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 Abstract - Simulation of tunnel current flowing in a p-n diode 

made from armchair graphene nanoribbons (AGNRs) was built. 

The diode is composed of p-type and n-type AGNRs and bandgaps 

of the AGNRs are obtained by using a tight binding method. The 

bandgaps are required to describe a potential profile having a 

potential barrier of the diode. Transmittance of electrons tunneling 

through the potential barrier is then calculated by employing Airy 

wavefunctions. Gaussian quadrature method, which is a numerical 

approximation, is used to obtain tunnel current in the diode. All 

steps are visualized by using the graphical user interface of Matlab. 

 

 Index Terms - Armchair graphene nanoribbon, tunnel current, 

tight binding, Airy-wave function, gaussian quadrature, diode. 

 

1.  Introduction 

 Recently, learning the properties of graphene seems to 

be quite common for physics students both in the 

experiment and simulation. It is not strange because 

graphene has made breakthrough as the pioneer of 2-D 

materials [1]. Beside of that, for device applications, 

graphene has electronic properties which are believed as a 

base for high speed devices since it has high thermal 

stability, high electron and hole mobilities, and massless 

electron [2].  

Graphene in nanometer scale known as graphene 

nanoribbon (GNR) has two types: armchair GNR (AGNR) 

and zigzag GNR (ZGNR). They are in different 

characteristics; AGNR is known as a semiconductor while 

ZGNR as a conductor [2-5]. The semiconductor properties 

of AGNR can therefore be explored in designing and 

realizing electronic devices such as p-n junction diodes and 

field-effect transistors. Unfortunately, there is no simulator 

to visualize tunnel current in a p-n junction diode based on 

AGNRs for undergraduate physics students. 

In this paper, we describe the simple tight binding 

method to obtain the bandgap of AGNR. After that, the 

bandgap of AGNR is employed to find an energy band 

diagram of AGNR-based p-n junction diode and its potential 

barrier. Once the potential barrier is known, the 

transmittance of electrons tunneling through the potential 

barrier is then calculated by employing Airy wavefunctions. 

Gaussian quadrature method, which is a numerical 

approximation, is used to obtain tunnel current in the diode. 

Matlab with its graphical user interface is used to calculate 

all steps and visualize the potential barrier and tunnel 

current of the diode. 

 

2.  Physical Basis of Simulator 

The first step in calculating tunnel current in the p-n 

junction diode is to obtain the band gap of AGNR. This 

band gap can be obtained by using tight binding method, in 

which a geometry structure and atomic positions in a 

material lattice are very important. As shown in Fig.1, the 

atomic positions of AGNR are written as: 
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where a is the distance between two carbon atoms.  

 

 
Figure 1. A schematic view of lattice structure and atomic positions of 

AGNR 

 

In AGNR, the Hamiltonian and the energy dispersion 

relation are defined by [2]. 
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Here, Eo is the initial energy of electron, t is the overlapping 

parameter with the magnitude of 2.76 eV, and f(k) is the 

geometry factor. The geometry factor when the valence and 

conduction band in the low states is described by [2]. 
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 and p is a slight shift of the K point. 

Substituting the atomic positions (Eqs. (1) to (3)) into Eqs. 

(4) to (6), the energy dispersion relation is written as [3, 5]. 
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Here, the symbol ± indicates the valence and conduction 

bands, respectively. px and py are the wave number in the x- 

and y-axis, respectively, and it is assumed that the initial 

energy of electron is zero. The bandgap EG can be found 

from the relation EG=EC–EV. Because the length of AGNR 

is restricted in the x-axis and infinite in the y-axis, the wave 

number in the x-axis is defined by [2]. 
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where Wac is the width of AGNR. 
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Figure 2. (a) An energy band diagram of a p-n junction diode in thermal 

equilibrium, and (b) when the reserve-bias voltage is applied to a p-n 
junction.

 
 

 
Figure 3. A triangular potential barrier occurs in the depletion region 

when a small bias voltage is applied to the p-n junction diode. 

 

After the band gap is obtained, the next step is to obtain 

an energy band diagram of the p-n junction. Figure 2.(a) 

shows that the p-n junction is in the thermal equilibrium. In 

this condition, it is assumed that the valence band of the p-

type is equal to the conduction band of the n-type of AGNR. 

After the reverse bias was applied to the p-n junction diode, 

which is depicted in Fig.2.(b), the valence band of the p-type 

increases, so that its electrons have a probability to tunnel 

the depletion region, which is formed in the p-n junction 

region, to the conduction band of the n-type. This condition 

is known as Zenertunnel. The depletion region is therefore 

represented by a triangular potential barrier as given in Fig. 

3 [6,7]. 

In order to obtain electron transmittance when tunneling 

the triangular potential barrier, the triangular potential is 

divided into four regions. Because there is a potential slope 

in regions II and III (see Fig. 3), the Airy wavefunction will 

be used in those regions. The wavefunction for each region 

is defined by: 

     
1 1

exp exp , 0 ,
I

x A ik x B ik x x    
  (9) 

           , 0
2

,
II

d
x C Ai x D Bi x x     

 (10) 

           , ,
2

III

d
x E Ai x F Bi x x d     

 (11) 

   
2

exp ,    ,
IV

x G ik x x d  
  (12) 

 

where A, B, C, D, E, F, and G are constant, Ai and Bi are 

Airy function, 
/ eFGd E

 is the depletion region thickness 

and F is the electric field in the depletion region. In Eq.(9) 

the wave number in the region I is written as:  
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where M1 is the electron effective mass in p-junction, E is 

electron energy and ħ is reduced Planck constant. In the 

regions II and III the Airy function is expressed by: 
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where M2 is electron effective mass in n-junction, EG is the 

band gap and F is the applied electric field. And then for the 

region IV, the wave number is illustrated by: 
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Applying the boundary conditions between two regions with 

formulation 1i i   and 
1i i

x x

   
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  . Here I i III  , the wave 

function becomes:  
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transmittance is written as 
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 The electron transmittance is then used to calculate the 

tunnel current which is given by: 
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where 
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 are the Fermi-Dirac 

distributions in the valence and the conduction bands, 

respectively, kb is Boltzmann constant, gv is GNR 

degeneration which has a magnitude of 1, and  ħ is the 

Planck constant. The tunnel current is calculated using 

Gaussian Quadrature method which can be generated in 

Matlab. 

 

3. Results and Discussion 

Figure 4 shows the triangular potential barrier which is 

influenced by the electric field of 1 MV/cm and the AGNR 

width of 10 nm. The height and slope length of the potential 

can be altered by those parameters. The electric field has a 

role in extending and shortening the slope of the potential 

barrier. On the other hand, the AGNR width can change the 

height of the potential barrier. 

 
Figure 4. Simulation of potential barrier in AGNR p-n junction with 

parameters F=1 MV/cm and Wac= 10 nm. 

  

 
Figure 5. Simulation of tunnel current in AGNR p-n junction with 

parameters T=300 K, F=1 MV/cm, and Wac= 10 nm. 

 

Figure 5 gives simulation of tunnel current obtained by 

using the following parameters: temperature, electric field, 

and AGNR width are 300 K, 1 MV/cm, and 10 nm, 

respectively. It is found that the tunnel current increases 

with increasing the voltage bias. The tunnel current will be 

different if the temperature, electric field, and AGNR width 

are changed. In Refs.[6,7], it was shown that if the 

temperature and the AGNR width are increased and the 

electric field is decreased, the tunnel current will decrease. 

On the contrary, if the temperature and the AGNR width are 

low and small, respectively, and the electric field is high, 

then the tunnel current will be high. This condition occurs 

because temperature, electric field, and AGNR width 

influence the height of the potential barrier in the depletion 

region so that the electron penetration into the triangular 

potential barrier is tuned by those parameters.  

 

 
Figure 6. Simulation of tunnel current in AGNR p-n junction with 

parametersT=300 K, F=0.1 MV/cm, and Wac= 10 nm. 

 

 Figure 6 illustrates the tunnel current as a function of 

bias voltage with the electric field of 0.1 MV/cm and the 

AGNR width of 10 nm at a temperature of 300 K. By 

comparing Fig. 6 to Fig. 5, it is shown that by decreasing the 

electric field, the tunnel current will also decrease. This 

condition occurs because the decrease of the electric field 

will extend the slope length of potential barrier so that the 

probability of electron to tunnel the potential barrier is 

reduced.  

The tunnel current with the temperature of 300 K, the 

electric field of 1 MV/cm, and the AGNR width of 3 nm is 
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demonstrated in Fig.7. It was found that the tunnel current 

decreases when the AGNR width is reduced. This happens 

because reducing the AGNR width will have the same effect 

with elevating the height of the potential barrier. If the 

height of the potential barrier is higher than before, electrons 

require more energy to tunnel the potential barrier.  

 

 
 Figure 7. Simulation of tunnel current in AGNR p-n junction with 

parameters T=300 K, F=1 MV/cm, and Wac= 3 nm. 

 

   

4.  Conclusions 

 We have studied step by step how to obtain the tunnel 

current in an AGNR-based p-n junction diode. In the first 

step, we gave how to find the bandgap using the tight 

binding method. After that, we applied the bandgap to the p-

n junction diode to obtain a potential barrier and electron 

transmittance though the potential barrier was calculated by 

using Airy wavefunctions. In the last step, we employed 

Gaussian quadrature method to obtain tunnel current in the 

p-n junction diode. All steps are visualized by using the 

graphical user interface of Matlab. 
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