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Abstract

The method for writing a differential equation or system of differential equations in
terms of differential forms and finding their symmetries was devised by Harrison and
Estabrook (1971). A modification to the method is demonstrated on a wave equation
with variable speed, and the modified method is extended to determine approximate
and potential symmetries.

1 Introduction

The use of differential forms in differential geometry is now well-known and the literature is
abundant (see, e.g., [1]). Also, the analysis of invariance properties of differential equations
is presented in a number of texts, for example, [2]. A specific method for writing the
differential equation or system of differential equations in terms of differential forms and
finding their symmetries was devised by Harrison and Estabrook (see [3]).

In the sequel, a modification to the method is demonstrated with particular reference
to a wave equation with variable speed. This modified method is extended to determine
approximate and potential symmetries (for a detailed discussion on the latter, see [4] or,
for ‘nonlocal symmetries’, [5]). The advantage of using this method is that, in general,
the prolongation formulae required are of an order less than the order of the system
of partial differential equations in question. In the usual determination of symmetries,
the order of prolongation is equal to that of the system; these coefficients are usually very
tedious to calculate. In particular, second-order systems will reduce to first-order potential
systems so that no prolongation coefficients are required for determining possible potential
symmetries.

The original method requires that the differential forms constructed should form the
basis of a differential ideal. Possibly this would also work for the usual method of con-
structing symmetries; set up an ideal of differential equations, and then, instead of ensuring
that the action of a symmetry on the equations is zero on solutions of the equation, ensure
that the action of the symmetry on the equations leads to another equation in the ideal.

In this section, we will be using the reverse of this idea; in other words, rather than
ensuring that the Lie derivative of the forms stays within an ideal, we ensure that the
Lie derivative of the forms is zero when the forms themselves are zero. There are some
advantages to this method, one of which being that it is easy to extend the method to
approximate symmetries.

This idea will be used to calculate potential symmetries and approximate symmetries.
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2 Potential Symmetries

Consider Burgers’ equation which has an associated auxilliary system which we write here
for convenience:

vx = 2u

vt = 2ux − u2. (2.1)

We introduce the 2-forms

α = dvdt − 2udxdt

= vxdxdt − 2udxdt,

β = dvdx + 2dudt + u2dtdx

= vtdtdx − 2uxdtdx + u2dtdx,

which return the system (2.1) when annulled. To calculate a symmetry

X = τ
∂

∂t
+ ξ

∂

∂x
+ φ

∂

∂u
+ η

∂

∂v

of (2.1), we calculate the Lie derivatives of these forms. First,

LXα = X⌋dα + d(X⌋α)

= X⌋(−2dudxdt) + d(ηdt − τdv − 2uξdt + 2uτdx)

= (2φ − ηx + 2uξx + 2uτt)dtdx + (2uξu − ηu)dtdu + (2uξv − ηv − τt)dtdv

−2uτudxdu + (−τx − 2uτv)dxdv − τududv.

When α = β = 0, we have dtdv = 2udtdx and dxdv = u2dtdx − 2dtdu, so that

LXα|α=β=0 = (2φ − ηx + 2uξx + 2uτt − u2τx − 2u3τv + 4u2ξv − 2uηv − 2uτt)dtdx

+(2uξu − ηu + 2τx + 4uτv)dtdu − 2uτudxdu − τududv,

and we may now split the coefficients of dtdx, dtdu, etc, to obtain

dtdx : 2φ − ηx + 2uξx + 2uτt

−u2τx − 2u3τv + 4u2ξv − 2uηv − 2uτt = 0 (2.2)

dtdu : 2uξu − ηu + 2τx + 4uτv = 0 (2.3)

dudv : τu = 0 (2.4)

dxdu : the same as dudv

Next,

LXβ = X⌋(dβ) + d(X⌋β)

= X⌋(2ududtdx) + d(ηdx − ξdv + 2φdt − 2τdu + u2τdx − u2ξdt)

= (2uφ + ηt − 2φx + u2τt + u2ξx)dtdx + (u2ξu − 2φu − 2τt)dtdu

+(u2ξv − ξt − 2φv)dtdv + (−u2τu − ηu − 2τx)dxdu

+(−ηv − ξx − u2τv)dxdv + (2τv − ξu)dudv.
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When α = β = 0, we obtain

LXβ|α=β=0 = (2uφ + ηt − 2φx − u2τt + u2ξx + 2u3ξv − 2uξt − 4uφv

−u2ηv − u2ξx − u4τv)dtdx

+(u2ξu − 2φu − 2τt + 2ηv + 2ξx + 2u2τv)dtdu

−(ηu + 2τx + u2τu)dxdu + (2τv − ξu)dudv,

which may be split into

2uφ + ηt − 2φx − u2τt + u2ξx + 2u3ξv

−2uξt − 4uφv − u2ηv − u2ξx − u4τv = 0 (2.5)

u2ξu − 2φu − 2τt + 2ηv + 2ξx + 2u2τv = 0 (2.6)

ηu + 2τx + u2τu = 0 (2.7)

2τv − ξu = 0. (2.8)

Straight away we see from (2.4) that τ = τ(t, x, v), so that (2.7) becomes ηu = −2τx,
which combined with (2.8) means that (2.3) can be written

6uτv + 4τx = 0.

Separating coefficients of u gives τv = τx = 0, that is

τ = τ(t).

Thus (2.7) and (2.8) tell us that η = η(t, x, v) and ξ = ξ(t, x, v). We may now rewrite
(2.6) as

φu = ξx + ηv − τt

and therefore

φ = u(ξx + ηv − τt) + A(t, x, v),

where A is an unknown function. We can now write (2.5) in terms of functions all inde-
pendent of u:

u2(2ξx + ηv − 3τt) + 2uA + ηt − 2u(ξxx + ηvx) − 2Ax

+2u3ξv − 2uξt − 4u2(ξvx + ηvv) − 4uAv − u2ξx − u4τv = 0,

which may be split by powers of u into

(1) ηt − 2Ax = 0
(u) 2A − 2ξxx − 2ηvx − 2ξt − 4Av = 0
(u2) 2ξx + ηv − 3τt − 4ξvx − 4ηvv = 0
(u3) ξv = 0
(u4) τv = 0.

(2.9)

We see that (2.9e) tells us nothing new and (2.9d) gives us ξ = ξ(t, x). Next, (2.9c) can
be simplified:

2ξx + ηv − 4ηvv − 3τt = 0
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and therefore

ηv −
1

4
η =

v

4
(2ξx − 3τt) −

1

4
B(t, x),

where B(t, x) is an arbitrary function. We now have a linear differential equation with

integrating factor e
−v

4 , so

η = (v + 4)(3τt − 2ξx) + B(t, x) + e
v

4 C(t, x),

where C(t, x) is another arbitrary function. We now turn our attention to (2.9b), which
may be written independently of η as

Av −
1

2
A =

1

2
ξxx −

1

2
ξt −

1

8
e

v

4 Cx,

which is again a linear differential equation with integrating factor e−
1

2
v, so that

A = ξt − ξxx +
1

2
e

v

4 Cx + e
v

2 E(t, x),

where E(t, x) is an arbitrary function. Last, (2.9a) can be written

(v + 4)(3τtt − 2ξxt) + Bt + e
v

4 Ct

−2

[

ξtx − ξxxx +
1

2
e

v

4 Cxx + e
v

2 Ex

]

= 0,

and may be split according to the coefficients of v, e
v

4 and e
v

2 to give

(1) : 12τtt − 6ξxt + Bt + 2ξxxx = 0, (2.10)

v : 3τtt − 2ξxt = 0, (2.11)

e
v

4 : Ct − Cxx = 0, (2.12)

e
v

2 : Ex = 0. (2.13)

By virtue of (2.11), (2.10) can be rewritten

Bt − 2ξtx + 2ξxxx = 0. (2.14)

We may now write (2.2) as

(v + 4)2ξx − Bx + 4uξx − 2uτt + 2ξt − 2ξxx + 2e
v

2 E = 0,

which can be split according to coefficients of u, v and e
v

2 as follows.

(1) : 8ξx − Bx + 2ξt − 2ξxx = 0, (2.15)

u : 4ξx − 2τt = 0, (2.16)

v : 2ξx = 0, (2.17)

e
v

2 : E = 0. (2.18)

From (2.17) we see that ξ = ξ(t), so that (2.16) becomes τt = 0, that is τ is a constant. We
now see that (2.14) becomes Bt = 0, that is B = B(x), and (2.15) is then Bx = 2ξt. This
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means that ξtt = 0, so that ξt = 1/2Bx = k2, say. Integrating further gives B = 2k2x+k3,
and we then have

τ = k1,

ξ = k2t + k4,

φ =
1

2
e

v

4

(u

2
C + Cx

)

+ k2,

η = 2k2x + k3 + e
v

4 C,

where C is any solution of the equation Ct = Cxx. Thus we have the symmetry generators

X1 =
∂

∂t
,

X2 = t
∂

∂x
+

∂

∂u
+ 2x

∂

∂v
,

X3 =
∂

∂v
,

X4 =
∂

∂x
,

X∞ = e
v

4 (2Cx + uC)
∂

∂u
+ 4e

v

4 C
∂

∂v
.

Remarks.

1. The symmetry X∞ is the only “genuine” potential symmetry of Burgers’ equation,
as it is the only potential symmetry for which one or more of ξ, τ and φ depend on the
auxilliary variable v.
2. The auxilliary system (2.1) is only first order, so it is not necessary to calculate any
prolongation coefficients.

3 Approximate symmetries

The method may be extended to calculate approximate symmetries as well. We carry out
the following adaptation.

Let

E(xi, uα, uα
(1), . . .) + ǫF (xi, uα, uα

(1), . . .) = 0 (3.1)

be a perturbed equation, where E = 0 is the associated unperturbed equation. An ap-
proximate symmetry of (3.1) is a vector field X such that

X(E + ǫF )|E+ǫF=0 = O(ǫ2).

Now the perturbed equation will give rise to differential forms γj = αj + ǫβj, where
the αj are forms arising from the unperturbed equation E = 0. We shall refer to the γj

collectively as I, and the αj as I0. The phrase I = 0 should be taken to mean that for each
γj , we have γj = 0, and similarly for I0 = 0. The condition that X be an approximate
symmetry of (3.1) can now be rewritten as the system

LXγj|I=0 = O(ǫ2).
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How do we find such a symmetry? We adapt the algorithm of Baikov et al ([6], [7]).
1. Find a symmetry X0 of the unperturbed equation.
2. Let

hj =
1

ǫ
LX0

γj |I=0.

3. Find a vector field X1 such that

LX1
αj|I0=0 + hj = 0.

4. The vector field X = X0+ǫX1 is then an approximate symmetry of (3.1). The following
calculation shows why.

ǫLX1
αj |I0=0 + LX0

γj |I=0 = 0

which implies that
LǫX1

αj |I0=0 + LX0
γj |I=0 = 0.

Now
LǫX1

ǫβj = ǫ2LX1
β = O(ǫ2),

so that
LǫX1

αj|I0=0 + LǫX1
ǫβj |I=0 + LX0

γj |I=0 = O(ǫ2).

Next, we observe that
LǫX1

αj|I=0 − LǫX1
αj |I0=0 = O(ǫ2),

so we have that
LǫX1

γj|I=0 + LX0
γj |I=0 = O(ǫ2),

that is
L(X0+ǫX1)γj|I=0 = O(ǫ2),

and so X = X0 + ǫX1 is an approximate symmetry of (3.1).
We demonstrate the algorithm above using a perturbed wave equation

utt − e2xuxx + ǫF (t, x, u, ut, ux) = 0, (3.2)

the unperturbed version of which is utt − e2xuxx = 0. For the unperturbed equation, we
can introduce new variables w = ut and z = ux, and use the forms α = du − zdx − wdt
and β = dwdx + e2xdzdt, which give rise to, among others, the symmetry

X0 =
∂

∂x
− t

∂

∂t
+

u

2

∂

∂u
+

3

2
w

∂

∂w
+

z

2

∂

∂z
.

For the perturbed equation (3.2), we continue to use the 1-form α = du − wdt − zdx,
which gives w = ut and z = ux when annulled, but β = dwdx + e2xdzdt describes the
unperturbed equation, so we introduce

γ = β + ǫFdtdx,

which gives utt−e2xuxx+ǫF = 0 when annulled. Using the symmetry X0 for the algorithm
described above, we calculate

h1 =
1

ǫ
LX0

α|I=0 = 0.
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Thus, for α, we must find a symmetry X1 such that

LX1
α|I0=0 + h1 = 0

which means

LX1
α|I0=0 = 0,

which is no different to the unperturbed case. We end up finding that X1 must have
the usual prolongation coefficients, although we note that, as before, they need only be
calculated to first order.

Next,

h2 =
1

ǫ
LX0

γ|I=0

=

(

Fx − tFt +
u

2
Fu +

3

2
wFw +

1

2
zFz −

5

2
F

)

dtdx.

The next step in our algorithm is to find X1 (which we will call Y to avoid confusion with
subscripts), such that

LY β|α=β=0 + h2 = 0, (3.3)

where we recall that β = γ when ǫ = 0. Now

LY β|α=β=0 + h2

= {Y ⌋dβ + d(Y ⌋β)} |α=β=0 + h2

=
{

Y ⌋2e2xdxdzdt + d(Y wdx − ξdw + e2xY zdt − e2xτdz)
}

|α=β=0 + h2

=
(

Y w
t − e2xY z

x − ze2xY z
u + wY w

u

+Fx − tFt +
u

2
Fu +

3

2
wFw +

1

2
zFz −

5

2
F

)

dtdx

+
(

−2ξt − e2xY z
w − wξu

)

dtdw

+ e2x (−ξ − Y z
z − τt − wτu + Y w

w + ξx + zξu) dtdz

+
(

−Y w
z − e2xτx − ze2xτu

)

dxdz.

Thus (3.3) implies that

Y w
t − e2xY z

x − ze2xY z
u + wY w

u

+ Fx − tFt + u
2Fu + 3

2wFw + 1
2zFz −

5
2F = 0

ξt + e2xY z
w + wξu = 0

2ξ + Y z
z + τt + wτu − Y w

w − ξx − zξu = 0

Y w
z + e2xτx + ze2xτu = 0,

which is exactly the same set of determining equations that the method of Baikov et al

[6, 7] gives, so from here on, the calculations are identical.

For further discussions on potential symmetries, the reader may refer to [8, 9].
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