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Abstract

Second heavenly equation of Plebañski, presented in a two-component form, is known to be a
3+1–dimensional multi-Hamiltonian integrable system. We show that one symmetry reduc-
tion of this equation yields a two component 2+1–dimensional multi-Hamiltonian integrable
system. For this system, we present Hamiltonian and recursion operators, point symmetries
and integrals of motion. For another symmetry reduction, the reduced system is ”almost bi-
Hamiltonian”, with two known Hamiltonian operators but thesecond Hamiltonian density
missing.

1 Introduction

For a long time there were very few examples of 2+ 1–dimensional and no examples of 3+ 1–
dimensional integrable multi-Hamiltonian systems. In [2]we have discovered that the second
heavenly equation of Plebañski

uttuxx−u2
tx +uxz+uty = 0 (1.1)

when being presented in a two-component form

ut = q , qt =
1

uxx

(

q2
x −qy−uxz

)

(1.2)

is a 3+ 1–dimensional multi-Hamiltonian integrable system. The physical significance of the
single scalar equation (1.1) follows from the fact that it isequivalent to complex Einstein field
equations for (anti-)self-dual gravitational fields [5], with u being the metric potential.

In [3], we studied all nonequivalent 2+ 1–dimensional symmetry reductions of this system.
In general, the reduced equations apparently have no Hamiltonian structure. Here we show that
one particular symmetry reduction, with respect to a special combination of translations, yields
a two-component 2+ 1–dimensional multi-Hamiltonian integrable system. For this system, we
present the Hamiltonian and recursion operators, point symmetries and integrals of motion.
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In section 2, we give a complete list of Lie point symmetries of the system (1.2), specify a
translational symmetry for its reduction and present a reduced system. In section 3, we present
Hamiltonian operator and symplectic 2-form for the reducedsystem. In section 4, we derive a
recursion operator for the reduced system. In section 5, we obtain second Hamiltonian structure
by applying the recursion operator to the first Hamiltonian structure. In section 6, we generate
first integrals by using point symmetries and the Hamiltonian structure. Finally, in section 7,
we present another reduced Hamiltonian system that possesses two Hamiltonian operators and a
recursion operator for symmetries but second Hamiltonian density is missing.

2 Translational symmetry reduction of the second heavenly equation

Basis generators of one-parameter subgroups of a total Lie group of point symmetries for the
second heavenly system (1.2) have the form [2, 3]

X1 = −2z∂t + tx∂u +x∂q, X2 = t∂t +z∂z+u∂u, Wf = f (y,z)∂u

X3 = t∂t +x∂x +3u∂u +2q∂q, Zb = b(y)∂z−b′(y)x∂t −b′′(y)
x3

6
∂u

Ya = a∂y +a′(x∂x− t∂t −z∂z+q∂q)+a′′
(

xz∂t −
tx2

2
∂u−

x2

2
∂q

)

+a′′′
x3z
6

∂u, Vd = dz(y,z)(t∂u + ∂q)−dy(y,z)x∂u (2.1)

Uc = cy∂t +cz∂x−cyzx(t∂u + ∂q)+cyy
x2

2
∂u +czz

(

t2

2
∂u + t∂q

)

wherea(y),b(y),c(y,z),d(y,z), and f (y,z) are arbitrary functions, primes denote ordinary deriva-
tives of functions of one variable, subscripts signify partial derivatives with respect to correspond-
ing variables and we used the shorthand notation∂t = ∂/∂ t and so on.

In our recent paper [3] we have constructed an optimal systemof one-dimensional Lie subal-
gebras of the total Lie algebra of symmetry generators with acertain choice of simplest represen-
tatives of equivalence classes that constitute an optimal system of subalgebras. For corresponding
reduced 2+ 1–dimensional equations we failed to determine their Hamiltonian structure, which
was probably due to our bad choice. In particular, generators of translations were not included in
the optimal system.

Generators of translations in all independent variables are obvious symmetries. They arise for
particular choices of arbitrary functionsa(y), b(y), andc(y,z)

Xy = ∂y = Ya=1, Xz = ∂z = Zb=1, Xt = ∂t = Uc=y, Xx = ∂x = Uc=z. (2.2)

Here we show that by choosing for the symmetry reduction one particular combination of the
translational generators

Xtr = ∂z−
1
α

∂y (2.3)

whereα is an arbitrary real constant, we obtain a 2+1–dimensional two-component Hamiltonian
system. The invariants ofXtr are determined by a characteristic system as

X = x, Y = z+ αy, T = t, U = u, Q = q. (2.4)
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The symmetry reduction implies the ansatz:u=U(X,Y,T), q= Q(X,Y,T). Substituting this into
the original system (1.2) and renamingU → u, Q → q, Y → y, andT → t, we obtain the two
component reduced system

ut = q, qt =
1

uxx

(

q2
x −αqy−uxy

)

≡ Q, (2.5)

whereQ is now a shorthand notation for the right-hand side of the second equation (2.5).

3 Hamiltonian structure of the reduced system

Symmetry reduction of Hamiltonian operator of the 3+ 1–dimensional system (1.2), that was
presented in [2], yields the first Hamiltonian operator for the reduced system (2.5)

J0 =







0 1
uxx

− 1
uxx

1
uxx

{

qxDx +Dxqx−αDy

}

1
uxx






(3.1)

whereDx andDy (andDt , that will show up later) are operators of total derivativeswith respect
to corresponding variables. Operator (3.1) is obviously skew-symmetric. Moreover, a straight-
forward, though lengthy, calculation shows that it satisfies Jacobi identity. A shorter proof can
be given by applying the criterion of P. Olver that involves functional multi-vectors [4]. A much
easier way to verify the Jacobi identity is to check closeness of the two-form

Ω =
1
2

∫

dui ∧Ki j duj (3.2)

using the symplectic operatorK = J−1
0 , inverse to the Hamiltonian operatorJ0:

K =

(

qxDx +Dxqx−αDy −uxx

uxx 0

)

. (3.3)

The two-form (3.2) becomes

Ω =
1
2

∫

[2qxdu∧dux−αdu∧duy+2uxxdq∧du]. (3.4)

It is easy to see thatdΩ = 0, so thatΩ is a symplectic two-form, that is equivalent to satisfying
the Jacobi identity.

The Hamiltonian form of the reduced system (2.5) is
(

u
q

)

t

= J0

(

δuH1

δqH1

)

(3.5)

with the Hamiltonian density

H1 =
1
2
(q2uxx−uxuy). (3.6)

From now on,H =
∫ +∞
−∞ Hdxdywill denote an integral of the motion along the flow (2.5), with

the conserved densityH. Note that the Hamiltonian density (3.6) can be obtained by the symmetry
reduction from the HamiltonianH1 in [2].
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4 Recursion operator for symmetries

Lie equations for symmetries of the reduced system (2.5) have the form
(

u
q

)

τ
=

(

ϕ
ψ

)

≡ Φ (4.1)

whereϕ andψ = ϕt are the components of the symmetry characteristic andτ is a symmetry group
parameter. From the Frechét derivative of the flow (2.5), wefind the equation that determines its
symmetries,A (Φ) = 0, where the operatorA is

A =





Dt −1

Q
uxx

D2
x + 1

uxx
DxDy Dt − (

2qx
uxx

)Dx + α
uxx

Dy



 . (4.2)

The recursion operator is defined as an operator that commutes with the operatorA of the sym-
metry conditionA (Φ) = 0 on solutions of the latter equation and equations (2.5). Itis obtained
by a symmetry reduction from the recursion operator for the four-dimensional second heavenly
system (1.2), that was given in [2], and reads

R =





D−1
x (qxDx−αDy) −D−1

x uxx

QDx +Dy −qx



 , (4.3)

whereD−1
x is the inverse ofDx. The commutator of the recursion operator (4.3) and the operator

(4.2) of the symmetry condition has the form

[R,A ] =





D−1
x (qt −Q)xx− (qt −Q)x D−1

x (ut −q)xx

1
uxx

{(αDy−2qxDx)(qt −Q) +Q(ut −q)xx}Dx (qt −Q)x





(4.4)

which implies thatA andR indeed commute on solutions of (2.5).

5 Second Hamiltonian structure

Second Hamiltonian operator is obtained by applying the recursion operator (4.3) to the first
Hamiltonian operator,J1 = RJ0, with the result

J1 =





D −1
x −

qx
uxx

qx
uxx

J22
1



 (5.1)

where

J22
1 =

1
2

[

(QDx +Dy)
1

uxx
+

1
uxx

(DxQ+Dy)

]

−2
qx

uxx
Dx

qx

uxx

+
α
2

(

qx

uxx
Dy

1
uxx

+
1

uxx
Dy

qx

uxx

)
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This operator is manifestly skew. The proof of the Jacobi identity is again straightforward and
lengthy. The calculations are simplified by using P. Olver’scriterion, theorem 7.8 in his book [4],
formulated in terms of functional multivectors. Moreover,J0 andJ1 are compatible Hamiltonian
operators, that is, every linear combinationαJ0 + βJ1 with constant coefficientsα andβ satisfies
the Jacobi identity. We again note that operator (5.1) couldbe obtained by a symmetry reduction
from the second Hamiltonian operator in [2]. Thus, we obtainthe second Hamiltonian form of
reduced system (2.5)

(

u
q

)

t

= J1

(

δuH0

δqH0

)

(5.2)

with the Hamiltonian density

H0 = (x+c)quxx (5.3)

where c is a constant. Therefore, the reduced system (2.5) isa bi-Hamiltonian system, that is, it
can be written in the two Hamiltonian forms

(

u
q

)

t

= J0

(

δuH1

δqH1

)

= J1

(

δuH0

δqH0

)

. (5.4)

The second Hamiltonian operator is obtained by acting with the recursion operatorR on the
Hamiltonian operatorJ0. We could try to generalize this relation as

Jn = R
nJ0 (5.5)

and hope thatJn is also a Hamiltonian operator [1]. In the case of (5.1) we haven= 1. In particular,
if we act with the recursion operator (4.3) on the second Hamiltonian operatorJ1, or use (5.5) for
n = 2, we can generate a new Hamiltonian operatorJ2 = RJ1 = J1J−1

0 J1. Here we have used the
fact that, by construction,R = J1J−1

0 . By the repeated application of the recursion operator (4.3)
to Hamiltonian operatorsJ0, J1 and so on, we could obtain multi-Hamiltonian representation of
the reduced system (2.5).

6 Symmetries and integrals of motion

Hamiltonian operators provide a natural link between commuting symmetries in evolutionary form
[4] and conserved quantities (integrals of motion) that arein involution with respect to Poisson
brackets. Our two-component reduced system (2.5) is also a member of an infinite hierarchy of
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symmetries. Point symmetries generators of (2.5) read

Xa = αa∂t +a∂x +
1
2
(t −αx)2a′∂u +(t −αx)a′∂q

Yb = b(t −αx)∂u +b∂q, Zc = c∂u

X1 = −y∂y +u∂u +q∂q

X2 = y(3αx−2t)∂t +xy∂x−2y2∂y

+

[

1
2

x(αx− t)2 +yu

]

∂u +[x(t −αx)+3yq]∂q

X3 = αx∂t +x∂x +u∂u+q∂q

X4 = (αx− t)∂t −2y∂y +q∂q

X5 = 2y∂x + t(t −αx)∂u +(2t −αx)∂q

X6 = t∂u + ∂q, X7 = ∂x, X8 = ∂y

wherea(y),b(y) andc(y) are arbitrary functions and the primes denote derivatives with respect to
y. The generator of time translations is a combination of these basis generators∂t = (Xa=1−X7)/α .

Many point symmetries from this list are generated by some integrals of motion, that is, they
are variational symmetries [4]. The relation between symmetries and integrals is given by the
Hamiltonian form of Noether’s theorem

(

η̂u

η̂q

)

= J0

(

δuH

δqH

)

(6.1)

whereH =
∫ +∞
−∞ Hdxdy is an integral of the motion along the flow (2.5), with the conserved

densityH, which generates the symmetry with the two-component characteristic [4] η̂u, η̂q. We
choose here the Poisson structure determined by our first Hamiltonian operatorJ0 since we know
its inverseK given by (3.3) which is used in the inverse Noether’s theorem

(

δuH

δqH

)

= K

(

η̂u

η̂q

)

, (6.2)

that determines the integralH corresponding to any known symmetryη̂u, η̂q.
We have used (6.2) for reconstructing conserved densities corresponding to all variational point

symmetries. SymmetriesZc, Yb, andXa are generated by the integrals

Hc = cquxx−αc′(y)u, (6.3)

Hb = b

[

(t −αx)quxx+
1
2

u2
x

]

+b′(y)α(αx− t)u, (6.4)

Ha = uxx

{

q

[

1
2

a′(y)(t −αx)2−aux

]

−
α
2

aq2
}

+
1
2

a′(y)(t −αx)u2
x −

α
2

a′′(y)(t −αx)2u. (6.5)

SymmetryX2 is generated by the integral with the conserved density

H2 = uxx

{

q

[

1
2

x(αx− t)2 +yu−xyux +2y2uy

]

−
1
2

y(3αx−2t)q2
}

+(αx− t)ux

(

yuy−
1
2

xux

)

+ αy2u2
y −

1
2

αu2, (6.6)
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while symmetryX5 is generated by the integral

H5 = quxx(t
2−αtx−2yux)+

1
2

(2t −αx)u2
x −αyuxuy. (6.7)

SymmetryX6 is generated by the integral

H6 = tquxx+
1
2

u2
x. (6.8)

For the translational symmetriesX7 andX8, the conserved densities read

H7 = quxuxx+
α
2

uxuy, H8 = quyuxx+
α
2

u2
y. (6.9)

Note that the HamiltonianH1, in (3.6), generates the symmetry∂t , that is, our reduced system (2.5).
The symmetriesX1,X3 andX4 are not variational symmetries because their generating integrals in
(6.1) and (6.2) do not exist.

7 A different reduced Hamiltonian system

We obtain a different 2+ 1–dimensional two-component Hamiltonian system if we choose for
symmetry reduction another combination of the translational generators

Xtr = ∂z−
1
α

∂y + α∂t , (7.1)

whereα is an arbitrary real constant. The invariants ofXtr are now determined by a characteristic
system as

X = x, Y = z+ αy, T = t −αz, U = u, Q = q. (7.2)

Substitutingu = U(X,Y,T), q = Q(X,Y,T) into the original system (1.2) and again renaming
U → u, Y → y, T → t we obtain a different two-component reduced system

ut = q, qt =
1

uxx

[

q2
x + α(qx−qy)−uxy

]

≡ Q′. (7.3)

The first Hamilton operator for the reduced system (7.3) has an obviously skew-symmetric form

J0 =







0 1
uxx

− 1
uxx

1
uxx

{

qxDx +Dxqx + α(Dx−Dy)
}

1
uxx






. (7.4)

The inverse operatorK = J−1
0 reads

K =

(

qxDx +Dxqx + α(Dx−Dy) −uxx

uxx 0

)

(7.5)

and determines the symplectic two-form

Ω =
1
2

∫

[(2qx + α)du∧dux−αdu∧duy +2uxxdq∧du]. (7.6)
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Obviously,Ω is a closed form,dΩ = 0, that is equivalent toJ0 satisfying the Jacobi identity.
Reduced system (7.3) has the Hamiltonian form

(

u
q

)

t

= J0

(

δuH1

δqH1

)

(7.7)

with the same Hamiltonian density (3.6) as for the first reduced system (2.5).
A recursion operator for symmetries of reduced system (7.3)has the form

R =





D−1
x [(qx + α)Dx−αDy] −D−1

x uxx

Q′Dx +Dy −qx



 . (7.8)

Applying the recursion operator (4.3) to the first Hamiltonian operator, we obtain the second
Hamiltonian operatorJ1 = RJ0:

J1 =





D −1
x −

qx
uxx

qx
uxx

J22
1



 (7.9)

where

J22
1 =

1
2

[

(Q′Dx +Dy)
1

uxx
+

1
uxx

(DxQ
′ +Dy)

]

−2
qx

uxx
Dx

qx

uxx

−
α
2

[

qx

uxx
(Dx−Dy)

1
uxx

+
1

uxx
(Dx−Dy)

qx

uxx

]

It is easy to see that this operator coincides with the secondHamiltonian operator for the first
reduced system (2.5).

However, we have failed to find a local Hamiltonian density which together with the second
Hamiltonian operatorJ1 would generate the new reduced Hamiltonian system (7.3). Another
important difference is that, as opposed to the first reducedsystem, the new operatorsJ0,J1, and
R cannot be obtained from the corresponding operators of the four-dimensional system (1.2) by
the symmetry reduction with respect to generator (7.1). Thesame is true for the Hamiltonian
densityH1.

8 Conclusions

We have shown that a certain symmetry reduction of the 3+ 1–dimensional second heavenly
equation, taken in a two-component from, yields a two component 2+ 1–dimensional multi-
Hamiltonian integrable system. For this system, we have presented explicitly two Hamiltonian
operators, a recursion operator for symmetries, a completeset of point symmetries and corre-
sponding integrals of the motion. We have also shown that fora different symmetry reduction the
reduced system is ”almost bi-Hamiltonian”, with two known Hamiltonian operators but the second
Hamiltonian density missing.

The first impression of the major part of this paper could be that it is an easy and even trivial
task to obtain a three-dimensional multi-Hamiltonian system by a symmetry reduction of the origi-
nal four-dimensional second heavenly system. All the main objects,J0,K, A , R andH1,H0 could
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be obtained by the symmetry reduction. However, the resultsof the last section show that even a
slight change in a symmetry chosen for the reduction, a different combination of translational sym-
metries in this case, ruins all these properties and createsa difficulty in discovering bi-Hamiltonian
structure of the reduced system (second Hamiltonian density H0). If we choose more general sym-
metries for the reduction, for example from the optimal system of one-dimensional subalgebras
from [3], then we shall be unable to discover even a single Hamiltonian structure of reduced sys-
tems. The problem of conservation of multi-Hamiltonian structure under symmetry reductions
seems to be an important and interesting subject for a futureresearch.
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