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Abstract

We discuss how the Camassa-Holm hierarchy can be frameahulith geometry of the Sato
Grassmannian. We discuss the geometry of an extension ofetative flows of the CH
hierarchy, recover the well-known CH equations, and framegaroblem within the theory of
pseudo-differential operators.

1 Introduction

In this paper we study some specific aspects of the Camassahiedarchy. Since its appearance
in the literature, it has been recognized that the CH equagitmssesses specific features, (e.g.,
peakon solutions, the appearance of third order Abeliaieréifitials in finite gap solutions,...)
that other more "classical” soliton hierarchies (KdV, Bsinesg, NLS) do not exhibit. Among
these, especially in view of the Dubrovin—Zhang classificascheme [8], the non-existence of
a formulation via ar function is, from our point of view, of particular interesthe Sato theory
of the t function basically views it as a section of the (dual) deieant bundle over the so—
called Sato (or Universal) Grassmannian (UG). It is assediwith any hierarchy of evolutionary
PDEs that can be represented as a hierarchy of linear flowsGnTHus it seems important to
analyze whether (and which) flows of the CH hierarchy can bkzed as linear flows in the Sato
Grassmannian.

The main aim of this paper is to discuss this problem in thené&waork of a set up, introduced
in [11, 2], relating the (bi)-Hamiltonian structures ofitmh hierarchies of KdV type to the Sato
Grassmannian. In particular, we will rely on some prelimyn@sults presented in [15] and earlier
in [4], concerning the relations between the CH hierarchy such a representation of the Sato
Grassmannian.

In [12] it was shown that the bi—Hamiltonian structures of 6H and KdV equations (as
well of the Harry—Dym equation) are related, being geodesitions on the Virasoro group with
respect to different metrics. Actually, the relation wittetevolution on the Sato Grassmannian
has been studied for the KdV and the HD hierarchies, shoviliatthey are related to linear flows
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in the big cell of UG. In this paper we try to complete this pret showing that the CH hierarchy
too is related to the big cell of the Sato Grassmannian by metits local (also called negative)
flows. One of the basic differences among this representafithe three hierarchies is given by
the relation between the local flows and the “time” of the diiehy related to the conservation of
the linear momentum.

This will show up, in the present paper, as the realizatiothefCH local hierarchy in a con-
strained subspace of the big cell. The path leading us tadhigdt is the analysis of the evolution
of the Noether currents associated with the bi-Hamiltom&ourrence relation of the local hier-
archy. We will argue as, on more general grounds, they amciadsd with a two-field (albeit
somehow trivial) bi-Hamiltonian extension of the CH locararchy.

The ordinary CH bi—Hamiltonian hierarchy is recovered —etbgr with the non local part
including the "true” CH equation — by Dirac restricting thgo-field hierarchy to a specific sub-
manifold, namely those selected by these Noether curratitfysng a specific constraint. Thus
the CH equation is realized, in the picture herewith prestras an additional commuting flow of
an infinite system of (suitably constrained) linear flowslo& $ato Grassmannian.

The full interpretation of the whole nonlocal hierarchy histSato Grassmannian approach, as
well as the problem of how far this picture could be useful xplain and understand the non—
existence of the function for CH is still under consideration.

The scheme of the paper is as follows: in Sections 2 and 3 wemgsent, basically following
[15] the application of the bi-Hamiltonian scheme that fates a representation of the (local or
negative) flows of the Camassa Holm hierarchy as flows on algaisubset of the Sato Grass-
mannian. For the readers’ convenience, we will presentitithittive” route starting from the CH
Poisson pencil and arriving at the Grassmannian repregentaiowever, the logical scheme of
the present paper (namely of section 3) is somehow to remedt €xtend) this point of view. That
is, to start from a set of equations on UG, and arrive at CH.dssmg, we seize the chance of
discussing some of the content of Sections 4 and 5 of [15],,(@e discuss some conditions that
insure its consistency, and other related topics), as wgitaviding proofs therein missing or just
sketched.

In Section 4 we discuss the (bi)-Hamiltonian geometry otti®field system associated with
such a constrained subspace (that we call Extended CH thg)anf the Sato Grassmannian. In
Section 5 we recover, from such a two-field bi-Hamiltoniastegn the bi-Hamiltonian geometry
of the full Camassa Holrhierarchy, by means of a suitable Dirac reduction procedure. Finally,
we show how the problem we are dealing with can be framed nvitié theory of a Lax system
for a second order differential operator.

2 The geometry of the CH hierarchy ...
It is well known[1, 10] that the CH equatién
AV — Vxyt = 24VxV — AV Vi — 2V Vi
is a bi-Hamiltonian evolutionary PDE @7 (S',R) w.r.t. the Poisson pencil

Py = (40x— 32)+ A (2mdy+20,m) A €R

IWwe have herewith chosen unusual normalizations becaussdhiewhat simplifies some of the formulee we are
interested in.
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wherem = 4v — vyy.
The densities of the conserved laws of the hierarchy can taéngl by recursively solving

h+h=mZ+1,  z=VA (2.1)

whereh is the generating function of the densities of the Casim®of4, 5, 6, 14, 17].
This Riccati equation admits two different solutions

- hy
h—h,12+ho—|— - +22 —+ ...

k=ko+k 12+ Kk 222 +k 32 +...

The two families of coefficient$h; }i~_1 and{k; }i<o give, by means of the Lenard recursion, all
the f CH hierarchy. In particular, thg’s are the densities of the negative (or local) CH hierarchy,
and can be algebraically found from (2.1), while s are the densities of the positive (or “non-
local”) CH hierarchy whose first two members are, respelgtivetranslation and the CH equation
itself.

The first flow of the local hierarchy is

(40— 32) (2.2)

1
2ym
The key ingredient used in [11] to relate the Hamiltonianatire of Soliton hierarchies of KdV
type to evolutions on the Sato Universal Grassmannian wldrig given by the Noether currents.

In particular, it has been shown in [4] that the Noether mts@ssociated with the local CH hi-
erarchy are characterized, in the space of formal Laureiessien the parametarby the following
two properties:

—m=
otz

1. Their asymptotic behavior is given by

I =24+0(2), s>2 (2.3)

2. They belong to the span
((Ox+h)"Z)nz0 (2.4)

of theFaa di Brunomonomials associated with the generating funckipihich solves (2.1)
with asymptotic conditiof(z) = hyz+ hy + 71 + -+, with coefficients orC” (S, R).

The connection between the curredt8 and the generating functidmis given by the fact that,
along thes-th time of the local CH hierarchy, they evolve as

17}
dh=03J9  where ds=—. (2.5)
ots
The asymptotic behavior of the local Noether currents aaghthsence of a “generatdn’'suggest,
in analogy with what happens in the KdV case, that they carsbeciated with linear evolutions
on the Sato Grassmannian.
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3 .... and the Sato Grassmannian

In this section we shall look at the problem starting fromightly different perspective.
Let us consider the spade given by the span 06%(S',R) of the family

IV =243 z4+ % +xz 1+, i>2

in the spacd of Laurent series (with at most a pole singularitg at ©). J admits a direct splitting
as

J=J,9J_, where J_:=(Z)ix. (3.1)

Therefore the collectiofJ"};-, defines a point of the big cel# of the Sato Grassmannian
translated by? w.r.t. the standard Sato representation [18].
On this space we can define an infinite family of flows setting

(Os+INJ, cId. s>2 (3.2)

that, more explicitly, can be written as
r—2 . s-2 .
(0s+39)I0 =30 4§ P4 Y HI 4 00,35,97) (3.3)
i==1 i==1
Proposition 1. The flows (3.2) commute.
Proof We have to show thdbs, d;]J, =0, i.e.
(05,09 =0, Vsrn>2. (3.4)

Thanks to (3.2) the flows satisfy the the “symmetry conditidg)") = 4,J® and then equation
(3.4) can be written as

[0s,0,]3" = [0+ 319, 3, + 3] 3™, (3.5)
From the explicit form of the currents it holds
[05,0,]3M € J_,

but from (3.2)
[0s+ 3,0, + 3N ¢ 3, .

Proposition 2. The local currents of CH satisfy (3.2).

Proof The currents (2.3) are elementsJof. Moreover from the property (2.4) follows that every
element of], can be written aslI(C')H = zkc}((dXJr h)kZ2. Using this expansion (2.5) we see that

(0s+39) i o (O +h)*Z = i (0sCh) (Bx + )2 + i L (05 + I (3 + h)kZ
k=0 k=0 k=0

= k;(asc@(ax +h)*2 + k;(ax +h¥239 c 3, 020, .

In [4] it is shown that, for the local currents of CEJ, c J. and then they satisfy (3.2).
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0

Therefore, taking into account the results of [11] we canctate that the local (negative) flows
of CH hierarchy are given, by means of the construction nediabove, linear flows on the big
cell # of the Grassmannian.

Remark. The basic issue to recover a hierarchy of 1+1 dimensiond&dfoom a dynamical
system of the form (3.2) is to specify (or define) the “phyBisaace variable.

For instance, in the ordinary KP-KdV casecan be, as it is well known, identified with the
first "time” of the hierarchy. As it was shown in [3], fractiahKdV hierarchies can be obtained
identifying x with a different timets of a system similar to (3.2). Actually, in our caseis not
contained in the dynamical system, and thus should be adgedelans of the introduction of
another currenth=h_;z+hg+ h—zl +.... In turn, this additional current has to be related with the

action ofx-translation on the current® of the Grassmannian.
The most natural way to add this new current is to consideeti@gement of the system (3.2)
to

(@s+3I9) 3 I, (0s+39)hed; (5>2),  (B+h)I i, (3.6)

which explicitly is given, in addition to Eqn.s (3.3), by

s—2 )

(G+I¥ =5 hIEV4h 239 s>2
i=—1
s—2

(Os+3%)h= 5 mI&V+h 3990 s>2
i=—1

(3.7)

However, these flows are not in general commuting, so thtiduconditions have to be imposed.
It is outside the size of this paper to discuss this problefallrgenerality; we simply remark the
restriction to the subspace of the translated big cell definye

=22 and Al .. (3.8)

is a consistent orfe
The following Lemma helps clarifying the meaning of the doaisit(3.8):

Lemma 3. For any choice of ?, the currents §) satisfying (3.7) are elements of sp((dx +

Proof Expanding the relation (3.7) it follows that

JEH) — hi d+h)J Z JE0 438,00 (3.9)
|771

Since(dx+h)F ¢ F andJ® ¢ F, then one can write recursively all the currents using eteme

of F.
U

2Another consistent solution to this problem is given by iggg that (é +h)h € J,. The resulting system of
commuting PDEs leads to a2l dimensional extension of the HD hierarchy [13, 16].
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In the light of this proposition, we can rephrase the firstqpfaions (3.8) saying that we consider
only the casel(® = 2. The study of more general choices of the curiAtis under considera-
tion.

The basic reason for this choice of ours is that the sphacdefined by (3.8) contains the
currents of the CH hierarchy (see Proposition 2). Moreatdurns out thatl, is parameterized
by three fields, namelly_1, hg, andh;. This can be seen as follows. Sired, c J, andJ® =2,
we get that)® = Z*. The recursion relations (3.9) allow us to write all the euts, and namely
J@, as differential polynomials in the componetmgof the formal Laurent series. Thus we
arrive at

Z h_y, = 2hy? h ho?>  2h  ho(h_y)
= (hy+h? —22( x+—>h—zz<;'*——+—— x):z“. 3.10
h2 ) h.® hg h,2 hi? hi  h,s (310)

It is straightforward to check that this relation enableg ¢m recoverh,, hs,... as differential
polynomials inh_1, hg,h;. So the system (3.7), determines a hierarchy of 1+1 evolatioPDEs
in the three fields (dependent variablbs), hp, h1. For instance, the first non trivial flow is [15]:

hoyh  hy
osh_1=— h .2 + h,
g —3hoa 3h(ha)? L1hy,  1hah
3llo ) h713 2 h,14 2h,12 2 h713 (3 11)
3h_yhy, 5hophg by 15(h_g)?hy,  15hy(h_y)® '
dshy = — + = — -=

2 h* 2 h;,° 4 h .5 4 h 48
hhoy,  1hy, 1hog b hyhy  hyh

+
h,13 4 h,]_3 4 h,14 h,14 h,12

We notice that the fielthy does not affect the dynamics. Actually, this is true for b# times of
the hierarchy we are considering. This is a consequence dhth that no currents dependsign
as one can see by recursion using (3.9), noticingdfat= 2 andJ©® = hé(h —hp).

Therefore the constraint given by (3.10) do not dependgas well, and so we can limit
ourselves to the study of the system in the two dependerdblash_;, h;. We will study further
this two—field system, that we cadfixtended CH systein the next Section.

4 The geometry of the extended CH system

In this section we shall prove that the system (3.11), oebgtte closed system defined by its first
and third equation (see the remark above) is a bi-Hamiltosjsstem and it admits an iterable
Casimir, that is, a Casimir of the pencil of Poisson bracketbg found below) that generates,
via the Lenard recursion relations, the commuting flows. @aof will be done in a sequence of
steps as follows.

First we notice that, if we perform the change of varialiies = a andh; = % the first and
third of equations (3.11) become:

J50 = <C{_y2>x

-5 (H(3(20).
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From the general theory, and namely from the representé®id) of the PDEs, we see that this
system has an infinite sequence of conserved quantitiessendensities are given by the coeffi-
cients of the formal Laurent series (3.10) whih= 0, i.e.:

1 oy Oy 2y
?(thrh)—?h—?:zz. (4.2)

It is worthwhile to remark again that this equation detemsiall the coefficientl;,i > 0 as differ-
ential polynomials iror, y. For instance we have, apart form the obvious relations= —a, h; =
—y/a, the expressions

hy, = ( y )X, hs = i— (1 (l)x> , hg= total derivative
X

202 2a3 a \a?

ho ¥ LYo Ly 7 yiox
" 205 12 a® ' 8a® 24 ab
and so on and so forth.
The motivation for the change of variables, as well as furtfiats for our program come from

considering of the dispersionless limit of (4.1), that is,

(4.3)

+ total derivative...

d3y = 0. (4.4)

This equation is bi-Hamiltonian w.r.t. to the Poisson tegso

_ 0 oa _ Ox 0
PyP = P{**P = (4.5)
adx  Yox+ oy 0 0

with Hamiltonian densitiesh; = y?/2a2,h; = —y/a. This property suggests that the full disper-
sive hierarchy can be obtained by suitably deforming theipehPoisson tensors (4.5).

As a first step in this direction, one notices that the flowY4dn be obtained in a "Hamilto-
nian” way, via the action of the antisymmetric tensors

0 oa Ox 10T2a
PO = bl Pl == 9 (46)
ade  Yox+oy+ 2TEa 20T  LoTia

. 1
whereTy, is the operatcf’radx, as

030{ / /
=Pyd | hdx=P; [ hydx
< a3y> 0 3 1 1 ;

whereh; andhz are the densities (4.3). Furthermore, a direct computaimws that; is the
density of a Casimir dfy. Actually, our use of this terminology is justified by thelfaling propo-
sition, whose proof, that can be directly obtained via agiitéorward albeit tedious computation,
will be apparent from the sequel.

3Operator composition is here and in the following, understo
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Proposition 4. The tensors (4.6) are a pair of compatible Poisson tensors.

To push our analysis further, the following observatiomiportant. We notice that the member
P, of the pair (4.6) is greatly degenerate. Indeed one seewglear fields(a, y) belong to its
image if and only if the relation

a1 1. a, _42.
= 7% al= Z(Ta) a). 4.7)
This entail that the system (4.1), as wellasy bi-Hamiltonian vector field associated with the

pair (4.6) admits as an invariant submanifold the one definyed
1
y— —dzlna + 8(dxln a)? (z y—5(@(Ta— TJ)Ta(or)> — const (4.8)

This fact (together with the particularly simple dependennyof the relation (4.8)) prompts us
to consider the dependent varialle= y — z92Ina + 2 (dxln a)?. In the coordinatega, u) the
tensors of (4.6) become

0 axa dX 0
Py = 1 , P = ( ) . (4.9)
00y  Uly+ Ou— de. 0 0

The fact that the antisymmetric tensors we are consideridged make up a Poisson pair is now
apparent from the theory of affine Poisson structures orsdafdlie algebras. This new form of
the pencil will also allow us to state that the hierarchy afmoauting vector fields starting with
(4.1) is indeed a bi-Hamiltonian hierarchy.

According to the Gel'fand—Zakharevich bi—-Hamiltonian sate, we look for a Casimir of the
pencil (4.9). This amounts to finding an exact one-fd@A ) = (X(A),Y(A)) that satisfies the
equation

O

(PL—AP)Q =0, withasymptoticQ(A)= Qo+ N +-

whose first element is the differential of the CasimiPpf(in particular, with obvious meaning of
. 1 ,

the notationYp ~ a). So we can trade the above equation for the system

1

XA)=2AaY(M); Aa?Y(A)2+2uY(A)2 - %YXX()\ WA+ =

4(YX(A))2 =A. (410

In turn, the second of these equations is equivalent to tflevimg system

2 _2q? __z  1%A4)
hy+h“=Aa“+ 2u, h_Y( )+2Y()\) (4.11)
h . . ,
whereZ2 = A, andh=h_;z+hy + 71 +---. It can be easily shown that the series h(z) solving

the first of these equations is, in the sense of formal Lawsernes, indeed the potentials of the
one-formQ(A). Also, the coefficient; can be algebraically computed in a recursive way.
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The comparison of this Riccati equation with the Riccatiapn associated with the local
CH hierarchy suggests a further minor coordinate changaghato setm = a?. Indeed in the
coordinategm, u) the Poisson penci®, — ARy is (4.9)

2(m+mdy) 0 0 Oxm+ mdx
—A 1 , (4.12)
and the corresponding Riccati equation is
hy+h?=2u+mZ,  z=VA. (4.13)
The vector field (4.1) becomes simply
15 1
d3m: (2U0X+20XU— EaX)ﬁ 03u - O, (414)

Summing up,the search for a Casimir of the pencil (4.12)dsiced to the problem of solving -
in the space of formal Laurent series - the Riccati equatioih(z) = h_,z+ Z,E This problem

can be iteratively solved, and is equivalent, up to the walvativehg, to (4.2) written in thau, m
variables.

Remarks. 1) Onu = % the first of the equations (4.14) becomes the first nontriviedl CH flow
(2.2).

2) In the coordinategm, u) (as well as in the coordinatés',u)), all vector fields of this hier-
archy are somewhat trivial, since they read

dim:aX(Fi(mvu))v atiU:O. (415)

This fact can be, in a sense, understood also in the framevidhie theory of reciprocal transfor-
mations. For instance, transforming the system (4.1) utiaereciprocal transformation induced
by its first element (seen as a conservation law) yield th@gular system

1
5(UV)z
1

dgV == Z(szz"— WVZ)

03U =

wheredx=Udz+ UVdt, U =1, andv = ;—22" To fully examine these equations in the light of
the theory of reciprocal transformations, however, isidetthe aim of the present paper [9].

3) As a final check of the bi-Hamiltonian analysis we performee, notice the following
We exchange the role of the Poisson tend®rand P, and consider the Casimir functidf =
J(u+m)dxof P;. Clearly enough, the vector fieRydK is justx-translation. This Casimir does
not give rise to a new Lenard sequence, sif@Kg does not lie in the image &. However from
the fact thaix=translation is the image undBg of a Casimir ofP; confirms that it commutes with
all the vector field of the hierarchy, as it should be.
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5 Back to the CH hierarchy: its bi-Hamiltonian structure and its
Lax representation

As we have seen, the bi-Hamiltonian geometry of the manif@dare considering is particularly
simple: indeed, it is stratified by the submanifolds giveruby k for some constark, and these
submanifolds are left invariant by all vector fields that Bi@miltonian w.r.tP;, and thus by all

bi—-Hamiltonian vector fields. Also, on the invariant subiifiald u = — we have that the first flow

of our hierarchy coincides with the first local CH flow, and Riecati equation (4.13) reduces to
the Riccati equation associated with the CH hierarchy (2.1)
These facts suggest the opportunity to consider the Didcteon of the pencil (4.12).

Proposition 5. The Dirac reduction of (4.12) on the constraintux gives a Poisson pencil for
the Camassa Holm. The hierarchy restricts to this submkh#e a bi—-Hamiltonian hierarchy.

Proof. To prove the assertion, we find it more convenient to useatetion of Poisson brackets
rather than that of Poisson tensors. According with Dir#teéry, the reduction on = constof
the Poisson brackets associated with our pencil is given by

(MO0, m)YR = {m0.my)} s
— [ aw | dz{m, uw) ({uw),u@ h) U@, my)}e-r

where{u (x),ul (y)}o := fdzéuk (P 53((1;.
A simple computation shows that

1 -1
PP|u—k = 2(3m+ mdy) — A (dxm-+ mdy) (2 K Ox — Zaf) (Oym-+mdy).

It is easy to recognize in the above formula (one of) the Boiggencils of the CH hierarchy,
namely the one given by the standard Lie Poisson tensor anfirth nonlocal tensor with the
suitable choice = % 4. The Dirac reduction of the Poisson structure (4.12) ge¢asraxactly the
local part of the CH hierarchy. This follows from the facttttize Dirac deformation of the Poisson
bracket associated with, is achieved by means of Casimir functions of the other bitackehis
entails that Lenard relatiorijdH = P;dK hold also for the corresponding Dirac reductions. On
the manifoldu =k (e.g.,u= %) we can recover the standard nonlocal part of CH hierarcimgus
the solution of (4.13) whose asymptotic behaviorisQ(z) as in [4], via the usual CH substitution
m = 4v — V. In terms of the geometry of bi—-Poisson manifolds, with refiee to Remark #3 of
the previous Section, the situation is the following. In &x¢ended two-field system, the Casimir
K = [(u+ m)dx of P, does not give rise to any additional Lenard sequence. Ondhiey, in
the CH constrained submanifold= k, this Casimir is iterable, and gives rise (with all the psavi
about non-locality in mind) to the positive CH hierarchy. dther words, in this picture, the
flows of the positive CH hierarchy (and so, the CH equation elf) \wlay the role of “additional”
(commuting) symmetries of these flows, which are restm&itou = % of the linear flows defined
by (3.2).

g

4Indeed k can be rescaled t% without loss of generality. Far = 0, we get a Poisson pencil of HD.
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A further outcome the previous construction is to provideaa kepresentation of the (extended)
local CH hierarchy as a suitable flow in the space of pseufddiftial operators. We will basically
follow a construction presented in [2] for the KdV-KP case.

The Riccati constraint (3.8) can be read as the requirerhanthe functiony = exp( [ hdx) be
an eigenfunction of the operatar= Flndxz — Z—H‘j with eigenvalue. Also, the equations of motion
imply 930" = 4,3 anddsh = 3,J®. Therefore, from the compatibility of equatiohgy = 2y
anddsy = IOy, we get

dosi 1L = [J<25+1>, L] s>1, (5.1)

while times and currents with even labed &e trivial, as implied by the constraint (3.8). In order
to obtain an operatorial version of the equations of motierelate the current&® with L.
First of all we need the following technical

Lemma 6. Under the constraint (3.8) it holds'® = M, (2).

Proof The spacel; = Mj, (J) is, by definition, the linear span df"). Therefore there is a
unique way to write the elemeft;, (%) by means of the current®. Since the leading term of
J is exactlyZ, the assertion is true.

g

Because of Lemma 3, is also the linear span of thgdx + h)Z}io. Moreover, extending by
recursion the definition ofdy 4 h)'z? to negative powers, the sétdy +h)'Z}icz is a basis of all
the spacd. The map

@:J— WDO
(+h)Z —adl-L

by means of the basi@y + h)"z? with n € Z of the spacel, gives the operatorial action of an
element) on Y

Proposition 7. Under the constraint (3.8) it holds
J(S)w — <LS/271> Lw
JF

Proof The mapg intertwines betweeiil;, and the operatof - L~1), L on theWDO space
where( - ). is the standard projection on the differential part 880 operator. This property
can be easily proved remarking that it holds for any eleni@pt h)'Z> of the J basis. Therefore

IO = oI = @My, ()Y = (LY? L), Ly.

The equations (5.1) become then

Oosial = [(L5V2). L L. (5.2)
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, . . , : 1 .
We finally notice that in the CH case that is, under the comdtta—= > the Lax operator is

1 1 . . .
L= adxz - therefore(LY/2), = m~1/29, — 3(m~%/2), and the previous equation gives

1 2 13 —1/2
dgm_ 2m (dx 4dx>m

which is equivalent to the local CH (2.2).
We end this Section noticing that the integrability of theteyn constructed starting from the
Lax operator for local CH can be proven also by means of atdd@nputation. Indeed it holds:

Proposition 8. Let DO, be the space of second order differential operators of thmnfd =
ad?+bd +c, and let(), be the projection operator fro?DO to DO. The equations

oh = [(A9)2.4]
define a family of commuting flows on P@hat is,d;0A = 950 A .
Proof. We start expanding
00X = 4 [(/\%)M,/\] - [(ar;\%)y\,/\} + [(/\%)Jﬂ\,/\}

- H(/\%)+/\,A%L/\,/\}+[(/\%)+[(/\%)M,/\],/\]

[(/\%)M,aﬂ\}
(A3A [(A2)A,A]],

as well asdsd;A. Then the assertion follows using standard techniquese®bO approach to
KP-type equations (see e.g. [7]), with the crucial remalles, tsince we are considering degree 2
operators,

(|a5-2.a5)-]) = (@5)-|aD)-a]) =0

because the degrees of the operators appearing in thesssigpris less than zero.
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