.

The tables used in the experiment are as follows:
(i) The numbers of rows are 100, 1,000, 10,000 and

100,000.
(ii) The table has the columns of id, name, and price.

(iii) The column id is a random integer ranging from 0
to the number of rows. For example, in the case of
1,000 rows, it is a random integer of 0 to 1,000.

(iv) The column name is a random string. Its length is 2.
(v) The column price is a random two-digit integer.

All of tables are not manually indexed. Some database
management systems may automatically create the
primary index to a table. In this case, such an index may
be used in the retrieval. Tables are generated by
program.
• Experiment1: The data acquisition time of the

system is measured.
• Experiment2: Two to five tables, each of which has

the same number of rows, are joined. Joining two
tables is performed using a table in MySQL and in
PostgreSQL. In the case of three tables, the tables
in MySQL, PostgreSQL, and SQLite are used. In
the case of four, a CSV file is used in addition to
the case three. In the case of five, an Excel file is
used in addition to the case four. The join order is

Published by Atlantis Press
Copyright: the authors

113

Fig. 5. An example of specification of input information.

Fig. 6. Result of the join process and projection.

Published by Atlantis Press
Copyright: the authors

114

Fig. 7. Data acquisition time.

Fig. 8. Data acquisition time (logarithmic graph).

Published by Atlantis Press
Copyright: the authors

115

Fig. 9. Time of multi-table join.

Fig. 10. Time of multi-table join (logarithmic graph).

Published by Atlantis Press
Copyright: the authors

116

the one described above from MySQL to an Excel
file. Tables are equally joined in the column id.

6.2. Experimental Result

• Experiment1: Fig. 7 and Fig. 8 show the times of
obtaining data from tables. Fig. 8 is a logarithmic
graph of Fig. 7. We could not measure the
acquisition time of the 100,000 rows for an Excel
file because an Excel file (.xls) cannot contain
65,537 or more rows, and because of short of
memory. A lot of time is needed to get data for an
Excel file, while others take almost equal time
shorter than an Excel file.

• Experiment2: Fig. 9 and Fig. 10 show the times of
multi-table join. Fig. 10 is a logarithmic graph of
Fig. 9. Joining four and five tables of 100,000 rows
cannot be measured due to short of memory. The
time does not depend on any number of tables up to
10,000 rows, and is not too much. In addition, the
processing time increases according to the number
of rows in the table over 10,000 rows.

6.3. Considerations

• Data acquisition time: It is considered that the
acquisition time depends on the kind of database
and file because the same algorithm is used to any
database and file. It is also considered that there are
no practical problem since all kinds of databases
other than Excel can get the data from the table of
100,000 rows used in the experiment in less than
one second. A lot of time is required to get the data
for an Excel file. The Excel driver may affect the
performance.

• Time of multi-table join: From Fig. 9 and Fig. 10,
we can see that the processing times are unaffected
by the number of tables with up to 10,000 rows.
Each joining time is almost the same. In 100,000
rows, according to the number of tables, the
processing time gets longer. However, it seems

there is no practical problem because three tables
can be joined in about two seconds.

7. Concluding remarks

In this paper, the data of heterogeneous information
sources are made available without any conversion in
the integrated manner. We realized the join of tables of
heterogeneous information sources. MySQL,
PostgreSQL, and SQLite databases as well as Excel and
CSV files are connected to at the same time by using
JDBC. We have implemented a system capable of
performing the join and the project operations of tables
in heterogeneous databases. This system gets the
schema information of the table, and manages the
schema and table information by using ArrayLists. The
join algorithm used is the sort merge join. We evaluated
retrieval performance on a real machine. It was shown
that in 100,000 rows, three tables can be joined in about
two seconds. It is considered that there is no practical
problem to use this system.

The system, however, does not support the joins
besides equijoin. Supporting non-equijoin, handling
data of more than 100,000 rows, and implementing a
rich user interface are in future work. The memory
usage is important for processing the join operation. We
are considering the order of join for the purpose of
reducing the memory usage. The current
implementation reads all of tuples from a database at a
time. This wastes memory. Reading a tuple at a time
may improve memory usage. Improving memory usage
is also in future work. Evaluation of the usability and
the performance by real users are also in future work.

References

1. H. Garcia-Molina, Y.Papakonstantinou, D. Quass, A.
Rajaraman, Y. Sagiv, J. Ullman, V Vassalos and J.
Widom, The TSIMMIS Approach to Mediation: Data
Models and Languages, Journal of Intelligent
Information Systems, 8 (2), (1997), pp. 117-132.

Published by Atlantis Press
Copyright: the authors

117

2. W. Sujansky, Heterogeneous Database Integration in
Biomedicine, Journal of Biomedical Informatics, 34 (4),
(2001), pp. 285-298

3. A. P. Sheth, Federated Database Systems for Managing
Distributed, Heterogeneous, and Autonomous Databases,
ACM Computing Surveys, 22 (3), (1990), pp. 183–236.

4. X. Wang, T. Hochin and H Nomiya, Feasibility of
Unified Usage of Heterogeneous Databases Storing
Private Information, in Proc. IIAI Advanced Applied
Informatics 2013 (IIAI AAI 2013), (2013), pp.337–342.

5. JDBC, http://ja.wikipedia.org/wiki/JDBC, (2014/01/25).
6. Apache POI, http://poi.apache.org/, (2014/05/04).
7. H. Garcia-Molina, J. Ullman and J. Widom, Database

Systems The Complete Book, (Pearson Education, US,
2001), pp.787-791.

8. D. K. Shin and A. C. Meltzer, A New Join Algorithm,
ACM SIGMOD Record, 23 (4), (1994), pp. 13-20.

Published by Atlantis Press
Copyright: the authors

118

	1. Introduction
	2. Preliminary
	2.1. Java Database Connectivity
	2.2. Schema information

	3. Design
	3.1. Information input-output window
	3.2. Join condition
	3.3. Use of schema information
	3.4. Management of data

	4. Implementation
	4.1. Extraction of join condition
	4.2. Join Operation
	4.3. Projection

	5. Execution example
	6. Performance evaluation
	6.1. Experimental method
	6.2. Experimental Result
	6.3. Considerations

	7. Concluding remarks

