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Abstract

We consider a lattice driven diffusive system with(su(2)) invariance in the bulk. Within the
matrix product states approach the stationary probaldiigiribution is expressed as a matrix
product state with respect to a quadratic algebra. Bounglagesses amount to the appear-
ance of parameter dependent linear terms in the algebiat@res and lead to a reduction of
the bulk symmetry. We find the boundary quantum group of tleegss to be a tridiagonal
algebra, the linear covariance algebra for the tujisu(2)) symmetry, which allows for the
exact solvability.

1 Introduction

Stochastic interacting particle systems [1] received aofoattention since they provide a way
of modelling phenomena like traffic flow [2], kinetics of bi@gmerization [3], interface growth
[4]. Among these, the asymmetric simple exclusion procA&EP) has become a paradigm in
nonequilibrium physics due to its simplicity, rich behavi@nd wide range of applicability.

The asymmetric exclusion process is an exactly solvableshaddh lattice diffusion system of
particles interacting with a hard core exclusion, i.e. #téde site can be either empty or occupied
by a particle. As a stochastic process it is described ingexfra probability distributiorP(s;,t) of
a stochastic variablg = 0,1 at asita = 1,2, ....L of alinear chain. A state on the lattice at a time
t is determined by the occupation numbsrand a transition to another configuratignduring
an infinitesimal time stept is given by the probability (s,s')dt. Due to probability conservation
F(s,s) =—y¢xsl(S,9). The rated” = F'J‘f i,j,k,| =0,1are assumed to be independent from the
position in the bulk. For diffusion processes the transitiate matrix becomes simpry'li‘i = Oik-

At the boundaries, i.e. sites 1 ahdadditional processes can take place with rategnd R
(i,j =0,1). In the set of occupation numbefs;,s,,...,5 ) specifying a configuration of the
systems = 0 if a sitei is empty,s = 1 if there is a particle at a site Particles hop to the left
with probability go;dt and to the right with probabilitg;odt. The event of exchange happens if
out of two adjacent sites one is a vacancy and the other igp@utiby a particle. The symmetric
simple exclusion process is known as the lattice gas modghiticle hopping between nearest-
neighbour sites with a constant raig, = 910 = g. The partially asymmetric simple exclusion
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process with hopping in a preferred direction is the drivifiusive lattice gas of particles moving
under the action of an external field. The process is totalymanetric if all jumps occur in
one direction only, and partially asymmetric if there is #edent non-zero probability of both
left and right hopping. The number of particles in the bullcimserved and this is the case of
periodic boundary conditions. In the case of open systeneslattice gas is coupled to external
reservoirs of particles of fixed density. The most intergsgxamples (see [5] for a review) are
phase transitions inducing boundary processes [6] whemtiglpds added with probabilityrdt
and/or removed with probabilitydt at the left end of the chain, and it is removed with probapilit
Bdt and/or added with probabilitgdt at the right end of the chain.

The time evolution of the model is governed by the master timudor the probability distri-
bution of the stochastic systeﬁgéf‘—’t) =S« (s,5)P(s,t) which can be mapped to a Schroedinger
equation in imaginary time for a quantum Hamiltonian witlarest-neighbour interaction in the
bulk and single-site boundary terff& = —HP(t) whereH = ¥ H; ;1 +H + HR. The
probability distribution thus becomes a state vector indbefiguration space of the quantum
spin chain and the ground state of the Hamiltonian, in gémena-Hermitian, corresponds to the
steady state of the stochastic dynamics. As known the opé&tPASrelated to the integrable spin
1/2 XXZ quantum spin chain through the similarity transforioat™ = —quu‘lesz,l [7] with
q= % # 1. Hxxz is the Hamiltonian of th&Jy(su(2)) invariant quantum spin chaidyy, with
anisotropyA and with added non diagonal boundary teasandB. (which depend on the ASEP
boundary parameters)

Hxxz=~1/23 (070}, +0) 07, ~A0fof, 1 +1/2(q—0q *)(0F ; — 0F) +8) +B1+BL (1.1)
|

2 Matrix product state approach to ASEP

The idea of the matrix product ansatz [5, 8] is that the statip probability distribution is ex-
pressed as a product of (or a trace over) matrices that foapragentation of a quadratic algebra.
Without loss of generality one can choose the right proligléite g10 = 1 and the left probability
ratego; = ¢. The quadratic algebra of the ASEP has the form

D1Do — qDoD1 = XoD1 — Doxa, Xo+X1 =0 (2.1)

where 0< g < 1 andxg,X; are representation dependent parameters. The totallynasiyin
process corresponds ¢o= 0.

For systems with periodic boundary conditions, the statipprobability distribution is related
to the expression

P(s1,....8.) = Tr(Dg,Ds,...Ds ). (2.2)

When boundary processes are considered the normalizeshsaigt probability distribution is ex-
pressed as a matrix element in the auxiliary vector space

(W|Dg,Ds,...Dg |V)

P(st,...8.) = > : (2.3)
L
with respect to the vectors) and (w|, defined by the boundary conditions
(BD1—0Do)|v) = x|V) (2.4)

(W|(aDo—yD1) = (W|(—x1)
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The normalization factor to the stationary probabilitytdimition is
Z = (w|(Do+D1)"|V) (2.5)

These relations simply mean that one associates with apation numbes at positioni a matrix
Ds =D;ifasitei =1,2,...,L is occupied ands = Dy if a sitei is empty.

The advantage of the matrix-product ansatz is that onceegmegentations of the diffusion
algebra and the boundary vectors are known , one can alasaé¢walll the relevant physical quan-

tities such as the mean density at a $itg) = <W|(D"*Dl)'flgf(D"*Dl)Lf'|V>, the two-point corre-

-1 j-i-1 L . . .
(W|(Do+Dy) Dl(D"*%) D1(Bo+DU™ V) gnd higher correlation functions.

The current] through a bond between sitand sitei + 1, has a very simple for = xozg—[l. The
algebraic matrix state approach (MPA) is the equivalemhfdation of recursion relations derived
for the ASEP in earlier works [9, 10] which could not be repdjeneralized to other models. In
most applications one uses infinite dimensional repregentaof the quadratic algebra. Finite
dimensional representations [7, 11] impose a constrainhemodel parameters. The MPA was
generalized to many-species models [5, 12] and to dynanviPal [13].

For a process with only incoming particles at the left boupdiand only outgoing particles
at the right oned = y = 0 in (2.4)) the quadratic algebra is solved [14] by a pair dbdeed
oscillators and the solution is relatedgdéHermite [14] and Al-Salam-Chihara polynomials [15].
In the general case of four boundary parameters the exatt@olvas achieved through relation
to the Askey-Wilson polynomials [16].

Led by the idea of the major importance of the boundary canditfor the ASEP steady state
behaviour we consider the algebraic properties of the baynolperators. In the next section we
construct the boundary operators using the representafitime Ug(su(2)) bulk symmetry and
find that they generate a tridiagonal Askey-Wilson algebinase irreducible modules are given in
terms of the Askey-Wilson polynomials.

lation function(ss;) =

3 Thetridiagonal boundary algebra

In the general case of incoming and outgoing particles dt botindaries there are four operators
BD1,—0Dg, —yD1,aDg and one needs an addition rule to form two linear indepenidemhdary
operators acting on the dual boundary vectors. From thergtiachlgebra (2.1) two relations
follow

BD10aDg —qaDoBD1 = x13aDo — a3D1Xo (3.1)
and

yD16Dg — qdDoyD1 = X1ydDg — 6yD1Xo (3.2)
To find a solution of these quadratic relations we emphasieestjuivalence of the ASEP to the

integrablesu (2) spin 1/2 XXZ and use th&Jg(su(2)) algebra in the form of a deformedi, v)
algebra, ¢ = —v < 0) with the defining commutation relations

NAJ=+A. AL A]=ug" +vg ™ (3.3)
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and a central element

vcf\‘—uql N

Q=AA +——— (3.4)

This representation allows one to write the two linearlyependent boundary operatd®8 =
BD; — 6Dg,B- = —yD; + aDyg in the form

BD1—93Dg = (3.5)
o xp I\'/2A+ X0 AqN/z_X13q1/2+Xo5 N X1B+X%0
V1— v1—q 1—-q 1-q
aDo— YD1 =
X0 _Nj2 X1y N2 X00q 24Xy | XoO 4+ Xty
+ A —_ e
1—qq At v1—q g 1—-q 1-q

We separate the shift parts from the boundary operatorsotidgnthe corresponding rest operator
parts byA andA* we write the left and right boundary operators in the form

BD; — 5Dg = A—% (3.6)
aDo— yD; = A 4 09Xy
1-q
The operatorg\ andA* defined by
A— BD1—5DO+% 3.7)
_ _ X0 +Xx1y
A" = aDg—yDy— = — =
and theirg-commutator
A A ]q =g 2AN — q Y2A%A (3.8)
in the representation (3.5) form a closed linear algebra
A" [A A glg = —P"A—wA" —n*
where the representation dependent structure constanggvan by
—p =xxaBoq (g2 +q 2?2, —p" =xpuayg gV +q %) (3.10)
= (1 +%00) (xay+%0a) — (GBY +x5a8) (g2 — o ¥?)Q (3.11)
B X184+ %00) (X2By+X2a d
n = ql/2(q"?+q?) (XOX135(X1V+Xoa)Q—( P ql/z)(_;lﬂl/z & )> (3.12)

. - XoO +X1y) (X508 + X2
n* = ql/2(q? +q/?) <x0xlay(X1l3 +%00)Q+ ( qi)/z)(_xca—l/z lBY)>
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Relations (3.9) are the well known Askey-Wilson relations

APA" — (q+q HAAA+AAZ = pA* + WA+ (3.13)
A*ZA_ (q+q71)A*AA*+AA*2 — p*A—FOOA*—i-r]*

for the shifted boundary operatofsA*. The algebra (3.9) was first considered in the works of
Zhedanov [17, 18] and recently discussed in a more genenalefivork of a tridiagonal algebra
[19, 20]. It is an associative algebra with a unit generated {ridiagonal) pair of operators, A*

and defining relations

(A, A2A* — BAA A+ A*A? — (AKX + AA) — pA'] =

(3.14)

In the general case a tridiagonal pair is determined by theesee of scalarg, y, y*, p, p* from

a fieldK. (We note that we keep the conventional notations for thasén (3.14) -8 andy

should not be confused with the boundary rates.) Tridialgoaias have been classified according

to the dependence on the scalars [19]. Examples arg-8ere relations witf8 = q+q~* and

y=y" = p=p* =0 and the Dolan-Grady relations [21] wifh= 2,y = y* = 0,p = k?, p* = k*2.

The AW relations considered in [22, 23] for theX Z chain correspond to = p*,n = n* =0.
Tridiagonal pairs are determined up to an affine transfdonat

A—tA+c, A St A 4C (3.15)

wheret,t*,c,c* are some scalars. The affine transformation can be usedchpdtridiagonal pair
in a reduced form witly = y* = 0.

The (shifted) boundary operators of the asymmetric exatugirocess obeying the Askey-
Wilson algebra (3.9) form a tridiagonal pair with= g+ q 1,y = y* = 0, andp, p* following
from p,p*,w,n,n* as given by egs.(3.10 - 3.12). The Askey-Wilson algebragssss some im-
portant properties that allow to obtain its ladder repregt@ns, spectra, overlap functions (for
details see [17, 20]). Namely, there exists a bésisith respect to whiclA is diagonalA f. = A, f;
and the operatoA* is tridiagonalAf, = a;, .1 fr 1+ b fy + ¢ _1fr_1. The diagonal eigenvalues
satisfy a quadratic equation

)‘r2+1 +A7 = (@+9 HAA1—p=0 (3.16)
which yields the spectrum

_pq
(g—0g1)?

The algebra possesses a duality property. Due to the dymlifyerty the dual basis exists in
which the operatoA” is diagonalA™f; = Aj f; and the operatoh s tridiagonalAfs = ag, ; fg, ; +

bs fs +cs 4 f& ; whereA satisfies the quadratic equation (3.16) witp replaced by-p*. The
overlap function of the two basis|r) = (fZ|f;) can be expressed in terms of the Askey-Wilson
polynomials. To obtain the explicit form of the infinite-démsional representation we make use
of the rescaling property to bring the Askey-Wilson alge{8#®) in a form with a known (ba-
sic) representation. For the purpose we first divide the felttion in eq.(2.4) by3 and the

A=q '+ (3.17)
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second one byxr, which amounts to a tridiagonal pair following from the sfiwre constants
p/B?% p*/a? w/aB,n/aB? n*/a?B. For further convenience we denote
o
Y_ae —2_pd (3.18)
o B
Besides, we sefp = —x1 = s, wheresis a free parameter from the algebraic relatigr-x; = 0.
We rescale the generatohs= %A andA* = %A* as follows

1 vbd
A (q-Y/2 _ b2 A, AF s (g V2 g/ Y A 3.19
@ =9 sy (@ =a7)— (3.19)
The tridiagonal relations for the transformed operatosasire
[AAPA" — (q+q HAAA+AA? + (g—q H)°A]=0 (3.20)
(A" AA— (q+q HAAA + AA2 +abedg tg— g 1)?Al =0

whereabcd = 1%. Let ph = pn(Xa,b,c,d) denote thenth Askey-Wilson polynomial [24] de-

a
pending on four parameteasb, c,d

o (O abcdd tayayt
pn=s s (1P g (3.:21)

with pp=1,x=y+y ' and 0< g < 1. Then, there is a basic representation of this algebraein th
space of symmetric Laurent polynomidl/] with a basig po, p1, ...) as follows

Afly = (y+y Dy,  Afly =21y (3.22)

where? is the second order-difference operator [24] having the Askey-Wilson polyrial® p,
as eigenfunctions.

DPn=APn, A =q "+abcdd ! (3.23)

and the operatoA* is represented by an infinite-dimensional matrix @%ggA;,A;,...). The
operatorAp, = Xp,, is represented by a tridiagonal matrix

dg C1
bo a1 ¢

o= blaz-

(3.24)

whose matrix elements are obtained from the three termnesmee relation for the Askey-Wilson
polynomials

XPh = bnPn+1+ @ Pn+ CnPn-1, p-1=0 (3.25)
The explicit form of the matrix elements #freads

a,=a+a‘t—b,—c, (3.26)
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(1—abd")(1—acd")(1—add")(1—abcdd?)
a(l—abcd@1)(1—abcd@")

o _ all—q)(d—bod )1 —bdq*)(1 —cdd ")
ne (1—abcd@—2)(1— abcd@™?)
The basis is orthogonal with the orthogonality conditiontfee Askey-Wilson polynomial®, =
a"(ab,acad;q)npn : [, 2n"\;(%Pm(x; a,b,c,d|q)P.(x;a,b,c,d|q)dx = hydmn, Wherew(x) the
weight function andh, is a proper normalization [24]. Returning to the originakeogors we
readily obtain their representation by making use of th@erscale transformations. A represen-
tation T with (q~*/2 — g*/?) 3A diagonal andq %/ — g*/?) 7 A" tridiagonal is realized in a space
with basis

b = (3.27)

(3.28)

(Po, P1. P2, --.)" (3.29)
The diagonal matrix is digdo, A1, A2, ...) with A, being the eigenvalue
gbd ,,

)\n: Kq_n—f—Tq (330)

of \/%:@. We have writtemA, in this form redefining\%C as a new parameter and treating it
independent omc. A, in eq.(3.30) is the general solution of the quadratic eqguaf8.16). The
tridiagonal matrix is obtained from the transposed matrixipon multiplication bys?q—/2k. The

dual representatiorr* has a basis

(Po, P1, P2, ---) (3.31)
with respect to whictiqg=/2 — g/2) 1 A* is diagonal with diagonal elements

gac , ,

which are the eigenvalues of the rescaj%g@. Once again we writd * in this form by redefining

ﬁ as a new independent paramekér A* in eq.(3.32) is the general solution of the spectrum

defining quadratic equation (3.16) withp replaced by-p*. The matrix(q~*/? —g*/2) gAis tridi-
agonal and its matrix elements are found upon multiplicatibthe matrixes by s2q-Y/2k*. As a
consequence of this one obtains the corresponding repatiseis for the left and right boundary
operators by shifting the diagonal elements of the rescaléd according to (3.7). The result
reads explicitly: In a representationthe right boundary operat®; + bdDy is represented by a
diagonal infinite dimensional matrix with eigenvalues

_ q1/2 -n s’bd n—1 S
An(S) = 1 q (Kq + — + T q(1+ bd) (3.33)
The left boundary operatd@g + acD is tridiagonal whose representing matrix is
(Do + acD) = £q k.ot + ﬁ(quac) (3.34)
In the dual representationi* the operatoDg + acDy is diagonal with eigenvalues
* _ ql/Z * ~—N ﬁ: n—1 S
)\n(S)——l_q(K q "+ o d +—1_q(1+ac) (3.35)
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andD1 + bdDy is tridiagonal with representing matrix
77°(D1 + bdDo) = £q~Y2K* o + ﬁ(u bd) (3.36)

The formulae (3.33-3.36) define the ladder representatiesp( the dual representation) of the
tridiagonal pair in a Hilbert space with an inner produdig(auxiliary Hilbert space of the ASEP).

To solve the ASEP boundary problem we choose the left and bighndary vectors to be to
be of the form

W =hy¥2(p0,0,0,....) V) =hy"?(p,0,0,..) (3.37)

wherehg is a normalization from the orthogonality condition. Thesetors belong to the two dual
representations of the tridiagonal boundary algebra amdhareigenvectors of the corresponding
diagonal operatoBR andB". The eigenvalue equations have the form

(D1 - %DO)M 3 =0 (3.38)
wi(Do— LDy~ w2 =0

It follows from the above relations that the constaxig* obey the quadratic equations

K2+%(l—5—(l—q))K—g =0 (3.39)
*\2 1 * |4 _
(K*) +E(l—y—(l—q))K T 0
with solutions

~(B-0-(1-0a)£/(B-0-(1-0)2+4B5

Ki = 26 (3.40)
o —“a—y=(1-q)+/(a—y—(1-q)’+4ay
o 2a

Hence the boundary eigenvalue equations are satisfieddarairesponding roots (3.40) which
(in this representation) are uniquely identified with therfparameters of the Askey-Wilson poly-
nomials

a=kK}, b=ky, c=k’, d=k_ (3.41)

We can further show that each boundary operator and theféramsitrix operator generate iso-
morphic AW algebras. This allows for the calculation of teéevant physical quantities in terms
of the Askey-Wilson polynomials.

4 Discussion and conclusion

We have constructed the boundary operators of the open ASHEfear covariance elements for
the Ug(su2)), which is the invariance algebra of the integrallXZ chain. It is known [25]
that the bulk driven diffusive system with reflecting bounes can be mapped to the spipi2l
Ug(su(2))-invariant quantum spin chain. Within the matrix producpiagach the bulk process is
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described by a quadratic algebra with no lingatependent termB1Dg — qDgD1 = 0. The sta-
tionary probability distribution, i.e. the ground statetiéUq(su(2)) invariant HamiltoniarHgs, ,
corresponds to thg-symmetrizer of the Young diagram with one row dndoxes [26]. The pres-
ence of the boundary processes (i.e. the nondiagonal boutedens in the Hamiltonian) reduces
theUq(su(2)) bulk invariance and amounts to the appearance of lineastgrthe quadratic alge-
bra. The boundary conditions define the boundary operatbishvearry a residual symmetry of
the process. It is expressed in the fact that the boundamatmue are constructed in terms of the
Uq(su(2)) generators, as seen from the explicit formulae (3.5). WithN being the generators
of a finite dimensionallq(su(2)) representation, it can be verified from eq.(3.5) &l — yD1
commutes witH (q)% and3D; — 6D commutes witiH (—q~1)99, related toH ()99 by a gauge
transformation. Thus the boundary operators construadaedinear covariant objects of the bulk
Uq(su(2)) symmetry acquire a very important physical meaning - theybesinterpreted as the two
nonlocal conserved charges of the open ASEP. Such non logaldary symmetry charges were
originally obtained for the sine Gordon model [27] and galieed to affine Toda field theories
[28] and derived from spin chain point of view as commutinghwhe transfer matrix for a special
choice of the boundary conditions [29]. In particular, teft boundary operatarDg — yD; in the
finite dimensional representation (26) is analogous to tlelmundary Temperley-Lieb algebra
centralizer in the "nondiagonal” spiry 2 representation [30].

We have used the deformed,v) algebra for the solution of the boundary problem to include
and generalize previously known solutions of the MPA. Tiher) algebra, known as deformed os-
cillator algebracqu(2) was considered in [31] in relation to known solutions in temof deformed
oscillators. It is important to once again emphasize theesgmtation dependence of the Askey-
Wilson algebra (as well as of the MPA bulk quadratic algel2d)j. Using any of the particular
forms of the deformedu,v) algebra we obtain the AW algebra as its linear covariancebatg
The functional dependent structure constamig*, w, n,n* in eqs.(3.10-3.12) carry the informa-
tion of the corresponding algebra and in particular, thikects in different spectra of the diagonal
(tridiagonal) operators and different Askey-Wilson padymials. This is the formal mathematical
difference between the deformed general oscillator aleju(2) used in [31] and th&y(su(2))
case in the present paper. Namely, the spectrum of the dihgperators focyu(2) with positive
structure constantg, p* is of the form~ cosh while for Uy(su(2)) with negative structure con-
stantsp, p*, it is ~ sinh Hence one has different identifications of the AW four pagters with
the boundary rates which, in our opinion, may enrich theearof physical applications and is
worth considering.

There is one very important difference betweenlhesu(2)) case and thequ(2) one. ltlies in
the fact thaty4(su(2)) is the invariance of the ASEP in the bulk which is broken bylibendary
processes with incoming and outgoing particles at both thaxies. The presence of boundary
processes breaks the bulk invariance and destroys theabikty of the (equivalent) quantum
spin chain. With suitably chosen boundary conditions a @mof theUg(su(2)) quantum bulk
symmetry can survive. Itis the purpose of our consideratashow that the reduction of the bulk
invariance gives rise to the boundary symmetry which remasithe linear covariance algebra of
the bulkUq(su(2)) symmetry. Thus the boundary Askey-Wilson algebra whosettre constants
depend on the finite dimensionid}(su2)) representations is the residual symmetry of the open
ASEP and this has important physical consequences, ircpkanti in relation to Bethe ansatz
integrability. The Bethe solution of the open ASEP [32] wekiaved through the mapping to the
Ug(su(2)) integrableXXZ quantum spin chain with most general non diagonal boundaryg,
provided a particular constraint was satisfied. The(2) algebra has only infinite dimensional
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representation as opposedig(su(2)) which (for generia) has finite dimensional representations
only. This mathematical difference in the choice of the espntation to form the boundary algebra
implies a physical consequence which turns to be the keylatioa to Bethe ansatz integrability.
The suitably chosen representation dependent boundagpralgnanifests itself in the extent to
which integrability is preserved. In tlogu(2) case the exact solvability of the model is achieved in
the stationary state. Witlly(su(2)) one can further employ Bethe ansatz to obtain exact results f
the approach to stationarity at large times and to complélietermine the spectrum of the transfer
matrix. As commented in [33] the way one can satisfy the dondior the Bethe ansatz solution
of the ASEP implies additional symmetries. In our opinidre tinear covariance Askey-Wilson
algebra of the bullJy(su2)), whose generators are interpreted as the two nonlocal c@use
charges of the ASEP, is the hidden symmetry behind Betheézasskability.

To summarize, we have considered the open asymmetric eéxlpsocess which is equivalent
to the integrableX X Zspin chain with bulkJq(su(2)) symmetry. Within the matrix product ansatz
the boundary processes amount to the presence of lineas tiettire quadratic algebra and lead to
a reduction of the bulk symmetry. The boundary operatoreigga a tridiagonal Askey-Wilson
algebra, which is the linear covariance algebra of the byllsu(2)) symmetry. Itis the symmetry
that survives and allows for the exact solvability in theistary state and provides the framework
for employing Bethe ansatz to determine the dynamical ptigseof the open process.
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