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Abstract

We present the Lie point symmetries admitted by third order partial differential equa-
tions (PDEs) which model the pressure of a visco-elastic liquid with relaxation which
filtrates through a porous medium. The symmetries are used to construct reductions of
the PDEs to ordinary differential equations (ODEs). Some boundary value problems
are also discussed.

1 Introduction

The method of Lie point symmetries [1, 2, 3, 4] is one of the few algorithmic methods at
our disposal to find analytic solutions to partial differential equations (PDEs). In recent
years it has been widely studied and applied to various models that originate in a wide
variety of fields like physics, engineering, population dynamics and finance. A summary of
some of the results is published in [5]. The solutions obtained from a Lie point symmetry
analysis are usually invariant solutions. This is a small subset of the general solution of
a PDE. That said, the solutions obtained are often of physical relevance as they contain
the symmetries inherent in the model and if nothing else, can be used to test numerical
simulations.

The flows of viscoelastic fluids through a porous medium have received a wide coverage
in engineering applications. Such applications include enhanced oil recovery, paper and
textile coating, insulation systems, geothermal engineering etc. Although viscoelastic
flows through porous media are quite prevalent in nature, the literature on such flows
with modified Darcy’s law is scant yet. Some attempts which involve modified Darcy’s
law for viscoelastic flows may be mentioned in the following works [6, 7, 8, 9, 10, 11, 12].

We consider the equation

pt =
[

|px|n−1 px + f
(

|px|n−1 px

)

t

]

x
(1.1)
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that describes the filtration of a visco-elastic liquid (oil) with relaxation through a porous
medium. Here p is the pressure of the oil and subscripts t and x denote partial derivatives.
This model was mentioned in [13].

In this article we give a Lie point symmetry classification of (1.1). Some group invariant
solutions to this equation are also presented.

In order to deal with the sign of px, and more specifically its derivative, comfortably
we consider z = (sign(px))n−1 pn

x = kpn
x. The function k is a piecewise continuous function

which has the value 1 or -1 at each value of x and t. Furthermore, it only changes sign
when px = 0 (i.e. when pn−1

x changes sign). Thus,

∂z

∂x
=

∂k

∂x
pn

x + knpn−1
x pxx =

∑

i

δ(x − xi)δ(t − ti)p
n
x + knpn−1

x pxx

where (xi, ti) are values of x and t for which pn−1
x changes sign and δ(x − xi) is the dirac

delta function. Therefore we have shown ∂z
∂x = knpn−1

x pxx. Similarly ∂z
∂t = knpn−1

x pxt.
We can therefore consider sign(px)n−1 as a constant with respect to differentiation. In

this article we will denote sign(px)n−1 = k.
Eq. (1.1) is therefore written as

pt = [kpn
x + f(kpn

x)t]x . (1.2)

We consider first the PDE

pt = [kpn
x + F (px)t]x (1.3)

which is a slight generalization of (1.2) in that we replace f(kpn
x) with F (px). The group

classification of Lie point symmetries of (1.2) and (1.3) are given in Section 2. Some
invariant solutions of (1.2) and (1.3) are presented in Sections 4 and 3 respectively. Lastly,
some related boundary value problems are discussed in Section 5.

2 Lie point symmetries of (1.2) and (1.3)

Here we first calculate the Lie point symmetries of Eq. (1.3). One can then show that the
symmetries of Eq. (1.3) are also symmetries of Eq. (1.2). For the sake of compactness we
present the symmetries of the two equations together.

Lie point symmetries of (1.3)

X = ξt (t, x, p)
∂

∂t
+ ξx (t, x, p)

∂

∂x
+ η (t, x, p)

∂

∂p

are determined by the equation

X(3)
[

pt − knpn−1
x pxx − F ′pxxt − F ′′pxxpxt

]

= 0 (2.1)

on the solution space of Eq. (1.3). Here X(3) is the appropriate third order extension of
X namely

X(3) = X + ζt(t, x, p, p(1))
∂

∂pt
+ ζx(t, x, p, p(1))

∂

∂px
+ ζxx(t, x, p, p(1), p(2))

∂

∂pxx

+ ζxt(t, x, p, p(1), p(2))
∂

∂xt
+ ζxxt(t, x, p, p(1), p(2), p(3))p

∂

∂pxxt
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with all ith order partial derivatives of p denoted by p(i) and

ζi = Di(η) − plDi(ξ
l), ζij = Di(ζ

j) − pjlDi(ξ
l), ζijk = Di(ζ

jk) − pjklDi(ξ
l),

are the standard prolongation formulae where i, j, k and l can be x or t and Di is the total
derivative operator to the ith independent variable. The convention of summation over
repeated indeces are followed.

Eq. (2.1) yields the following group classification of Lie point symmetries for F in Eq.
(1.3) not a constant. Eq. (1.3) with F (px) and n arbitrary admits the three translation
symmetries

X1 =
∂

∂t
, X2 =

∂

∂x
and X3 =

∂

∂p
.

These symmetries are also admitted by Eq. (1.2) with f(z) and n arbitrary.

The Lie algebra is extended in the following cases:

Case 1: F = Apx + B or f = Az1/n + B, n arbitrary,

X4 = p
∂

∂p
+ (1 − n)t

∂

∂t
.

Case 1.1: n = 1,

Xg = g(t, x)
∂

∂p
,

where g(x, t) is a solution of gt = gxx + Agxxt (which is Eq. (1.3) with F = Apx + B and
n = 1 or Eq. (1.2) with f = Az + B and n = 1).

Case 2: F = B
px

+ D or f = B
z1/n + D, n arbitrary,

X4 = x
∂

∂x
+ (n + 1)t

∂

∂t
.

Case 3: F = B(px + C)A + D or f = B(z + C)A, n = 1,

X4 = 2(A − 1)t
∂

∂t
+ (A − 1)x

∂

∂x
+ [p(A + 1) + 2Cx]

∂

∂p
.

Case 4: F = A ln |px| + B or f = A ln |z1/n| + B, n arbitrary,

X4 = x
∂

∂x
+ 2nt

∂

∂t
− p

∂

∂p
.

Case 5: F = A ln |px + C| + B or f = A ln |z + C| + B, n = 1,

X4 = x
∂

∂x
+ 2t

∂

∂t
− (p + 2Cx)

∂

∂p
.
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3 Invariant solutions of Eq. (1.3)

We use linear combinations or superpositions of the symmetries of the PDE to find so-
lutions which are invariant under these superpositions. This approach was for example
followed in [14]. The method of finding invariant solutions is also refered to as a method
of reduction. This is because of the fact that a solution invariant under a symmetry of a
PDE of order q with m independent variables is a solution of a PDE of order q with m−1
independent variables, called the reduced equation. In our case PDEs (1.2) and (1.3) are
third order PDEs with two independent variables. Thus the invariant solutions will solve
a third order ODE. ODEs are much easier to handle numerically than PDEs, so though
we do not have solutions in closed form, we have made some progress.

A summary of invariant solutions of Eq. (1.3) calculated in this way is given here
(see also [15] for detailed calculations): For F (px) and n arbitrary, the family of solutions
invariant under the Lie point symmetry X = ∂

∂t +c2
∂
∂x +c1

∂
∂p is p = c1t+h(x−c2t) where

h(s) satisfies

c1 − c2hs − knhn−1
s hss + c2F

′′h2
ss + c2F

′hsss = 0.

The space of invariant solutions is enlarged in the following cases.
Case 1: F = Apx+B with symmetry operator X = (c3+(1−n)t)∂

∂t +c2
∂
∂x +(c1+p) ∂

∂p ,
Case 1.1: n 6= 1,

p = (t(n − 1) − c3)
1

1−n h

(

x(n − 1) + c2 ln |t(n − 1) − c3|
n − 1

)

− c1

where h satisfies

h − c2h
′ + kn(h′)n−1h′′ − Ah′′ + Ac2h

′′′ = 0. (3.1)

Case 1.2: n = 1 and c3 6= 0,
p = et/c3h( c3x−c2t

c3
) − c1 where h satisfies the linear ODE with constant coefficients

h − c2h
′ − (c3 + A)h′′ + Ac2h

′′′ = 0.

Case 1.3: n = 1, c3 = 0 and c2 6= 0,
p = k1e

t/(c2
2
−A)ex/c2 − c1.

Case 2: F = A
px

+ B, n arbitrary with X = (c3 + (1 + n)t)∂
∂t + (c2 + x) ∂

∂x + c1
∂
∂p ,

Case 2.1: n 6= −1,

p =
c1 ln |c3 + (1 + n)t|

1 + n
+ h

(

(c3 + (1 + n)t)−1/(1+n)(x + c2)
)

where h(s) satisfies

c1(h
′)3 − s(h′)4 − kn(h′)n+2h′′ + 2As(h′′)2 − Ash′h′′′ = 0. (3.2)

Case 2.2 n = −1, c3 6= 0,

p =
c1t

c3
+ h

(

(c2 + x)e−t/c3
)
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where h(s) satisfies

c1(h
′)3 − s(h′)4 + c3h

′h′′ + 2As(h′′)2 − Ash′h′′′ = 0.

Case 2.3: n = −1, c3 = 0, c1 6= 0,

p = c1 ln |c2 + x| + t

c1
+ k1.

Case 3: F = B(px + C)A + D, n = 1 with X = (c3 + 2(A − 1)t)∂
∂t + (c2 + (A −

1)x) ∂
∂x + (c1 + 2Cx + (A + 1)p) ∂

∂p

p = −c1 + 2Cx

A + 1
− C(c2 + (A − 1)x

A + 1
+ (c2 + (A − 1)x)

A+1

A−1 h

(

(c2 + (A − 1)x)2

c3 + 2(A − 1)t

)

where h(s) satisfies

(A + 1)h + (A − 1)(s + 3A + 1)sh′ + 2(A − 1)2s2h′′

− 2(A − 1)AB
(

(A + 1)h + 2(A − 1)sh′
)A−1

[(A + 1)h

+ 2(A − 1)(5A − 1)s3h′′ + 2(A − 1)2s4h′′′
]

− 2(A − 1)2AB
(

(A + 1)s2h′ + 2(A − 1)s3h′′
) (

(A + 1)h + 2(A − 1)sh′
)A−2

(

(A + 1)h + (A − 1)(3A + 1)sh′ + 2(A − 1)2s2h′′
)

= 0.

Case 4: F = A ln |px| + B and n arbitrary with X = (c3 + 2nt)∂
∂t + (c2 + x) ∂

∂x +

(c1 − p) ∂
∂p ,

p = c1 + (c3 + 2nt)−1/(2n)h
(

(c2 + x)(c3 + 2nt)−1/(2n)
)

where h(s) satisfies

h(h′)2 + s(h′)3 + kn(h′)n+1h′′ − Ah′h′′ + As(h′′)2 − Ash′h′′′ = 0.

Case 5: F = A ln |px+C|+B, n = 1 with X = (c3+2t)∂
∂t +(c2+x) ∂

∂x+(c1−p−2Cx) ∂
∂p ,

p = −2Ct(x + c2)

c3 + 2t
+ c1 + 2Cc2 + h

(

x + c2√
c3 + 2t

)

/
√

c3 + 2t

where h(s) satisfies

2Cc3s + shh′ + h′′ − A(h′′ + sh′′′)

h′ + Cc3
+

As(h′′)2

(h′ + Cc3)2
= 0.
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4 Invariant solutions of Eq. (1.2)

In this section we present invariant solutions of Eq. (1.2) based on the group classification
of Lie point symmetries given in Section 2 and the solutions of Eq. (1.3) given in the
previous section.

We note that F (px) = f(z) and thus F ′ = knpn−1
x f ′ and

F ′′ = kn(n − 1)pn−2
x f ′ + (knpn−1

x )2f ′′. Thus for f(kpn
x) and n arbitrary, the family of

solutions invariant under the Lie point symmetry X = ∂
∂t +c2

∂
∂x+c1

∂
∂p is p = c1t+h(x−c2t)

where h(s) satisfies

c1 − c2hs − n|hs|n−1hss + c2(n(n − 1)|hs|n − 3hsf
′ + n2|hs|2n−2f ′′)h2

ss

+ c2n|hs|n−1f ′hsss = 0.

The invariant solutions of Eq. (1.2) differ from those of Eq. (1.3) only in two other
cases where the value of k has an influence on the reduced equation, namely Case 1.1 and
Case 2.1.

In Case 1.1 the reduced Eq. (3.1) is replaced by the equation

h − c2h
′ + kn(h′)n−1h′′ − Ak1/nh′′ + Ak1/nc2h

′′′ = 0.

Similarly, the equation to be solved for h in Case 2.1 for an invariant solution of Eq.
(1.2),

k1/nc1(h
′)3 − k1/ns(h′)4 − k(1+n)/nn(h′)n+2h′′ + 2As(h′′)2 − Ash′h′′′ = 0,

replaces (3.2).
In all other cases the invariant solutions of Eq. (1.2) are identical to those of Eq. (1.3)

as F (px) = F (z1/n) = f(z) in these cases.

5 Boundary value problems

In this section we consider boundary value problems for Case 1.1 and 2.1 of Eq. (1.2). A
boundary value problem has a solution invariant under a symmetry if not only the PDE
but also the boundary and the boundary conditions are invariant under the symmetry (see
for example [3] or Volume 2 of [5]).

The boundary value problem consisting of Eq.(1.2) with f = Az1/n + B, n > 1 , i.e.
Case 1.1, and boundary conditions

p(x, t0) = p0, p(x0, t) = p0 + p1(t− t0)
1/(1−n), p(x1, t) = p0 + p2(t− t0)

1/(1−n), (5.1)

admits the symmetry operator

X = (1 − n)(t − t0)
∂

∂t
+ (p − p0)

∂

∂p
.

The solution to the boundary value problem is of the form

p(x, t) = ((n − 1)(t − t0))
1/(1−n) h(x − t0) + p0,
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where h(x − t0) solves the boundary value problem

h + kn(h′)n−1h′′ − Ak1/nh′′ = 0,

h(x0 − t0) = (n − 1)1/(n−1)p1, h(x1 − t0) = (n − 1)1/(n−1)p2

which can be solved numerically. Note that k = sign(px)n−1 = sign(h′)n−1.

We consider Eq. (1.2) with f = B
z1/n +D, n > −1, that is Case 2.1, with the boundary

conditions

p(x, t0) = p0, p(x0, t) = p1, px(x0, t) = p3(t − t0)
−1

1+n .

This boundary value problem is invariant under the symmetry with operator

X = (1 + n)(t − t0)
∂

∂t
+ (x − x0)

∂

∂x
.

The solution to this boundary value problem is given by

p = h
(

((1 + n)(t − t0))
−1/(1+n)(x − x0)

)

where h(s) satisfies

k1/ns(h′)4 + k(1+n)/nn(h′)n+2h′′ − 2As(h′′)2 + Ash′h′′′ = 0

subject to the boundary conditions

h(∞) = p0, h(0) = p1, h′(0) = p3(1 + n)
1

1+n .

Again, k = sign(h′)n−1.

6 Conclusion

We have applied a group classification of Lie point symmetries to a third order non linear
PDE (1.3) and used the results to determine a group classification of Lie point symmetries
of Eq. (1.2) which describes the filtration of a visco-elastic liquid with relaxation through
a porous medium. The results of the two group classifications were used to determine
families of invariant solutions for (1.2) and (1.3). In some cases the invariant solutions
depend on functions which need to be determined by solving a third order ODE, called
the reduced equation.

Two initial/boundary value problems were presented and reduced to boundary value
problems for a second order ODE and a third order ODE which can be solved numerically.
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[15] Kartal Ö, Visco-elastic Liquid with Relaxation: Symmetries, Conservation Laws and Solu-
tions, Dissertation, University of Johannesburg, Auckland Park Campus, Gauteng, 2004.


