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Abstract

In this paper, we give a proof of the existence of stationamkdoliton solutions of the cubic
nonlinear Schrodinger equation with periodic inhomogrrsenonlinearity, together with an
analytical example of a dark soliton.

1 Introduction

Nonlinear Schrodinger (NLS) equations appear in a graatyasf contexts [1], for example in
semiconductor electronics [2, 3], optics in nonlinear radgdi], photonics [5], plasmas [6], the
fundamentation of quantum mechanics [7], the dynamics@dlacators [8], the mean-field theory
of Bose-Einstein condensates [9] or in biomolecule dynarffi€]. In some of these fields and in
many others, the NLS equation appears as an asymptoticfméa slowly varying dispersive
wave envelope propagating a nonlinear medium [11].

The study of these equations has served as the catalyzérefaletelopment of new ideas or
even mathematical concepts such as solitons [12] or sirigedain EDPs [13, 14].

In the recent years there has been an increased interestaiaatvof the standard nonlinear
Schrodinger equation which is the so called nonlinear &tihger equation with inhomogeous
nonlinearity, which is

W= APy, (1.1)
P(x,0) = yo(x), (1.2)

with x € RY. This equation arises in different physical contexts su&hanlinear optics and the
dynamics of Bose-Einstein condensates with Feschbacharese management [15, 16, 17, 18,
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19, 20, 21, 22] and has received a considerable amount otiatidn recent years because of the
possibilities for management and control offered by thdfament functiong(x). Various aspects
of the dynamics of solitons in these contexts have beenestudiich as the emission of solitons
[15, 16], the propagation of solitons when the space moduaif the nonlinearity is a random
[17], periodic [21], linear [18] or localized function [2@hd the construction of localized solutions
by means of group-theoretical methods [31, 32].

In [26], the author, motivated by the study of the propagatibelectromagnetic waves through
a multi-layered optical medium, proved the existence of dlifferent kinds of homoclinic solu-
tions to the origin in a Schrodinger equation with a nordineerm. In [27], the authors proved
the existence of dark solitons for the cubic-quintic nosdinSchrodinger equation with a periodic
potential. In this paper, we will prove the existence of dsoktons for Eq. (1.1) in one spatial
dimension for the case of tfieperiodic symmetric nonlinear coefficiegtx) such as those which
arise when the nonlinear coefficient is managed through acabattice [17, 21, 23, 24, 25, 31].

From the mathematical point of view, the strategy of proafibines several techniques from
the classical theory of ODE'’s (upper and lower solutiong) planar homeomorphisms (topologi-
cal degree and free homeomorphisms) in a novel way.

2 Existence of periodic solutions

In this document, we will study the cubic nonlinear Schniggir equation with inhomogeneous
nonlinearity (INLSE) orR, i.e.

. 1
lllft=—5Llex+g(X)W!2w (2.1)

with g: R — R T-periodic and satisfying the following properties:

0 < Imin < 9(X) < Imax (2.2a)
(X) = 9(—x). (2.2b)

«Q

The solitary wave solutions of (2.1) are givenipyx,t) = €t @(x), where(x) is a solution of

1
—§@x+/\fp+g(x)fp3 =0. (2.3)

Such a solution is defined as a dark soliton if it verifies therastotic boundary conditions

@) o
&0 1, x—=+ (2.4)

where the functiong. (x) are sign definiteT -periodic, real solutions of Eq. (2.3).
Let us now analyze the range of valuesidior which we can obtain the existence of nontrivial
solutions of Eq. (2.3).

Theorem 1. If A > 0, the only bounded solution of Eq. (2.3) is the trivial opes 0.
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Proof. Let @ be a nontrivial solution of Eq. (2.3). We can suppose thah susolution is positive
in an intervall (on the contrary, we will take-¢). Note that

Bo(X0) = 24 9(X0) + 29(X0) 9*(X0) > O (2.5)

for all xo € 1. If | is a bounded interval, a contradiction follows easily by @yrintegrating the
equation ovet. On the other hand, ifis an unbounded interval, we have a convex and bounded
function on an unbounded interval, which is impossible. [ |

Therefore, throughout this paper, we will take< 0. AS Onin < 9(X) < gmax let us consider two
auxiliary autonomous equations:

1
—Ecpx(i) +20% + gmin(@P)3 =0 (2.6)

1
—Qcpx(f) +20? 4 gma(9?)2 =0 2.7)

These equations have two nontrivial equilibria

fw_g [ A (2.8)
Omin

HC I 2.9)
Omax

These are hyperbolic points (saddle points). We deé6teor the positive equilibria points, for
i =1,2. We note thaf D > £(@),

Before continuing, we will give the results of the secondeordifferential equation. These
results are known [28], and they will be very helpful to us.

Let the following second order differential equation be

Uxx = f(X,U) (2.10)
with f continuous with respect to both arguments @rgderiodic inx.
Definition 1. (i) We say thau: [a,+) — R is a lower solution of (2.10) if

Ugy > T (X, U) (2.11)

forall x > a.
(i) Similarly, u: [a,+) — R is an upper solution of (2.10) provided that

U < F(x,0) (2.12)
for all x > a.

We shall now prove the existence oT gperiodic and an unstable solution between both points
ED and&@,

Proposition 1. The pointsf (Y and & (@, which were previously calculated are, respectively, con-
stant upper and lower solutions of Eq (2.3). Moreover, antaivle periodic solution exists between
them.
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Proof. By using Eq. (2.6), we obtain:

5 +AED +g(E D) > AED + gmn(EH)2 = 0 (2.13)

and, similarly, for the Eq. (2.7):
1
—56 + AP +g(0)(E®)° <AEP +gnad€®)° =0 (2.14)

Thus, by the latter definitior (V) and & (@ are upper and lower solutions, respectively. Following
[28], we obtain that & -periodic solution exists between them. As the Brouwerxragsociated
to the Poincaré map is1, (see, for example [29]), such a solution is unstable. [ ]

We therefore have a positive afdperiodic solution of Eq. (2.3)@, (x), satisfyingé @ <
@, (x) < EW. Owing to the symmetry of the equation we also have a negatiltgtion ¢_ (x) =

— @ (X).

3 Existence of a dark soliton.

In this section, we prove the existence of a heteroclinidt @dnnecting the periodic solutiorngs
andgq, . This heteroclinic orbit may also be called a "dark soliton”

The following theorem is the key to our results. It was proef®7] by using some ideas from
[30].

Theorem 2. Let bounded functions bew: [a, ) — R verifying
1 uXx) <v(x), ¥x>a
2. Ux(X) > f(x,u) and ux(X) < f(x,v), Vx> a.
A solutiong(x) of (2.10) therefore exists such that
u(x) < @(x) < v(x) (3.1)
If moreover, x exists such that
3. min % >0

xe[0,T]
ue(infysa U(X),SUR 4 V(X)]

then an T -periodic solutiop(x) exists such that

im_(|¢(x) — p(9)] +]@(x) — pex)]) =0 (3.2)

X—4-00
Moreover,p(x) is the unique T-periodic solution in the interviadfy-, U(X), SUB ., V(X)]
We shall apply this theorem to our model. We have that
f(x, @) = 24 @(x) + 29 ¢° (x). (3.3)

Moreover, ag) is symmetric, it can conside> 0 and extend the obtained solutigaix) as an
odd function tox < 0. The solutions of Egs (2.6) and (2.7).Y and @@, which are heteroclinic
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orbits joining—&® with £ and—&©@ with £@, respectively, satisfy the conditions (1) and (2)
of Theorem 2, withv(x) = Y (x) andu(x) = @@ (x). We thus have a bounded solutigxx) of
Eqg. (2.3) such that

9@ (x) < (x) < ¢ (x) (3.4)

Now that we have the above mentioned solutir) tends tog, (x) and¢_ (x), found in Proposi-
tion 1, asx — o0, Hence, it must verify condition (3) of Theorem 2.
As a can be taken as being arbitrarily large, condition (3) isejent to
min  [2A +6g(x)u?] > 0 (3.5)

x€[0,T]
ue [,g(Z) ,,g(l)]

This last inequality is equivalent toA2+ 6gmin(&(?)? > 0. Using Eq. (2.9) and the fact that
A < 0, we obtain a connection betweggin andgmax:

Ormin > g%x. (3.6)

So, if relation (3.6) is verified, we obtain the existencearidsolitons in the nonlinear Schodinger
equation with inhomogeneous nonlinearity.

4 An example of a dark soliton

In this section, we shall consider an example of a dark (Blackiton from Eq. (2.3), which
illustrates the concepts introduced in the study. For tkisvle, we shall take the periodic non-
linearity g(x) as

o Jo
g(x) = (1+ acoqwx))3 4.1

with w = 2,/|A| andgp, anda < 1 positive constants. To satisfy connection (3d)nust fulfil
the constraintr < (33— 1)/(3Y/3 +1).
The boundary conditiorp, is

® [(1—a?)(1+ acoswx
o =2, /L= ) 42)
2 do
andp. = —q,.
Following [31, 32], the solution of Eq. (2.3) with the boumg@onditions (2.4) is
— a2 — a2
(p(x):%) 1ga \/1+acosthanh[%) ! 2a X(x)] (4.3)
o
with X(t) given by
® ATaExm) = /22 an®¥
tan(2 l-a X(x)> =\ 17a tan > (4.4)

This solution is depicted in Fig. 1.



70 J Belmonte-Beitia and P J Torres

Figure 1: [Color Online] . The dark solitop(x) (solid blue line) and the hyperbolic periodic
solutionsg. (x) (red and green dashed line), for the parametets—0.5,g9p =1, a = 0.1.

5 Conclusions

In this paper, we have studied the existence of dark soliborgeteroclinic orbits of the INLSE.
The method of proof begins with a standard separation oflbes and relies on classical results of
the qualitative theory of ordinary differential equatichat require some concepts such as upper
and lower solutions, topological degree and free homeohiemps. As an example, we have
constructed an analytical black soliton-solution whendbefficient of the nonlinear terg(x) is
periodic. Clearly, we are looking for a particular type ofidimns. Of course, it is still possible to
wonder about the presence of dark solitons with a more congdfacture and not coming from a
separation of variables. This is an interesting and diffipcdblem to be considered in the future.
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