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Abstract

We consider a lattice driven diffusive system withUq(su(2)) invariance in the bulk. Within the
matrix product states approach the stationary probabilitydistribution is expressed as a matrix
product state with respect to a quadratic algebra. Boundaryprocesses amount to the appear-
ance of parameter dependent linear terms in the algebraic relations and lead to a reduction of
the bulk symmetry. We find the boundary quantum group of the process to be a tridiagonal
algebra, the linear covariance algebra for the bulkUq(su(2)) symmetry, which allows for the
exact solvability.

1 Introduction

Stochastic interacting particle systems [1] received a lotof attention since they provide a way
of modelling phenomena like traffic flow [2], kinetics of biopolymerization [3], interface growth
[4]. Among these, the asymmetric simple exclusion process (ASEP) has become a paradigm in
nonequilibrium physics due to its simplicity, rich behaviour and wide range of applicability.

The asymmetric exclusion process is an exactly solvable model of a lattice diffusion system of
particles interacting with a hard core exclusion, i.e. the lattice site can be either empty or occupied
by a particle. As a stochastic process it is described in terms of a probability distributionP(si, t) of
a stochastic variablesi = 0,1 at a sitei = 1,2, ....L of a linear chain. A state on the lattice at a time
t is determined by the occupation numberssi and a transition to another configurations′i during
an infinitesimal time stepdt is given by the probabilityΓ(s,s′)dt. Due to probability conservation
Γ(s,s) = −∑s′ 6=sΓ(s′,s). The ratesΓ ≡ Γik

jl , i, j,k, l = 0,1 are assumed to be independent from the

position in the bulk. For diffusion processes the transition rate matrix becomes simplyΓik
ki = gik.

At the boundaries, i.e. sites 1 andL additional processes can take place with ratesL j
i and Rj

i
(i, j = 0,1). In the set of occupation numbers(s1,s2, ...,sL) specifying a configuration of the
systemsi = 0 if a site i is empty,si = 1 if there is a particle at a sitei. Particles hop to the left
with probability g01dt and to the right with probabilityg10dt. The event of exchange happens if
out of two adjacent sites one is a vacancy and the other is occupied by a particle. The symmetric
simple exclusion process is known as the lattice gas model ofparticle hopping between nearest-
neighbour sites with a constant rateg01 = g10 = g. The partially asymmetric simple exclusion
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process with hopping in a preferred direction is the driven diffusive lattice gas of particles moving
under the action of an external field. The process is totally asymmetric if all jumps occur in
one direction only, and partially asymmetric if there is a different non-zero probability of both
left and right hopping. The number of particles in the bulk isconserved and this is the case of
periodic boundary conditions. In the case of open systems, the lattice gas is coupled to external
reservoirs of particles of fixed density. The most interesting examples (see [5] for a review) are
phase transitions inducing boundary processes [6] when a particle is added with probabilityαdt
and/or removed with probabilityγdt at the left end of the chain, and it is removed with probability
βdt and/or added with probabilityδdt at the right end of the chain.

The time evolution of the model is governed by the master equation for the probability distri-
bution of the stochastic systemdP(s,t)

dt = ∑s′ Γ(s,s′)P(s′, t) which can be mapped to a Schroedinger
equation in imaginary time for a quantum Hamiltonian with nearest-neighbour interaction in the
bulk and single-site boundary termsdP(t)

dt = −HP(t) whereH = ∑ j H j, j+1 + H(L) + H(R). The
probability distribution thus becomes a state vector in theconfiguration space of the quantum
spin chain and the ground state of the Hamiltonian, in general non-Hermitian, corresponds to the
steady state of the stochastic dynamics. As known the open ASEP is related to the integrable spin
1/2 XXZ quantum spin chain through the similarity transformation Γ = −qU−1

µ HXXZUµ [7] with
q = g01

g10
6= 1. HXXZ is the Hamiltonian of theUq(su(2)) invariant quantum spin chainHqg

XXZ with
anisotropy∆ and with added non diagonal boundary termsB1 andBL (which depend on the ASEP
boundary parameters)

HXXZ =−1/2∑
i

(σ x
i σ x

i+1+σ y
i σ y

i+1−∆σ z
i σ z

i+1+1/2(q−q−1)(σ z
i+1−σ z

i )+∆)+B1+BL (1.1)

2 Matrix product state approach to ASEP

The idea of the matrix product ansatz [5, 8] is that the stationary probability distribution is ex-
pressed as a product of (or a trace over) matrices that form a representation of a quadratic algebra.
Without loss of generality one can choose the right probability rateg10 = 1 and the left probability
rateg01 = q. The quadratic algebra of the ASEP has the form

D1D0−qD0D1 = x0D1−D0x1, x0 +x1 = 0 (2.1)

where 0< q < 1 andx0,x1 are representation dependent parameters. The totally asymmetric
process corresponds toq = 0.

For systems with periodic boundary conditions, the stationary probability distribution is related
to the expression

P(s1, ....sL) = Tr(Ds1Ds2...DsL). (2.2)

When boundary processes are considered the normalized stationary probability distribution is ex-
pressed as a matrix element in the auxiliary vector space

P(s1, ....sL) =
〈w|Ds1Ds2...DsL |v〉

ZL
, (2.3)

with respect to the vectors|v〉 and〈w|, defined by the boundary conditions

(βD1−δD0)|v〉 = x0|v〉 (2.4)

〈w|(αD0− γD1) = 〈w|(−x1)
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The normalization factor to the stationary probability distribution is

ZL = 〈w|(D0 +D1)
L|v〉 (2.5)

These relations simply mean that one associates with an occupation numbersi at positioni a matrix
Dsi = D1 if a site i = 1,2, ...,L is occupied andDsi = D0 if a site i is empty.

The advantage of the matrix-product ansatz is that once the representations of the diffusion
algebra and the boundary vectors are known , one can also evaluate all the relevant physical quan-

tities such as the mean density at a sitei 〈si〉 = 〈w|(D0+D1)
i−1D1(D0+D1)

L−i |v〉
ZL

, the two-point corre-

lation function〈sisj〉 = 〈w|(D0+D1)
i−1D1(D0+D1)

j−i−1D1(D0+D1)
L− j |v〉

ZL
and higher correlation functions.

The currentJ through a bond between sitei and sitei +1, has a very simple formJ = x0
ZL−1
ZL

. The
algebraic matrix state approach (MPA) is the equivalent formulation of recursion relations derived
for the ASEP in earlier works [9, 10] which could not be readily generalized to other models. In
most applications one uses infinite dimensional representations of the quadratic algebra. Finite
dimensional representations [7, 11] impose a constraint onthe model parameters. The MPA was
generalized to many-species models [5, 12] and to dynamicalMPA [13].

For a process with only incoming particles at the left boundary and only outgoing particles
at the right one (δ = γ = 0 in (2.4)) the quadratic algebra is solved [14] by a pair of deformed
oscillators and the solution is related toq-Hermite [14] and Al-Salam-Chihara polynomials [15].
In the general case of four boundary parameters the exact solution was achieved through relation
to the Askey-Wilson polynomials [16].

Led by the idea of the major importance of the boundary conditions for the ASEP steady state
behaviour we consider the algebraic properties of the boundary operators. In the next section we
construct the boundary operators using the representationof the Uq(su(2)) bulk symmetry and
find that they generate a tridiagonal Askey-Wilson algebra whose irreducible modules are given in
terms of the Askey-Wilson polynomials.

3 The tridiagonal boundary algebra

In the general case of incoming and outgoing particles at both boundaries there are four operators
βD1,−δD0,−γD1,αD0 and one needs an addition rule to form two linear independentboundary
operators acting on the dual boundary vectors. From the quadratic algebra (2.1) two relations
follow

βD1αD0−qαD0βD1 = x1βαD0−αβD1x0 (3.1)

and

γD1δD0−qδD0γD1 = x1γδD0−δγD1x0 (3.2)

To find a solution of these quadratic relations we emphasize the equivalence of the ASEP to the
integrablesuq(2) spin 1/2 XXZ and use theUq(su(2)) algebra in the form of a deformed(u,v)
algebra, (u = −v < 0) with the defining commutation relations

[N,A±] = ±A± [A−,A+] = uqN +vq−N (3.3)
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and a central element

Q = A+A− +
vqN −uq1−N

1−q
(3.4)

This representation allows one to write the two linearly independent boundary operatorsBR =
βD1−δD0,BL = −γD1+ αD0 in the form

βD1−δD0 = (3.5)

− x1β√
1−q

qN/2A+− x0δ√
1−q

A−qN/2− x1βq1/2 +x0δ
1−q

qN − x1β +x0δ
1−q

αD0− γD1 =

x0α√
1−q

q−N/2A+ +
x1γ√
1−q

A−q−N/2 +
x0αq−1/2 +x1γ

1−q
q−N +

x0α +x1γ
1−q

We separate the shift parts from the boundary operators. Denoting the corresponding rest operator
parts byA andA∗ we write the left and right boundary operators in the form

βD1−δD0 = A− x1β +x0δ
1−q

(3.6)

αD0− γD1 = A∗ +
x0α +x1γ

1−q

The operatorsA andA∗ defined by

A = βD1−δD0+
x1β +x0δ

1−q
(3.7)

A∗ = αD0− γD1−
x0α +x1γ

1−q

and theirq-commutator

[A,A∗]q = q1/2AA∗−q−1/2A∗A (3.8)

in the representation (3.5) form a closed linear algebra

[[A,A∗]q,A]q = −ρA∗−ωA−η (3.9)

[A∗, [A,A∗]q]q = −ρ∗A−ωA∗−η∗

where the representation dependent structure constants are given by

−ρ = x0x1βδq−1(q1/2 +q−1/2)2, −ρ∗ = x0x1αγq−1(q1/2 +q−1/2)2 (3.10)

−ω = (x1β +x0δ )(x1γ +x0α)− (x2
1βγ +x2

0αδ )(q1/2−q−1/2)Q (3.11)

η = q1/2(q1/2 +q−1/2)

(

x0x1βδ (x1γ +x0α)Q− (x1β +x0δ )(x2
1βγ +x2

0αδ )

q1/2−q−1/2

)

(3.12)

η∗ = q1/2(q1/2 +q−1/2)

(

x0x1αγ(x1β +x0δ )Q+
(x0α +x1γ)(x2

0αδ +x2
1βγ)

q1/2−q−1/2

)
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Relations (3.9) are the well known Askey-Wilson relations

A2A∗− (q+q−1)AA∗A+A∗A2 = ρA∗+ ωA+ η (3.13)

A∗2A− (q+q−1)A∗AA∗+AA∗2 = ρ∗A+ ωA∗+ η∗

for the shifted boundary operatorsA,A∗. The algebra (3.9) was first considered in the works of
Zhedanov [17, 18] and recently discussed in a more general framework of a tridiagonal algebra
[19, 20]. It is an associative algebra with a unit generated by a (tridiagonal) pair of operatorsA,A∗

and defining relations

[A,A2A∗−βAA∗A+A∗A2− γ(AA∗+A∗A)−ρA∗] = 0 (3.14)

[A∗,A∗2A−βA∗AA∗+AA∗2− γ∗(AA∗ +A∗A)−ρ∗A] = 0

In the general case a tridiagonal pair is determined by the sequence of scalarsβ ,γ ,γ∗,ρ ,ρ∗ from
a field K. (We note that we keep the conventional notations for the scalars in (3.14) -β andγ
should not be confused with the boundary rates.) Tridiagonal pairs have been classified according
to the dependence on the scalars [19]. Examples are theq-Serre relations withβ = q+ q−1 and
γ = γ∗ = ρ = ρ∗ = 0 and the Dolan-Grady relations [21] withβ = 2,γ = γ∗ = 0,ρ = k2,ρ∗ = k∗2.
The AW relations considered in [22, 23] for theXXZchain correspond toρ = ρ∗,η = η∗ = 0.

Tridiagonal pairs are determined up to an affine transformation

A→ tA+c, A∗ → t∗A∗+c∗ (3.15)

wheret, t∗,c,c∗ are some scalars. The affine transformation can be used to bring a tridiagonal pair
in a reduced form withγ = γ∗ = 0.

The (shifted) boundary operators of the asymmetric exclusion process obeying the Askey-
Wilson algebra (3.9) form a tridiagonal pair withβ = q+ q−1,γ = γ∗ = 0, andρ ,ρ∗ following
from ρ ,ρ∗,ω ,η ,η∗ as given by eqs.(3.10 - 3.12). The Askey-Wilson algebra possesses some im-
portant properties that allow to obtain its ladder representations, spectra, overlap functions (for
details see [17, 20]). Namely, there exists a basisfr with respect to whichA is diagonalA fr = λr fr
and the operatorA∗ is tridiagonalA fr = ar+1 fr+1 + br fr + cr−1 fr−1. The diagonal eigenvalues
satisfy a quadratic equation

λ 2
r+1+ λ 2

r − (q+q−1)λrλr+1−ρ = 0 (3.16)

which yields the spectrum

λr = q−r +
ρqr

(q−q−1)2 (3.17)

The algebra possesses a duality property. Due to the dualityproperty the dual basis exists in
which the operatorA∗ is diagonalA∗ f ∗p = λ ∗

p f ∗p and the operatorA is tridiagonalA f∗s = a∗s+1 f ∗s+1+
b∗s f ∗s + c∗s−1 f ∗s−1 whereλ ∗

p satisfies the quadratic equation (3.16) with−ρ replaced by−ρ∗. The
overlap function of the two basis〈s|r〉 = 〈 f ∗s | fr〉 can be expressed in terms of the Askey-Wilson
polynomials. To obtain the explicit form of the infinite-dimensional representation we make use
of the rescaling property to bring the Askey-Wilson algebra(3.9) in a form with a known (ba-
sic) representation. For the purpose we first divide the firstrelation in eq.(2.4) byβ and the
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second one byα , which amounts to a tridiagonal pair following from the structure constants
ρ/β 2,ρ∗/α2,ω/αβ ,η/αβ 2,η∗/α2β . For further convenience we denote

− γ
α

= ac − δ
β

= bd (3.18)

Besides, we setx0 = −x1 = s, wheres is a free parameter from the algebraic relationx0 +x1 = 0.
We rescale the generatorsA≡ 1

β A andA∗ ≡ 1
α A∗ as follows

A→ (q−1/2−q1/2)
1

q−1/2s
√

bd
A, A∗ → (q−1/2−q1/2)

√
bd
s

A∗ (3.19)

The tridiagonal relations for the transformed operators read

[A,A2A∗− (q+q−1)AA∗A+A∗A2+(q−q−1)2A∗] = 0 (3.20)

[A∗,A∗2A− (q+q−1)A∗AA∗+AA∗2+abcdq−1q−q−1)2A] = 0

whereabcd= γ
α

δ
β . Let pn = pn(x;a,b,c,d) denote thenth Askey-Wilson polynomial [24] de-

pending on four parametersa,b,c,d

pn =4 Φ3

(

q−n,abcdqn−1,ay,ay−1

ab,ac,ad
|q;q

)

(3.21)

with p0 = 1, x = y+y−1 and 0< q < 1. Then, there is a basic representation of this algebra in the
space of symmetric Laurent polynomialsf [y] with a basis(p0, p1, ...) as follows

A f [y] = (y+y−1) f [y], A∗ f [y] = D f [y] (3.22)

whereD is the second orderq-difference operator [24] having the Askey-Wilson polynomials pn

as eigenfunctions.

D pn = λ ∗
n pn, λ ∗

n = q−n +abcdqn−1 (3.23)

and the operatorA∗ is represented by an infinite-dimensional matrix diag(λ ∗
0 ,λ ∗

1 ,λ ∗
2 , ...). The

operatorApn = xpn is represented by a tridiagonal matrix

A =









a0 c1

b0 a1 c2

b1 a2 ·
· ·









(3.24)

whose matrix elements are obtained from the three term recurrence relation for the Askey-Wilson
polynomials

xpn = bnpn+1 +anpn +cnpn−1, p−1 = 0 (3.25)

The explicit form of the matrix elements ofA reads

an = a+a−1−bn−cn (3.26)



28 B Aneva

bn =
(1−abqn)(1−acqn)(1−adqn)(1−abcdqn−1)

a(1−abcdq2n−1)(1−abcdq2n)
(3.27)

cn =
a(1−qn)(1−bcqn−1)(1−bdqn−1)(1−cdqn−1)

(1−abcdq2n−2)(1−abcdq2n−1)
(3.28)

The basis is orthogonal with the orthogonality condition for the Askey-Wilson polynomialsPn =

a−n(ab,ac,ad;q)n pn :
∫ 1
−1

w(x)
2π

√
1−x2 Pm(x;a,b,c,d|q)Pn(x;a,b,c,d|q)dx = hnδmn, wherew(x) the

weight function andhn is a proper normalization [24]. Returning to the original operators we
readily obtain their representation by making use of the proper scale transformations. A represen-
tationπ with (q−1/2−q1/2) 1

β A diagonal and(q−1/2−q1/2) 1
α A∗ tridiagonal is realized in a space

with basis

(p0, p1, p2, ...)
t (3.29)

The diagonal matrix is diag(λ0,λ1,λ2, ...) with λn being the eigenvalue

λn = κq−n+
s2bd

κ
qn−1 (3.30)

of s√
acD . We have writtenλn in this form redefining s√

ac as a new parameterκ and treating it

independent onac. λn in eq.(3.30) is the general solution of the quadratic equation (3.16). The
tridiagonal matrix is obtained from the transposed matrixA upon multiplication bys2q−1/2κ . The
dual representationπ∗ has a basis

(p0, p1, p2, ...) (3.31)

with respect to which(q−1/2−q1/2) 1
α A∗ is diagonal with diagonal elements

λ ∗
n = κ∗q−n +

s2ac
κ∗ qn−1 (3.32)

which are the eigenvalues of the rescaleds√
bd

D . Once again we writeλ ∗ in this form by redefining
s√
bd

as a new independent parameterκ∗. λ ∗ in eq.(3.32) is the general solution of the spectrum

defining quadratic equation (3.16) with−ρ replaced by−ρ∗. The matrix(q−1/2−q1/2) 1
β A is tridi-

agonal and its matrix elements are found upon multiplication of the matrixA by s2q−1/2κ∗. As a
consequence of this one obtains the corresponding representations for the left and right boundary
operators by shifting the diagonal elements of the rescaledA,A∗ according to (3.7). The result
reads explicitly: In a representationπ the right boundary operatorD1 +bdD0 is represented by a
diagonal infinite dimensional matrix with eigenvalues

λn(s) =
q1/2

1−q

(

κq−n +
s2bd

κ
qn−1

)

+
s

1−q
(1+bd) (3.33)

The left boundary operatorD0+acD is tridiagonal whose representing matrix is

π(D0 +acD) = s2q−1/2κA
t +

s
1−q

(1+ac) (3.34)

In the dual representationπ∗ the operatorD0 +acD1 is diagonal with eigenvalues

λ ∗
n (s) =

q1/2

1−q

(

κ∗q−n +
s2ac
κ∗ qn−1

)

+
s

1−q
(1+ac) (3.35)
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andD1 +bdD0 is tridiagonal with representing matrix

π∗(D1 +bdD0) = s2q−1/2κ∗
A +

s
1−q

(1+bd) (3.36)

The formulae (3.33-3.36) define the ladder representation (resp. the dual representation) of the
tridiagonal pair in a Hilbert space with an inner product, (the auxiliary Hilbert space of the ASEP).

To solve the ASEP boundary problem we choose the left and right boundary vectors to be to
be of the form

〈w| = h−1/2
0 (p0,0,0, ....) |v〉 = h−1/2

0 (p0,0,0, ...)t (3.37)

whereh0 is a normalization from the orthogonality condition. Thesevectors belong to the two dual
representations of the tridiagonal boundary algebra and are the eigenvectors of the corresponding
diagonal operatorBR andBL. The eigenvalue equations have the form

(D1−
δ
β

D0)|v〉−
s
β
|v〉 = 0 (3.38)

〈w|(D0−
γ
α

D1)−〈w| s
α

= 0

It follows from the above relations that the constantsκ ,κ∗ obey the quadratic equations

κ2+
1
β

(1−δ − (1−q))κ − δ
β

= 0 (3.39)

(κ∗)2 +
1
α

(1− γ − (1−q))κ∗− γ
α

= 0

with solutions

κ± =
−(β −δ − (1−q))±

√

(β −δ − (1−q))2 +4βδ
2β

(3.40)

κ∗
± =

−(α − γ − (1−q))±
√

(α − γ − (1−q))2 +4αγ
2α

Hence the boundary eigenvalue equations are satisfied for the corresponding roots (3.40) which
(in this representation) are uniquely identified with the four parameters of the Askey-Wilson poly-
nomials

a = κ∗
+, b = κ+, c = κ∗

−, d = κ− (3.41)

We can further show that each boundary operator and the transfer matrix operator generate iso-
morphic AW algebras. This allows for the calculation of the relevant physical quantities in terms
of the Askey-Wilson polynomials.

4 Discussion and conclusion

We have constructed the boundary operators of the open ASEP as linear covariance elements for
the Uq(su(2)), which is the invariance algebra of the integrableXXZ chain. It is known [25]
that the bulk driven diffusive system with reflecting boundaries can be mapped to the spin 1/2
Uq(su(2))-invariant quantum spin chain. Within the matrix product approach the bulk process is
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described by a quadratic algebra with no linearx-dependent termsD1D0−qD0D1 = 0. The sta-
tionary probability distribution, i.e. the ground state oftheUq(su(2)) invariant HamiltonianHqg

XXZ,
corresponds to theq-symmetrizer of the Young diagram with one row andL boxes [26]. The pres-
ence of the boundary processes (i.e. the nondiagonal boundary terms in the Hamiltonian) reduces
theUq(su(2)) bulk invariance and amounts to the appearance of linear terms in the quadratic alge-
bra. The boundary conditions define the boundary operators which carry a residual symmetry of
the process. It is expressed in the fact that the boundary operators are constructed in terms of the
Uq(su(2)) generators, as seen from the explicit formulae (3.5). WithA±,N being the generators
of a finite dimensionalUq(su(2)) representation, it can be verified from eq.(3.5) thatαD0− γD1

commutes withH(q)qg andβD1−δD0 commutes withH(−q−1)qg, related toH(q)qg by a gauge
transformation. Thus the boundary operators constructed as the linear covariant objects of the bulk
Uq(su(2)) symmetry acquire a very important physical meaning - they can be interpreted as the two
nonlocal conserved charges of the open ASEP. Such non local boundary symmetry charges were
originally obtained for the sine Gordon model [27] and generalized to affine Toda field theories
[28] and derived from spin chain point of view as commuting with the transfer matrix for a special
choice of the boundary conditions [29]. In particular, the left boundary operatorαD0− γD1 in the
finite dimensional representation (26) is analogous to the one boundary Temperley-Lieb algebra
centralizer in the ”nondiagonal” spin 1/2 representation [30].

We have used the deformed(u,v) algebra for the solution of the boundary problem to include
and generalize previously known solutions of the MPA. The(u,u) algebra, known as deformed os-
cillator algebracqu(2) was considered in [31] in relation to known solutions in terms of deformed
oscillators. It is important to once again emphasize the representation dependence of the Askey-
Wilson algebra (as well as of the MPA bulk quadratic algebra (2.1)). Using any of the particular
forms of the deformed(u,v) algebra we obtain the AW algebra as its linear covariance algebra.
The functional dependent structure constantsρ ,ρ∗,ω ,η ,η∗ in eqs.(3.10-3.12) carry the informa-
tion of the corresponding algebra and in particular, this reflects in different spectra of the diagonal
(tridiagonal) operators and different Askey-Wilson polynomials. This is the formal mathematical
difference between the deformed general oscillator algebra cqu(2) used in [31] and theUq(su(2))
case in the present paper. Namely, the spectrum of the diagonal operators forcqu(2) with positive
structure constantsρ ,ρ∗ is of the form∼ cosh, while for Uq(su(2)) with negative structure con-
stantsρ ,ρ∗, it is ∼ sinh. Hence one has different identifications of the AW four parameters with
the boundary rates which, in our opinion, may enrich the variety of physical applications and is
worth considering.

There is one very important difference between theUq(su(2)) case and thecqu(2) one. It lies in
the fact thatUq(su(2)) is the invariance of the ASEP in the bulk which is broken by theboundary
processes with incoming and outgoing particles at both boundaries. The presence of boundary
processes breaks the bulk invariance and destroys the integrability of the (equivalent) quantum
spin chain. With suitably chosen boundary conditions a remnant of theUq(su(2)) quantum bulk
symmetry can survive. It is the purpose of our considerationto show that the reduction of the bulk
invariance gives rise to the boundary symmetry which remains as the linear covariance algebra of
the bulkUq(su(2)) symmetry. Thus the boundary Askey-Wilson algebra whose structure constants
depend on the finite dimensionalUq(su(2)) representations is the residual symmetry of the open
ASEP and this has important physical consequences, in particular, in relation to Bethe ansatz
integrability. The Bethe solution of the open ASEP [32] was achieved through the mapping to the
Uq(su(2)) integrableXXZ quantum spin chain with most general non diagonal boundary terms,
provided a particular constraint was satisfied. Thecqu(2) algebra has only infinite dimensional
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representation as opposed toUq(su(2)) which (for genericq) has finite dimensional representations
only. This mathematical difference in the choice of the representation to form the boundary algebra
implies a physical consequence which turns to be the key in relation to Bethe ansatz integrability.
The suitably chosen representation dependent boundary algebra manifests itself in the extent to
which integrability is preserved. In thecqu(2) case the exact solvability of the model is achieved in
the stationary state. WithUq(su(2)) one can further employ Bethe ansatz to obtain exact results for
the approach to stationarity at large times and to completely determine the spectrum of the transfer
matrix. As commented in [33] the way one can satisfy the condition for the Bethe ansatz solution
of the ASEP implies additional symmetries. In our opinion, the linear covariance Askey-Wilson
algebra of the bulkUq(su(2)), whose generators are interpreted as the two nonlocal conserved
charges of the ASEP, is the hidden symmetry behind Bethe ansatz solvability.

To summarize, we have considered the open asymmetric exclusion process which is equivalent
to the integrableXXZspin chain with bulkUq(su(2)) symmetry. Within the matrix product ansatz
the boundary processes amount to the presence of linear terms in the quadratic algebra and lead to
a reduction of the bulk symmetry. The boundary operators generate a tridiagonal Askey-Wilson
algebra, which is the linear covariance algebra of the bulkUq(su(2)) symmetry. It is the symmetry
that survives and allows for the exact solvability in the stationary state and provides the framework
for employing Bethe ansatz to determine the dynamical properties of the open process.
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