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Abstract

We investigate the origin of fractional Shapiro steps in arrays consisting of a few overdamped
Josephson junctions. We show that when the symmetry reducesthe equations to that of a
single junction equation, only integer steps appear. Otherwise, fractional steps will appear
when the evolution equations contain second (or higher) order derivatives or non-sinusoidal
terms. We make a point of distinguishing the last two possibilities in the generation of the
fractional steps.

1 Introduction

In thermodynamics we learn about the significance of acyclic process, as an attempt to delay
the production of entropy and instead to produce useful work. This physical basis is at work in
the design of any man-made as well as naturally occurring engine. A rechargeable battery is an
example of the former and the living cell of the latter. What we deal with is a nearly reversible
cycle that returns the system to (nearly) its beginning state, to make the laptop work or the cell to
live another day. In a cyclic process, the arrow of time is made circular!

However, the nutrition that keeps a cell going is not enough to keep the heart beating properly.
The 104 special set of cells, called pacemaker cells, communicate with each other and go in their
cycles in unison to trigger the rest of the heart and create the pumping action.[1] This synchronous
character is a recurring theme in nature. It is now known thatdrugs that affect the firing synchrony
of neuronal signals in the brain have disruptive effects on memory.[2] This is but one aspect of the
significance of neuronal synchrony. In physics one can find more familiar instances of synchrony;
the Moon rotates once on its axis as it cycles around the Earth, keeping the same side facing
us. Two pendulum clocks hanging on the wall will become synchronous, with their oscillations
running out of phase.[3]
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The first models that describe the mutual entrainment of a collection of oscillators where syn-
chronization occurs due to the interaction of the oscillators without any externally imposed drive
are due to Winfree and Kuramoto.[4, 5] Winfree studied amongother things the circadian rhythms
of biological clocks, and Kuramoto put forth a mathematicalmodel of mean field nature that could
be solved exactly.

In the Kuramoto model, a collection of nonlinear oscillators are coupled with each other. The
natural frequency of each oscillator is pulled or pushed depending on its relative phase with other
oscillators and adjusted according to the strength of the coupling. Kuramoto showed that beyond
a critical coupling (in the sense of a dynamic transition) the oscillators pull together forming a
large cluster characterized by a synchrony in motion. As thecoupling increases even further, the
synchronization becomes more and more complete.[6, 7]

The Kuramoto model can be realized in the laboratory, thanksto the Josephson junction. In a
Josephson junction, two superconducting islands are weakly coupled across a thin barrier. [8] Each
island keeps its (macroscopic) superconducting phase, andJosephson showed that the tunneling
current of the Cooper (electron) pairs depends on the phase difference between the islands. In a
current controlled system, a current through the junction imposes a phase difference. When the
current exceeds a critical value, a voltage develops acrossthe junction. Josephson showed that this
voltage is proportional to the rate of change of the phase difference with time. Thus the junction
is an element that runs in a cycle and whose frequency can be controlled.

Shapiro showed that a Josephson junction can tune itself to the oscillations of the external
source when the average frequency (or voltage) of the junction is close to an integer multiple of
the frequency of the external source, in this case a radio frequency drive.[9]

Putting Josephson junctions in series couples the oscillators, and a series array of overdamped
junctions (i.e. junctions with small capacitance) with a parallel load can become synchronized
[10]. This model is described by a variation of the Kuramoto model [11]. The mutual entrainment
occurs due to the coupling (the load) and does not require an external frequency of a master drive.
However, it can also help understand the response of the system to an external source. We recently
showed [12] that in case of arrays of a few junctions the mutual entrainment among the junctions
can be interpreted as a kind of normal mode for the system. Theexternal drive will predominantly
excite these frequencies. In this way a more general feature, fractional Shapiro steps, can appear.
This would mean, tuning to a fraction of the frequency of the external source.

In this paper we shall follow the above ideas and look more closely at the origin of the frac-
tional Shapiro steps. The systems we study have only a few degrees of freedom and consist of
overdamped junctions. In Sec. II we will introduce the elements of the model. In Sec. III we
consider a special kind of a load, namely the inductive load,and the role it plays in the formation
of the fractional steps. Sec. IV is devoted to a particular arrangement of the junctions that will
bring out another mechanism leading to the fractional steps. The conclusions follow in Sec. V.

2 The Model

We begin by introducing the resistive and capacitively shunted junction (RCSJ) model of the
Josephson junction, driven by an external current. In this model, the junction is in parallel with a
resistor and also a capacitor and is described by a second order differential equation:[13]

h̄C
2e

d2φ
dt2 +

h̄
2eR

dφ
dt

+ Ic sinφ = Iext (2.1)
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The parametersC, R andIc are the capacitance, normal resistance and critical current of the junc-
tion, respectively. It is convenient to put this equation indimensionless form by measuring time
in units of h̄/2eRIc and current in units ofIc, with the result

βc
d2φ
dt2 +

dφ
dt

+sinφ = Iext (2.2)

Hereβc = 2eR2CIc/h̄ is known as the McCumber parameter. In analogy with a damped driven
pendulum this parameter shows the strength of the inertial term compared with damping. For
large values of the McCumber parameter the junction is underdamped, whereas for small values
of βc the junction is in the overdamped regime.

This paper will focus on the overdamped limit, and in generalassumeβc = 0. In this limit
Eq. 2.2 has an analytic solution for the case of an extremely overdamped junction driven by a
constant current. When the normalized external current is less than unity, there is a fixed point for
which the phase is constant and the junction voltage is zero.The fixed point disappears, and the
equation undergoes a saddle-node bifurcation when the external current exceeds unity. In this case
the phase will grow without bound; we will say that the junction is in the rotating state. Since the
voltage across the junction is proportional to the rate of the change of the phase, in the rotating
state a voltage with non-zero average develops across the junction.

When the external current has an ac component, the junction can be synchronized by the ex-
ternal frequency. This fixes the voltage, so that as a function of the dc current the voltage exhibits
plateaus, called Shapiro steps [9]. In general we can index the steps by integersm andn according
to

2e < V >=
n
m

h̄ω (2.3)

where< V > denotes the time average voltage across the junction andω is the frequency of the ac
part of the driving current. The cases withm = 1 are called integer steps; otherwise we deal with
synchronization of the subharmonic type, or fractional steps. Renne and Polder [15] and Waldram
and Wu [16] have analyzed the single junction overdamped equation and shown that only integer
steps can occur for it.

Fractional steps can occur for an underdamped junction. This has been investigated by many
authors numerically and analytically. For example Azbel and Bak studied the case with small iner-
tial term and a train of pulses as the periodic drive, and showed that subharmonic synchronization
is possible.[17]

In this article we show that in circuits consisting of overdamped Josephson junctions and possi-
bly linear elements, fractional steps can appear both as a result of the appearance of the second (or
higher) order derivatives in the equations, or by non-sinusoidal terms developing in the equations
of motion.

It is also shown that whenever the symmetry of the array reduces the equations to that of the
single (overdamped) junction, only integer steps appear inthe characteristics.
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Figure 1: A serial array with a linear load (left) and two parallel junctions coupled by an inductance or
third junction (right).

3 The case of the inductive (linear) load

When a single junction is in parallel with a linear RL load, the Josephson equation is coupled with
a linear first order differential equation:

dφ
dt

+sinφ + IL = Iext (3.1)

dIL

dt
+

1
τ

IL =
ρ
τ

dφ
dt

(3.2)

where IL is the load current, andIext is the external current which could have a dc and an ac
component. The current and time variables are normalized asbefore andτ = (L/RL)(2eRIc/h̄)
whereL andRL are the inductance and the resistance of the load respectively. ρ is the ratio of the
normal resistance of the junctionR to the resistance of the load. The second equation is linear and
can be solved forIL. Substituting the result in Eq. 3.1 results in a second orderequation:

τ
d2φ
dt2 +

dφ
dt

(1+ ρ + τ cosφ)+sinφ = Iext + τ
dIext

dt
(3.3)

This model can have subharmonic steps in the current-voltage characteristic because it is gov-
erned by a second-order differential equation. This equation with ρ = 0 has been considered by
some authors as the model for the single junction with an intrinsic inductance [18].

An interesting extension of the circuit replaces the singlejunction by a serial array of junctions.
Most of the study on serial arrays is focused on the stabilityof the in-phase solution [10, 11, 19].
In the in-phase state all the junctions in the array evolve incomplete synchrony with each other.
It has been shown that when the load is inductive, the in-phase solution for a serial array is stable.
Here we show that the response of the serial array to a RF excitation can reveal the synchrony
among the junctions.

The circuit consists ofN identical overdamped junctions in series, parallel with a RL load. The
equations of motion are:

dφi

dt
+sinφi + IL = Iext , i = 1,2, ...,N (3.4)
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Figure 2: (a) I-V characteristics of a single junction with an inductive load withτ = 4 andρ = 1 and a
serial array withτ = 4, N = 10 andρ = 1/10. The latter has been shifted along the horizental axis. (b) The
same plots as (a) but with a capacitive load. The amplitude and frequency of the ac signal are 0.5 and 1 in
normalized units, respectively. The similarity in the two plots in (a) is an indication of the serial junctions
being in phase; whereas in (b) the in phase solution is not stable which results in the difference of the plot
for a single junction with that of the array.

dIL

dt
+

1
τ

IL =
ρ
τ

N

∑
i=1

dφi

dt
. (3.5)

For the in-phase solutionφ1 = φ2 = ... = φN and the dynamics of the array is reduced to those
described by Eqs. 3.1 and 3.2 withNρ in place ofρ . So in presence of the RF signal, if the
parameters are changed appropriately, the characteristics will resemble those of the single junction,
as can be seen in Fig. 2. It is known that for a serial array without load or with a capacitive load,
the in-phase solution is not stable [10]. We checked the behavior of the array with a capacitive
load and found it to be different from that of the single junction with the same load.

The simplest two dimensional array consists of two junctions in parallel forming a loop which
is known as the dc SQUID [20]. When the quantum mechanical phase is constant across each
grain, the junctions effectively behave like a single junction and no fractional steps exist in the
characteristics. As shown in Figure 1b, the inductance of the loop serves to couple two junctions
linearly [14]

dθ
dt

+sin(θ −π f )+
1

βL
(θ −φ) =

1+ α
2

Iext (3.6)

dφ
dt

+sin(φ + π f )+
1

βL
(φ −θ) =

1−α
2

Iext (3.7)

The coupling constant is 1/βL with βL = 2πL0Ic/Φ0 whereL0 is the loop self-inductance and
Φ0 = h/2e is the quantum of flux. (βL is the normalized inductance of the loop. [14]) The frus-
tration f is defined asΦext/Φ0 whereΦext is the external magnetic flux through the loop. The
equations have been written in dimensionless form as beforeandα is a parameter that sets the
possible asymmetry in current division; that is,α = 0 is the symmetric case. It can be noted that
when no external field is present (f = 0) and the current is divided symmetrically (α = 0), the
equations are invariant under permutation ofθ andφ . This permutation symmetry is broken when
either of these conditions is removed.
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Figure 3:Characteristics of an inductive SQUID with symmetric bias,f = 1/3 with βL = 1 (a) andβL = 5
(b). The subharmonic Shapiro steps appear when the symmetryis broken by the applied magnetic field but
they are narrower for larger values of the coupling constant. The amplitude and frequency of the ac signal
are 0.5 and 1 in normalized units, respectively.

We have shown the results of the numerical investigation in Fig. 3. For a symmetric array, the
coupling is effectively inactive and the equations reduce to that of a single junction: no subhar-
monic appears. Asymmetry (regardless of how it is imposed) makes the equations differ from the
single junction equation and this is clear in the appearanceof the subharmonic steps. When the
coupling constant is large (i.e.βL is small), however, the fractional steps disappear despiteof the
asymmetry of the array (see Fig. 4). In this limit the two phases are strongly stuck together and
the two phase differences remain small: for very large coupling the behavior approaches that of
the simple SQUID without inductance.

To get a better intuition about the dynamics of this array it is instructive to rewrite the equations
in terms of the coordinatesγ = θ −φ andξ = θ + φ :

dγ
dt

+
2

βL
γ = αIext −2sin(γ/2−π f )cos(ξ/2) (3.8)

dξ
dt

= Iext −2cos(γ/2−π f )sin(ξ/2) (3.9)

Whenα = f = 0, the array is symmetric andγ = 0 is a stable fixed point of Eq. 3.8 regardless
of ξ . Eqs. 3.8 and 3.9 are then decoupled, and Eq. 3.9 a single junction equation. When either of
the parametersf or α are non-zero there is no fixed point forγ . Eq. 3.8 can be looked upon as a
first order equation with a bounded forcing term, soγ must also be bounded and not a “rotating”
phase variable (this is seen by the constraint placed on the equation by the second term on the left
hand side). This allows us to linearize Eq. 3.8 aroundγ = 2π f :

dγ
dt

+
1

βL
(2+ βL cos(ξ/2))γ = αIext +2π f cos(ξ/2) (3.10)

A solution of integral form forγ in terms ofξ can be found. Expanding cosine in Eq. 3.9 up
to quadratic term and substitutingγ yields:
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dξ
dt

+2sin(ξ/2){1−
1
8
[2π f −

1
u(t)

∫
dt ′u(t ′)(αIext +2π f cos(ξ/2))]2} = Iext (3.11)

Whereu(t) is the integrating factor of the Eq. 3.10:

u(t) = exp[
∫

dt ′(2+cos(ξ/2))/βL] (3.12)

Eq. 3.11 can be transformed into a third order differential equation. Keeping higher orders
of the expansion of cos(γ/2) increases the order of the differential equation further. We claim
that the appearance of subharmonic resonances in these differential equations is again due to their
higher order, as was the case for those describing the serialarray.

4 The triangular array and the nonsinusoidal equation

An interesting modification of the inductive SQUID is the triangular array of Josephson junctions.
For a symmetric bias current this array behaves similar to the SQUID discussed above, but new
interesting features arise when the array is biased unsymmetrically. We begin with the latter case
to show that fractional steps now appear due to a different reason. We will then return to the
symmetric bias to show that the equations resemble partly the equations of the inductive SQUID.
For an arbitrary current division, defined as before byα , the equations of motion are

θ̇ =
3+ α

6
Iext −

1
3

sin(φ + π f )−
2
3

sin(θ −π f )−
1
3

sin(θ −φ). (4.1)

φ̇ =
3−α

6
Iext −

2
3

sin(φ + π f )−
1
3

sin(θ −π f )+
1
3

sin(θ −φ), (4.2)

Since three junctions here form a loop, the phase differenceacross the third junction (which
we have labeledγ) is just the difference betweenθ andφ . As in the case of the inductive SQUID,
when both f andα are zero, the equations show a permutation symmetry forθ andφ . This in
turn means thatγ is equal to zero: the coupling is inactive, and the equationsof motion are the
equations of two uncoupled junctions.

When the current is fed totally unsymmetrically (α = 1 with f = 0), there is an exact solution
θ = 2φ for the equations 4.1 and 4.2. When uncoupled, this solutionresults in the “nonsinusoidal”
term, sin(2φ). Using Eq. 4.2, we get

φ̇ =
1
3

Iext −
1
3

sin(φ)−
1
3

sin(2φ). (4.3)

Indeed this circuit can be considered as a serial array of junctions, consisting ofφ andγ junc-
tions, coupled by a parallel non-linear load, played by another Josephson junction. The above
solution is valid when the in-phase solution is stable for the serial junctions. Numerical results
show that this solution for two junctions in series is stable, but for more than two junctions; having
a single junction as the load, the in-phase solution is not stable[12].
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Figure 4: I-V characteristics of a triangular plaquette for unsymmetric bias α = 1 with zero f (a) and
symmetric bias withf = 1/3 (b). The amplitude and frequency of the ac signal are 0.5 and 1 in normalized
units.

Equation 4.3 shows fractional Shapiro steps as well as integer steps in the characteristics. We
note that in this case in contrast with the previous arrangements, the uncoupled differential equa-
tion is of the first order. So here the non-sinusoidal term is responsible for the appearance of
subharmonic synchronization.

For the other non-zero values of the current division factorα , there is no exact relation between
θ andφ and the equations can not be decoupled. But the numerical results again show that in the
absence of an ac external current there is an internal synchronization between two degrees of
freedom which can survive and result in factional steps whenthe ac signal is added. [12]

At the end we return to the case whenα = 0 and the symmetry is removed by an external
magnetic field, that isf 6= 0. Let us to rewrite the Eqs. 4.1 and 4.2 in terms of the variablesγ and
ξ introduced before

3
dγ
dt

+2sin(γ/2)[2cos(γ/2)+cosπ f cos(ξ/2)] = 2cos(
γ
2
)cos(

ξ
2

)sinπ f , (4.4)

dξ
dt

= Iext −2sin(ξ/2)cos(γ/2−π f ). (4.5)

The last equation is similar to Eq. 3.9. We have arranged the first equation to be compared with
the single junction equation. Forf = 0, as for the linear coupled SQUID,γ = 0 is a solution and
the two equations are uncoupled. For non-zerof the right hand side of Eq. 4.4 can be considered
as the forcing term, which is proportional to sin(π f ). Since there is not any constant drive,γ will
be oscillating and forf ∈ (0,1/2) the amplitude of the oscillations grows with increasingf . It
means that with largerf the two equations are more strongly coupled. The larger coupling causes
the width of the fractional steps to grow withf .

As for the origin of the fractional steps in this case, we notethat sinceγ experiences oscillations,
the equations can be linearized aroundγ = 2π f and the results are similar to the arguments after
Eq. 3.12. Again one of the equations can be solved and substitution of the result in the other
equation leads to higher order derivatives which are responsible for the fractional steps.
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5 Conclusion

We have investigated two situations leading to the appearance of the fractional Shapiro steps. One
mechanism is a change in the equations of motion that leads tothe presence of higher harmonics
of the phase difference, e.g. sin(2φ). Another mechanism is a change that introduces higher order
derivatives. The pattern of the fractional steps in both cases is similar. We can expect that in
general, if the system of few degrees of freedom is such that symmetry will not reduce it to the
equation of a single junction, fractional steps appear.
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