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Abstract

We investigate the origin of fractional Shapiro steps imgsrconsisting of a few overdamped
Josephson junctions. We show that when the symmetry redheesquations to that of a

single junction equation, only integer steps appear. Qtiser, fractional steps will appear
when the evolution equations contain second (or highe®@roddrivatives or non-sinusoidal
terms. We make a point of distinguishing the last two poB&#és in the generation of the

fractional steps.

1 Introduction

In thermodynamics we learn about the significance of/@ic process, as an attempt to delay
the production of entropy and instead to produce useful wdthkis physical basis is at work in
the design of any man-made as well as naturally occurringneng?d rechargeable battery is an
example of the former and the living cell of the latter. What deal with is a nearly reversible
cycle that returns the system to (nearly) its beginningestatmake the laptop work or the cell to
live another day. In a cyclic process, the arrow of time is engiccular!

However, the nutrition that keeps a cell going is not enougkeep the heart beating properly.
The 1¢ special set of cells, called pacemaker cells, communicéteeach other and go in their
cycles in unison to trigger the rest of the heart and crea&@timping action.[1] This synchronous
character is a recurring theme in nature. It is now knowndhags that affect the firing synchrony
of neuronal signals in the brain have disruptive effects emory.[2] This is but one aspect of the
significance of neuronal synchrony. In physics one can fincerfamiliar instances of synchrony;
the Moon rotates once on its axis as it cycles around the Ekettping the same side facing
us. Two pendulum clocks hanging on the wall will become syoicbus, with their oscillations
running out of phase.[3]
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The first models that describe the mutual entrainment of lactadn of oscillators where syn-
chronization occurs due to the interaction of the oscitteithout any externally imposed drive
are due to Winfree and Kuramoto.[4, 5] Winfree studied amathgr things the circadian rhythms
of biological clocks, and Kuramoto put forth a mathematioaldel of mean field nature that could
be solved exactly.

In the Kuramoto model, a collection of nonlinear oscillatare coupled with each other. The
natural frequency of each oscillator is pulled or pusheceddmg on its relative phase with other
oscillators and adjusted according to the strength of thuplery. Kuramoto showed that beyond
a critical coupling (in the sense of a dynamic transitiorg dscillators pull together forming a
large cluster characterized by a synchrony in motion. Asctiwling increases even further, the
synchronization becomes more and more complete.[6, 7]

The Kuramoto model can be realized in the laboratory, thamitse Josephson junction. In a
Josephson junction, two superconducting islands are weaklpled across a thin barrier. [8] Each
island keeps its (macroscopic) superconducting phaseJ@sephson showed that the tunneling
current of the Cooper (electron) pairs depends on the pliiseedce between the islands. In a
current controlled system, a current through the junctionpdses a phase difference. When the
current exceeds a critical value, a voltage develops atiegsnction. Josephson showed that this
voltage is proportional to the rate of change of the phaderdifice with time. Thus the junction
is an element that runs in a cycle and whose frequency canrtieotted.

Shapiro showed that a Josephson junction can tune itselfetascillations of the external
source when the average frequency (or voltage) of the jpmdsi close to an integer multiple of
the frequency of the external source, in this case a radiémecy drive.[9]

Putting Josephson junctions in series couples the ose#ladnd a series array of overdamped
junctions (i.e. junctions with small capacitance) with aghiel load can become synchronized
[10]. This model is described by a variation of the Kuramotudel [11]. The mutual entrainment
occurs due to the coupling (the load) and does not requiretenal frequency of a master drive.
However, it can also help understand the response of themsytstan external source. We recently
showed [12] that in case of arrays of a few junctions the mgoainment among the junctions
can be interpreted as a kind of normal mode for the systemeXteenal drive will predominantly
excite these frequencies. In this way a more general fedractional Shapiro steps, can appear.
This would mean, tuning to a fraction of the frequency of tkieal source.

In this paper we shall follow the above ideas and look morsetioat the origin of the frac-
tional Shapiro steps. The systems we study have only a fewede®f freedom and consist of
overdamped junctions. In Sec. Il we will introduce the elatseof the model. In Sec. Il we
consider a special kind of a load, namely the inductive laad, the role it plays in the formation
of the fractional steps. Sec. IV is devoted to a particulsaragement of the junctions that will
bring out another mechanism leading to the fractional st€pe conclusions follow in Sec. V.

2 TheModd

We begin by introducing the resistive and capacitively shdrjunction (RCSJ) model of the
Josephson junction, driven by an external current. In thadeh the junction is in parallel with a
resistor and also a capacitor and is described by a secoeddiffrential equation:[13]

RCd’¢ h do

% dt2 +£Ra+|05|n(p: Iext (21)
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The parameter§, R andl; are the capacitance, normal resistance and critical dunféhe junc-
tion, respectively. It is convenient to put this equatiordimensionless form by measuring time
in units ofh/2eRl; and current in units of;, with the result

d? d :
Bcd—,[(szrd—(thrsm(p: lext (2.2)

Here . = 2eR°Cl./h is known as the McCumber parameter. In analogy with a dampieerd
pendulum this parameter shows the strength of the inedrah tompared with damping. For
large values of the McCumber parameter the junction is wiadeped, whereas for small values
of . the junction is in the overdamped regime.

This paper will focus on the overdamped limit, and in genasdumeB; = 0. In this limit
Eq. 2.2 has an analytic solution for the case of an extremedydamped junction driven by a
constant current. When the normalized external curremisis than unity, there is a fixed point for
which the phase is constant and the junction voltage is ZEne.fixed point disappears, and the
equation undergoes a saddle-node bifurcation when thenexturrent exceeds unity. In this case
the phase will grow without bound; we will say that the jupatis in the rotating state. Since the
voltage across the junction is proportional to the rate ef¢hange of the phase, in the rotating
state a voltage with non-zero average develops acrossrbggn.

When the external current has an ac component, the junctinrbe synchronized by the ex-
ternal frequency. This fixes the voltage, so that as a funaifahe dc current the voltage exhibits
plateaus, called Shapiro steps [9]. In general we can iftesteps by integera andn according
to

e<V >= %ﬁw (2.3)

where< V > denotes the time average voltage across the junctiormdadhe frequency of the ac
part of the driving current. The cases with= 1 are called integer steps; otherwise we deal with
synchronization of the subharmonic type, or fractiongbstd&renne and Polder [15] and Waldram
and Wu [16] have analyzed the single junction overdampedtémuand shown that only integer
steps can occur for it.

Fractional steps can occur for an underdamped junctions fi&$ been investigated by many
authors numerically and analytically. For example Azbel Bak studied the case with small iner-
tial term and a train of pulses as the periodic drive, and slgotvat subharmonic synchronization
is possible.[17]

In this article we show that in circuits consisting of ovargsed Josephson junctions and possi-
bly linear elements, fractional steps can appear both asudt i the appearance of the second (or
higher) order derivatives in the equations, or by non-siidad terms developing in the equations
of motion.

It is also shown that whenever the symmetry of the array resltite equations to that of the
single (overdamped) junction, only integer steps appetrdarcharacteristics.
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Figure 1: A serial array with a linear load (left) and two parallel jtions coupled by an inductance or
third junction (right).

3 Thecaseof theinductive (linear) load

When a single junction is in parallel with a linear RL loade thosephson equation is coupled with
a linear first order differential equation:
do

Gt SN+ 1L = lee (3.1)

d, 1 pdo
wherel is the load current, antly is the external current which could have a dc and an ac
component. The current and time variables are normalizdzefise andr = (L/R,)(2eRlI¢/h)
whereL andR_ are the inductance and the resistance of the load resgdgciivis the ratio of the
normal resistance of the junctiéito the resistance of the load. The second equation is limghr a

can be solved fol_. Substituting the result in Eq. 3.1 results in a second cedeation:

2
T?jT(ZP—f—(jj—(tp(l—f—p—f—TCOS(P)-i-Sin(p:|9¢+Td(l_j;?¢ (3.3)

This model can have subharmonic steps in the current-wlthgracteristic because it is gov-
erned by a second-order differential equation. This eqnatiith p = 0 has been considered by
some authors as the model for the single junction with aimsitr inductance [18].

An interesting extension of the circuit replaces the sifghetion by a serial array of junctions.
Most of the study on serial arrays is focused on the stahifityhe in-phase solution [10, 11, 19].
In the in-phase state all the junctions in the array evolveoimplete synchrony with each other.
It has been shown that when the load is inductive, the ingokakition for a serial array is stable.
Here we show that the response of the serial array to a RFaéraitcan reveal the synchrony
among the junctions.

The circuit consists dfl identical overdamped junctions in series, parallel with.ddad. The
equations of motion are:

?j—(f+sin(n+l|_zlm, i=12..,N (3-4)
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Figure 2:(a) I-V characteristics of a single junction with an induetioad witht =4 andp = 1 and a
serial array witht = 4,N =10 andp = 1/10. The latter has been shifted along the horizental axjsTi{b
same plots as (a) but with a capacitive load. The amplitudefraguency of the ac signal aresand 1 in
normalized units, respectively. The similarity in the twlotp in (a) is an indication of the serial junctions
being in phase; whereas in (b) the in phase solution is nblestehich results in the difference of the plot
for a single junction with that of the array.

de 1, pldg
a2 (35
For the in-phase solutiogy = @ = ... = @y and the dynamics of the array is reduced to those

described by Egs. 3.1 and 3.2 wiltp in place ofp. So in presence of the RF signal, if the
parameters are changed appropriately, the charactenigticesemble those of the single junction,
as can be seenin Fig. 2. It is known that for a serial arrayawithioad or with a capacitive load,
the in-phase solution is not stable [10]. We checked the\hehaf the array with a capacitive
load and found it to be different from that of the single juoctwith the same load.

The simplest two dimensional array consists of two junationparallel forming a loop which
is known as the dc SQUID [20]. When the quantum mechanicaseligconstant across each
grain, the junctions effectively behave like a single jumetand no fractional steps exist in the
characteristics. As shown in Figure 1b, the inductance etdbp serves to couple two junctions
linearly [14]

ae 1 l1+a
a+sm(9—nf)+ﬁ(6—(p)— > lext (3.6)
do . 1 l1-a
E+sm((p+nf)+ﬁ((p—6)_Tlext (3.7)

The coupling constant is/B. with B = 2mLolc/Po wherely is the loop self-inductance and
®y = h/2eis the quantum of flux. { is the normalized inductance of the loop. [14]) The frus-
tration f is defined asbes/Po Wheredg, is the external magnetic flux through the loop. The
equations have been written in dimensionless form as beflodex is a parameter that sets the
possible asymmetry in current division; thatds= 0 is the symmetric case. It can be noted that
when no external field is present £ 0) and the current is divided symmetricallg & 0), the
equations are invariant under permutatior@a@nd¢. This permutation symmetry is broken when
either of these conditions is removed.
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Figure 3:Characteristics of an inductive SQUID with symmetric bifis; 1/3 with B =1 (a) andB. =5
(b). The subharmonic Shapiro steps appear when the symimmdtrgken by the applied magnetic field but
they are narrower for larger values of the coupling constihe amplitude and frequency of the ac signal
are 05 and 1 in normalized units, respectively.

We have shown the results of the numerical investigationign & For a symmetric array, the
coupling is effectively inactive and the equations reducéhtit of a single junction: no subhar-
monic appears. Asymmetry (regardless of how it is imposeaRes the equations differ from the
single junction equation and this is clear in the appearafdbe subharmonic steps. When the
coupling constant is large (i.g8, is small), however, the fractional steps disappear despitiee
asymmetry of the array (see Fig. 4). In this limit the two m@saare strongly stuck together and
the two phase differences remain small: for very large dogpghe behavior approaches that of
the simple SQUID without inductance.

To get a better intuition about the dynamics of this arrag ibhstructive to rewrite the equations
in terms of the coordinatgs= 0 — @ andé = 6 + @

d_y+ Ey:aIM—ZSin(y/Z—nf)cos(E/Z) (3.8)
at B
% = lo¢ — 2c0gy/2 — 1f ) Sin(€ /2) (3.9)

Whena = f =0, the array is symmetric and= 0 is a stable fixed point of Eq. 3.8 regardless
of £. Egs. 3.8 and 3.9 are then decoupled, and Eq. 3.9 a singlégnragjuation. When either of
the parameter$ or a are non-zero there is no fixed point fiar Eq. 3.8 can be looked upon as a
first order equation with a bounded forcing term,ysmust also be bounded and not a “rotating”
phase variable (this is seen by the constraint placed orgjitien by the second term on the left
hand side). This allows us to linearize Eq. 3.8 aroyrd2rf:

d 1
d—z/—kB—(Z—i—BLcos(E/Z))y: Oleq + 277f COS(E /2) (3.10)
L
A solution of integral form fory in terms ofé can be found. Expanding cosine in Eq. 3.9 up
to quadratic term and substitutingyields:
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% +2sin(E/2){1— %[an - Ilt) /dt’u(t’)(alext +271f cOS(€ /2))]2} = leg (3.11)

Whereu(t) is the integrating factor of the Eq. 3.10:

u(t) = expl [ ot'(2+cos(& /2))/B1) (3.12)

Eqg. 3.11 can be transformed into a third order differentélation. Keeping higher orders
of the expansion of cdg/2) increases the order of the differential equation furthee &Mim
that the appearance of subharmonic resonances in theseedtifl equations is again due to their
higher order, as was the case for those describing the serigl

4 Thetriangular array and the nonsinusoidal equation

An interesting modification of the inductive SQUID is theatrgular array of Josephson junctions.
For a symmetric bias current this array behaves similaredQUID discussed above, but new
interesting features arise when the array is biased unsyricadly. We begin with the latter case
to show that fractional steps now appear due to a differeamare.  We will then return to the
symmetric bias to show that the equations resemble paglgdguations of the inductive SQUID.
For an arbitrary current division, defined as beforenhyhe equations of motion are

. 3+a 1. 2 . 1.
6—Tlm—ésm((ernf)—gsm(e—nf)—ésm(e—q)). 4.1)
- 3-a 2 . 1. 1.
(p:Tlm—ésm((p+nf)—§sm(6—nf)+§sm(9—<p), (4.2)

Since three junctions here form a loop, the phase differaccess the third junction (which
we have labeled) is just the difference betwedghandg. As in the case of the inductive SQUID,
when bothf anda are zero, the equations show a permutation symmetrg fand ¢. This in
turn means thay is equal to zero: the coupling is inactive, and the equat@nsotion are the
equations of two uncoupled junctions.

When the current is fed totally unsymmetrically £ 1 with f = 0), there is an exact solution
0 = 2¢ for the equations 4.1 and 4.2. When uncoupled, this soluésalts in the “nonsinusoidal’
term, sin2¢). Using Eq. 4.2, we get

Qo= %Iext - %sin((p) — %sin(Z(p). (4.3)
Indeed this circuit can be considered as a serial array efijums, consisting of andy junc-
tions, coupled by a parallel non-linear load, played by heotlosephson junction. The above
solution is valid when the in-phase solution is stable fa $erial junctions. Numerical results
show that this solution for two junctions in series is stablg for more than two junctions; having

a single junction as the load, the in-phase solution is radtisf12].
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Figure 4: |-V characteristics of a triangular plaquette for unsynmoebias a = 1 with zero f (a) and
symmetric bias withf = 1/3 (b). The amplitude and frequency of the ac signal asea@d 1 in normalized
units.

Equation 4.3 shows fractional Shapiro steps as well asentetgps in the characteristics. We
note that in this case in contrast with the previous arramyds) the uncoupled differential equa-
tion is of the first order. So here the non-sinusoidal termegponsible for the appearance of
subharmonic synchronization.

For the other non-zero values of the current division faatahere is no exact relation between
6 and¢ and the equations can not be decoupled. But the numeriadtsegain show that in the
absence of an ac external current there is an internal syniziation between two degrees of
freedom which can survive and result in factional steps wtherac signal is added. [12]

At the end we return to the case whan= 0 and the symmetry is removed by an external
magnetic field, that i$ # 0. Let us to rewrite the Eqgs. 4.1 and 4.2 in terms of the vaesphnd
& introduced before

32—:/+23in(y/2)[2cos(y/2) + cosrif cog€/2)] = ZCOE{%/) cos(g)sinnf, (4.4)
% = le¢ — 25iN(& /2)cogy/2 — mif). (4.5)

The last equation is similar to Eqg. 3.9. We have arranged tthiseijjuation to be compared with
the single junction equation. Fdr= 0, as for the linear coupled SQUIp = 0O is a solution and
the two equations are uncoupled. For non-zethe right hand side of Eq. 4.4 can be considered
as the forcing term, which is proportional to &itf ). Since there is not any constant driyeyill
be oscillating and forf € (0,1/2) the amplitude of the oscillations grows with increasihglt
means that with largef the two equations are more strongly coupled. The largerlomipauses
the width of the fractional steps to grow with

As for the origin of the fractional steps in this case, we rbé sincey experiences oscillations,
the equations can be linearized aroynd 2rrf and the results are similar to the arguments after
Eq. 3.12. Again one of the equations can be solved and sutizstitof the result in the other
equation leads to higher order derivatives which are resiptanfor the fractional steps.
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5 Conclusion

We have investigated two situations leading to the appearahthe fractional Shapiro steps. One
mechanism is a change in the equations of motion that leatti® tpresence of higher harmonics
of the phase difference, e.g. §p). Another mechanism is a change that introduces higher order
derivatives. The pattern of the fractional steps in bothesds similar. We can expect that in
general, if the system of few degrees of freedom is such gmatretry will not reduce it to the
equation of a single junction, fractional steps appear.
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