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Abstract

Second heavenly equation of Plebafiski, presented in @brgonent form, is known to be a
3+ 1-dimensional multi-Hamiltonian integrable system. Wevglhat one symmetry reduc-
tion of this equation yields a two component 2—dimensional multi-Hamiltonian integrable
system. For this system, we present Hamiltonian and remucgierators, point symmetries
and integrals of motion. For another symmetry reductioa,rdduced system is "almost bi-
Hamiltonian”, with two known Hamiltonian operators but teecond Hamiltonian density
missing.

1 Introduction

For a long time there were very few examples of 2-dimensional and no examples of3—
dimensional integrable multi-Hamiltonian systems. In &} have discovered that the second
heavenly equation of Plebafiski

UttUxx—UtZX—l—sz—l- Uty:O (1-1)

when being presented in a two-component form

h=q, qt:ui(%%_qy_uxz) (1.2)
XX

is a 3+ 1-dimensional multi-Hamiltonian integrable system. Tlmygical significance of the
single scalar equation (1.1) follows from the fact that ieguivalent to complex Einstein field
equations for (anti-)self-dual gravitational fields [5]itvu being the metric potential.

In [3], we studied all nonequivalent-2 1-dimensional symmetry reductions of this system.
In general, the reduced equations apparently have no Huaniaiit structure. Here we show that
one particular symmetry reduction, with respect to a sp@cimbination of translations, yields
a two-component 2- 1-dimensional multi-Hamiltonian integrable system. Huos tsystem, we
present the Hamiltonian and recursion operators, pointsgtries and integrals of motion.
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In section 2, we give a complete list of Lie point symmetriéshe system (1.2), specify a
translational symmetry for its reduction and present a cedwsystem. In section 3, we present
Hamiltonian operator and symplectic 2-form for the redusgstem. In section 4, we derive a
recursion operator for the reduced system. In section 5,megrosecond Hamiltonian structure
by applying the recursion operator to the first Hamiltonitmicture. In section 6, we generate
first integrals by using point symmetries and the Hamiltorséructure. Finally, in section 7,
we present another reduced Hamiltonian system that pessegs Hamiltonian operators and a
recursion operator for symmetries but second Hamiltonersitly is missing.

2 Trandational symmetry reduction of the second heavenly equation

Basis generators of one-parameter subgroups of a total roigpgof point symmetries for the
second heavenly system (1.2) have the form [2, 3]

x3
X3 =to + X0k + 3udy+200q, Zp = b(y)d, —b'(y)xd — b”(y)g oy
/ . tx? X2
Ya = a0y +8 (X0x— 10 — 20, +qdq) + & | X2k — = 0u— = Jg

x3
va" 20, Vy= dy 2)(td+ 3p) — oy, 20, @1

X2 t2
UC = Cydt + Czdx — Cyzx(tau + aq) + nyE au + CZZ <E au + taq>

wherea(y),b(y),c(y,z),d(y,z), and f(y,z) are arbitrary functions, primes denote ordinary deriva-
tives of functions of one variable, subscripts signify j@derivatives with respect to correspond-
ing variables and we used the shorthand notafica d /dt and so on.

In our recent paper [3] we have constructed an optimal sysfemme-dimensional Lie subal-
gebras of the total Lie algebra of symmetry generators witertain choice of simplest represen-
tatives of equivalence classes that constitute an optipstés of subalgebras. For corresponding
reduced 2 1-dimensional equations we failed to determine their Hamign structure, which
was probably due to our bad choice. In particular, genesatbtranslations were not included in
the optimal system.

Generators of translations in all independent variablesohvious symmetries. They arise for
particular choices of arbitrary functiomasy), b(y), andc(y, z)

Xy = dy =Ya=1, Xz= 0= Zop-1, X = 0 = Uc:ya Xx = Ox = Uc—z. (2-2)

Here we show that by choosing for the symmetry reduction arégular combination of the
translational generators

1
)([r — az - E ay (23)

wherea is an arbitrary real constant, we obtain & 2—dimensional two-component Hamiltonian
system. The invariants o, are determined by a characteristic system as

X=X, Y=z+ay, T=t, U=u Q=q (2.4)
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The symmetry reduction implies the ansaiz= U (X,Y,T), = Q(X,Y,T). Substituting this into
the original system (1.2) and renamibg— u, Q —q, Y —y, andT — t, we obtain the two
component reduced system

1
h=0q G=— (Q>2<— agy — ny) =Q, (2.5)

Uxx
whereQ is now a shorthand notation for the right-hand side of thesé&quation (2.5).
3 Hamiltonian structure of the reduced system

Symmetry reduction of Hamiltonian operator of the-3—-dimensional system (1.2), that was
presented in [2], yields the first Hamiltonian operator fog teduced system (2.5)

1
J ’ o 3.1
0 — .
1 1 1
T U u_XX{QXDx+ DxQx—aDy}u_XX

whereDy andDy (and Dy, that will show up later) are operators of total derivativeth respect
to corresponding variables. Operator (3.1) is obviouskwskymmetric. Moreover, a straight-
forward, though lengthy, calculation shows that it satsfiacobi identity. A shorter proof can
be given by applying the criterion of P. Olver that involvesdtional multi-vectors [4]. A much
easier way to verify the Jacobi identity is to check closeradghe two-form

Q:%/dui/\Kijduj 3.2)

using the symplectic operatér= ng, inverse to the Hamiltonian operatdy.

K — < OxDx + Dx0x — 0Dy —Uxx ) . (3.3)
Uy 0
The two-form (3.2) becomes
Q= %/[qudu/\ du, — aduAndu + 2undgAdu). (3.4)

It is easy to see thatQ = 0, so thatQ is a symplectic two-form, that is equivalent to satisfying
the Jacobi identity.
The Hamiltonian form of the reduced system (2.5) is

u A >
=J 3.5
( q >t O( 5qH1 (35)
with the Hamiltonian density
1
Hy = é(qzuxx_ Uy Uy ). (3.6)
From now on,# = [*Hdxdywill denote an integral of the motion along the flow (2.5), wit

the conserved density. Note that the Hamiltonian density (3.6) can be obtainedbysymmetry
reduction from the HamiltoniaRly in [2].
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4 Recursion operator for symmetries

Lie equations for symmetries of the reduced system (2.5 iz form

(3)-(8)

where¢ andy = ¢; are the components of the symmetry characteristictané symmetry group
parameter. From the Frechét derivative of the flow (2.5)fine the equation that determines its
symmetrieso/ (®) = 0, where the operatoy is

D, 1
of — , , (4.2)
22+ Eooy, D (EE)D+ @Dy

Uxx Uxx Uxx

The recursion operator is defined as an operator that corsmitie the operators of the sym-
metry conditionsZ (®) = 0 on solutions of the latter equation and equations (2.5% dbtained
by a symmetry reduction from the recursion operator for tha-flimensional second heavenly
system (1.2), that was given in [2], and reads

D)?l(qXDx - (XDy) _D;luxx
X = , (4.3)

QDx+ Dy _qx

whereDy ! is the inverse oDy. The commutator of the recursion operator (4.3) and theavper
(4.2) of the symmetry condition has the form

D;l(QI —Q)xx— (G — Q)x D;l(ut — 0)xx
[%’d] = 1
Tyx {(aDy —2axDx) (g — Q) + Q(t — 0)xx} Dx (0 — Q)x
(4.4)

which implies thate and% indeed commute on solutions of (2.5).

5 Second Hamiltonian structure

Second Hamiltonian operator is obtained by applying theinston operator (4.3) to the first
Hamiltonian operator); = %2 Jp, with the result

J= (5.2)

G 22
uXX 1

where

1 1 1
$e=3 [(QDX—F Dy)— + —(DxQ+ Dy)] - 2S—XDX$

uXX uXX XX uXX

(iDyi—FiD &)

Uxx ~“Uxx Uxx ~ Uxx

_l’_

N R
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This operator is manifestly skew. The proof of the Jacobiiitle is again straightforward and
lengthy. The calculations are simplified by using P. Olverigerion, theorem 7.8 in his book [4],
formulated in terms of functional multivectors. Moreovéy,andJ; are compatible Hamiltonian
operators, that is, every linear combinati@d, + 3J; with constant coefficienta and satisfies
the Jacobi identity. We again note that operator (5.1) cbaldbtained by a symmetry reduction
from the second Hamiltonian operator in [2]. Thus, we obthim second Hamiltonian form of
reduced system (2.5)

(a), (&%) 62

with the Hamiltonian density

Ho = (X4 C)qux (5.3)

where c is a constant. Therefore, the reduced system (2a5biidHiamiltonian system, that is, it
can be written in the two Hamiltonian forms

(:)t:%(g:i?):h(%qﬁ?) (5.4)

The second Hamiltonian operator is obtained by acting viéhrecursion operato# on the
Hamiltonian operatody. We could try to generalize this relation as

Jn= %" (5.5)

and hope thal, is also a Hamiltonian operator [1]. In the case of (5.1) weehrez 1. In particular,

if we act with the recursion operator (4.3) on the second Htaman operatod,, or use (5.5) for
n= 2, we can generate a new Hamiltonian operdtce #J, = JlJo‘lJl. Here we have used the
fact that, by construction? = J1Jy 1. By the repeated application of the recursion operaton) (4.3
to Hamiltonian operatorgy, J; and so on, we could obtain multi-Hamiltonian representatb
the reduced system (2.5).

6 Symmetriesand integralsof motion

Hamiltonian operators provide a natural link between cotimgusymmetries in evolutionary form
[4] and conserved quantities (integrals of motion) thatiargvolution with respect to Poisson
brackets. Our two-component reduced system (2.5) is alserab@r of an infinite hierarchy of
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symmetries. Point symmetries generators of (2.5) read

Xa = aad; + ady+ %(t —ax)?ad, + (t— ax)ddq
Yo =b(t — ax)d,+bdy, Zc=ca,

X1 = —Y0y+udy + qdq

Xo = y(3ax— 2t)d; + xydyx — 2y°d,

e 02 ] avk ixe - ) + v

X3 = aX0; 4 X0x 4 Uy + qdq

Xa = (ax— 1) — 2y3, + ddq

X5 = 2yox +t(t — ax)dy+ (2t — ax)dy
Xe =t0u+ 0y, X7 =0, Xg =10y

wherea(y),b(y) andc(y) are arbitrary functions and the primes denote derivativi#ls respect to
y. The generator of time translations is a combination afé¢Heasis generatods= (Xa—1—X7)/0a.

Many point symmetries from this list are generated by sortegials of motion, that is, they
are variational symmetries [4]. The relation between syimiggand integrals is given by the
Hamiltonian form of Noether’s theorem

()-2(4%)

where # = [*2Hdxdyis an integral of the motion along the flow (2.5), with the cenved
densityH, which generates the symmetry with the two-component cheuiatic [4] Ay, ]q. We
choose here the Poisson structure determined by our firstltdaian operatotJ, since we know
its inverseK given by (3.3) which is used in the inverse Noether’s theorem

(45)(%)

that determines the integra#’ corresponding to any known symmetqy, fq.
We have used (6.2) for reconstructing conserved densiigesponding to all variational point
symmetries. Symmetrieg, Yy, andX, are generated by the integrals

Hc = cqux— ac/(y)u, (6.3)

Hp =b | (t — ax)qukx + %uﬁ] +b'(y)a(ax—t)u, (6.4)
_ } ! . 2 o Q

Ha = uxx{q S8 (Y)(t—ax)* —au| — 3 aqz}

+ %a’(y) (t— ax)i — %a”(y) (t— ax)u. (6.5)

SymmetryX; is generated by the integral with the conserved density

Ho = U3 Q

FX@x— U2 +yu-xyuc 2P | - Lysax- 20t |

+ (ax—1t)uy (yuy—%xux> +ay2u§—%au2, (6.6)
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while symmetryXs is generated by the integral

1
Hs = QU (t® — atx— 2yuy) + 52— aX)UZ — ayUyly. (6.7)

SymmetryXg is generated by the integral

1
He = tqUyx+ = U2. (6.8)

2

For the translational symmetries andXg, the conserved densities read

a a
H7 = quUxx + 2 UxUy, Hg = quyUxx+ 2 US- (6.9)

Note that the HamiltoniaHl,, in (3.6), generates the symmetkythat is, our reduced system (2.5).
The symmetrieX, X3 andX, are not variational symmetries because their generattegrals in
(6.1) and (6.2) do not exist.

7 A different reduced Hamiltonian system

We obtain a different 2- 1-dimensional two-component Hamiltonian system if we cleofor
symmetry reduction another combination of the translatigenerators

1
XI[':aZ_an-'—adla (7.1)

wherea is an arbitrary real constant. The invariantsXgfare now determined by a characteristic
system as

X=x, Y=z4+ay, T=t—az U=u Q=q. (7.2)
Substitutingu = U (X,Y,T), g= Q(X,Y,T) into the original system (1.2) and again renaming

U—u, Y—y T-—twe obtain a different two-component reduced system

1
U=0 G= (02 + a(ax—ay) — uy] = Q. (7.3)

XX

The first Hamilton operator for the reduced system (7.3) hnasbaiously skew-symmetric form

1
0 Ux
Jo= . (7.4)
_u_:)l('x ui)o({qXDX+quX+a(DX_Dy)}ui)o(

The inverse operatdt = J; * reads

Dy + Dxti+ a(Dx—Dy) —u
K:(qx ' quuxx . oxx> (7.5)

and determines the symplectic two-form

Q= %/[(quJra)du/\ du, — aduA duy + 2udgA dul. (7.6)
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Obviously,Q is a closed formdQ = 0, that is equivalent tdy satisfying the Jacobi identity.
Reduced system (7.3) has the Hamiltonian form

(a), (&) @

with the same Hamiltonian density (3.6) as for the first redlusystem (2.5).
A recursion operator for symmetries of reduced system (¥a8)the form

Dy '[(ax+a)Dx—aDy]  —Dyluxx
&= . (7.8)
Q'Dx+ Dy —0x

Applying the recursion operator (4.3) to the first Hamiltomioperator, we obtain the second
Hamiltonian operatod; = ZJo:

D1 —Jixxx
h= (7.9)
Ox J22
Uy 1
where
1 1 1 Ox Ox
J22 = Z [(Q'Dy+Dy)— + —(DQ' +Dy) | -2 XD, X
! 2[@ xF y)uxx+uxx( Qo+ y)] Uex Uy
a | Oy 1 1 QX}
—— | X (Dy=Dy)— + —(Dy—Dy)—=
2 Uxx( x—Dy) Uxx Uxx( x—Dy) Uxx

It is easy to see that this operator coincides with the se¢temtiiltonian operator for the first
reduced system (2.5).

However, we have failed to find a local Hamiltonian densityichitogether with the second
Hamiltonian operatod; would generate the new reduced Hamiltonian system (7.3)othn
important difference is that, as opposed to the first redggstem, the new operatodg, J;, and
Z cannot be obtained from the corresponding operators ofdinedimensional system (1.2) by
the symmetry reduction with respect to generator (7.1). Jdme is true for the Hamiltonian
densityH;.

8 Conclusions

We have shown that a certain symmetry reduction of thel3-dimensional second heavenly
equation, taken in a two-component from, yields a two comepbr2+ 1-dimensional multi-
Hamiltonian integrable system. For this system, we haveqmted explicitly two Hamiltonian
operators, a recursion operator for symmetries, a comglkett®f point symmetries and corre-
sponding integrals of the motion. We have also shown thaa filifferent symmetry reduction the
reduced system is "almost bi-Hamiltonian”, with two knowarHiltonian operators but the second
Hamiltonian density missing.

The first impression of the major part of this paper could lz¢ this an easy and even trivial
task to obtain a three-dimensional multi-Hamiltonian egsby a symmetry reduction of the origi-
nal four-dimensional second heavenly system. All the mbjeais,Jo, K, <7, #Z andH1,Hg could
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be obtained by the symmetry reduction. However, the resfiliise last section show that even a
slight change in a symmetry chosen for the reduction, aréiffiecombination of translational sym-
metries in this case, ruins all these properties and creatéfculty in discovering bi-Hamiltonian
structure of the reduced system (second Hamiltonian deHg)t If we choose more general sym-
metries for the reduction, for example from the optimal egsibf one-dimensional subalgebras
from [3], then we shall be unable to discover even a single iianmn structure of reduced sys-
tems. The problem of conservation of multi-Hamiltoniarusture under symmetry reductions
seems to be an important and interesting subject for a fuasearch.
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