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Abstract

The influence of a magnetic field on the flow of an incompressible third grade electri-
cally conducting fluid bounded by a rigid plate is investigated. The flow is induced
due by the motion of a plate in its own plane with an arbitrary velocity. The solution
of the equations of conservation of mass and momentum balance are obtained ana-
lytically. We also present numerical solutions with particular choices of the magnetic
field and boundary conditions. Emphasis has been given to the study of the effects of
the magnetic field and non-Newtonian fluid parameters.

1 Introduction

Visco-elastic flows arise in disparate processes in engineering, science and biology – for
example, in polymer processing, coating, ink-jet printing, microfluidics, geological flows in
the earth’s mantle, hemodynamics and the flow of synovial fluid in joints. Modelling visco-
elastic flows is important for understanding and predicting the behaviour of processes and
thus for designing optimal flow configurations and for selecting operating conditions. The
literature on hydrodynamic visco-elastic flows is now quite extensive. However, the liter-
ature on the magnetohydrodynamic (MHD) non-Newtonian flows is not large. Reference
may be made to the recent interesting studies on the topic by Hayat et al. [1-5].

In all these studies, the applied magnetic field is taken as constant. In this paper we
derive an important steady state solution. More recently, Abd-el-Malek et al. [6] obtained
the solution of the Rayleigh problem for a power law fluid by taking the magnetic field’s
strength proportional to t−

1

2 where t is the time. Wafo Soh [7] extended the analysis of
Abd-el-Malek et al. [6] by waving the restriction on t. These two papers were two impor-
tant contributions to the analysis of the effect of time dependent magnetic fields on the

Copyright c© 2008 by T Hayat, H Mambili-Mamboundou, E Momoniat and F M Mahomed



78 T Hayat, H Mambili-Mamboundou, E Momoniat and F M Mahomed

flow.

Although the power-law model adequately fits the shear stress and shear rate measure-
ment for non-Newtonian fluids, it is not capable of predicting the normal stress effects that
lead to phenomena like “die-swell” and “rod-climbing” [8]. Due to this fact, researchers
prefer to invoke third grade fluid models. The MHD flow of visco-elastic fluids has appli-
cations in different fields. An important field is electromagnetic propulsion. Some fluids
with thixotropic behaviour help in the flow of blood, coating of paper, plastic extrusion
and lubrication with heavy oils and greases.

Motivated by these analyses, in the present study we extend Wafo Soh’s [7] analysis to
the flow of a third grade fluid. A further motivation for studying the Rayleigh problem
is its close relation with boundary layer growth. Section 2 contains the basic equations.
Section 3 deals with the formulation of the problem. Analytical solutions are presented in
Sections 4 and 5. Numerical solutions are presented in Section 6. Section 7 contains the
concluding remarks.

2 Basic equations

The fundamental equations governing the MHD flow of an incompressible electrically
conducting fluid are the field equations

divV = 0, ρ
dV

dt
= divT + J× B, J = σ (E + V ×B) , (2.1)

where V is the fluid velocity, ρ is the density of the fluid, σ is the fluid electrical con-
ductivity, J is the current density, B is the magnetic induction so that B = B0 + b (B0

and b are the applied and induced magnetic fields respectively), d/dt is the material time
derivative and T is the Cauchy stress tensor which for a third grade fluid satisfies the
constitutive equation

T = −pI + µA1 + α1A2 + α2A
2
1 + β1A3 + β2[A1A2 + A2A1] + β3(trA

2
1)A1,

A1 = gradV + (gradV)T, (2.2)

An =
dAn−1

dt
+ An−1 grad V + (gradV)TAn−1, n ≥ 2,

where the isotropic stress p I is due to the constraint of incompressibility, µ denotes the
dynamic viscosity, αi (i = 1, 2), βi (i = 1 − 3) are the material constants, T indicates the
matrix transpose and Ai (i = 1− 3) are the first three Rivlin-Ericksen tensors. Moreover,
the Clausius-Duhem inequality and the result that the Helmholtz free energy is minimum
at equilibrium provide the following restrictions [9]:

µ ≥ 0, α1 ≥ 0, β1 = β2 = 0, β3 ≥ 0, | α1 + α2 |≤
√

24µβ3. (2.3)
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3 Mathematical formulation

Consider the unidirectional flow of a third grade fluid, obeying equations (2.1) and (2.3),
maintained above a non-conducting plate by its motion in its own plane with arbitrary
velocity V (t). The fluid is magnetohydrodynamic with small magnetic Reynold’s number

so that the induced magnetic field is negligible. By taking the velocity field

(

u(y, t), 0, 0

)

,

the conservation of mass equation is identically satisfied and in the absence of modified
pressure gradient the momentum balance equation (2.1) along with equations (2.2) and
(2.3) yields

∂u

∂t
− ν

∂2u

∂y2
− α

∂3u

∂t∂y2
− ǫ

(

∂u

∂y

)2 ∂2u

∂y2
+ MH2(t)u = 0, (3.1)

where

ν =
µ

ρ
, α =

α1

ρ
, ǫ =

6β3

ρ
,M =

σµ̄2

ρ
,H0 =

B0

µ̄
. (3.2)

In equations (3.1) and (3.2) ν is the dynamic viscosity and µ̄ is the magnetic permeability
of the fluid. By neglecting the modified pressure gradient the dependance of (3.1) on α2

has been removed.

The relevant boundary and initial conditions are

u(0, t) = V (t), t > 0,

u(y, t) → 0 as y → ∞, t > 0, (3.3)

u(y, 0) = g(y), 0 < y < ∞,

where V (t) and g(y) are as yet arbitrary functions. These functions are constrained in the
next section when we seek exact solutions using the Lie point symmetries method. Also
in Section 6, for the numerical solution, we choose specific functions for V (t) and g(y).

4 Symmetry analysis

We present a complete Lie point symmetry analysis of the nonlinear partial differential
equation (3.1). We find two cases for which equation (3.1) admits a Lie point symmetry
algebra. These algebras are used to reduce the initial and boundary value problem (3.1)-
(3.3) to solvable form.

An operator

χ = τ
∂

∂t
+ ξ

∂

∂y
+ η

∂

∂u
, (4.1)

where τ, ξ and η are functions of t, y and u, is a Lie point symmetry generator of the
partial differential equation (3.1) if [10]

χ[3]

{

ut − νuyy − αutyy − ǫu2
yuyy + MH2(t)u

}
∣

∣

∣

∣

∣

(3.1)

= 0, (4.2)
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where

χ[3] = τ
∂

∂t
+ ξ

∂

∂y
+ η

∂

∂u
+ ηt ∂

∂ut
+ ηy ∂

∂uy
+ ηyy ∂

∂uyy
+ ηtyy ∂

∂utyy
(4.3)

is the third prolongation of the operator (4.1) in which the additional coefficient functions
satisfy

ηt = Dt(η) − utDt(τ) − uyDt(ξ),

ηy = Dy(η) − utDy(τ) − uyDy(ξ),

ηyy = Dy(η
y) − utyDy(τ) − uyyDy(ξ),

ηtyy = Dt(η
yy) − utyyDt(τ) − uyyyDt(ξ)

with total derivative operators given by

Dy =
∂

∂y
+ uy

∂

∂u
+ uty

∂

∂ut
+ · · ·

Dt =
∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ · · · .

The determining equation (4.2), after separation with respect to the partial derivatives
and their powers, gives rise to an overdetermined system of linear homogeneous partial
differential equations for the coefficient functions τ, ξ and η. Solution of this system gives
ξ = a1, where a1 is a constant, and that H2 is constrained by the ordinary differential
equation

dH2

dt
+

2βa3e
2βt

a2 + a3e2βt
H2 =

2β2a3e
2βt

M(a2 + a3e2βt)
, (4.4)

where a2, a3 are further constants and β = ν/α.

The solution for H2 gives two sets of Lie point symmetries depending on the values of
the constants in the ordinary differential equation (4.4).

4.1 Case 1: a3 = 0, a2 6= 0

Equation (4.4) yields H2 = C1 where C1 is a constant and the solutions for the coefficient
functions are

ξ = a1, τ = a2, η = a4e
−MH2t,

where a4 is a constant.
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4.2 Case 2: a2 = 0, a3 6= 0

When a2 = 0, a3 6= 0, H2 = β/M + C2e
−2βt where C2 is a constant and the Lie point

symmetry coefficients are

ξ = a1, τ = a3e
2βt, η = −a3βue2βt + a5L(t), β = ν/α,

where a5 is a constant with

L(t) = exp

(

−M

∫ t

0
H2(s)ds

)

.

Thus we obtain two sets of three-dimensional Lie algebras, generated in each case by

Case 1:

X1 =
∂

∂y
, X2 =

∂

∂t
, X3 = L(t)

∂

∂u
, (4.5)

Case 2:

X1 =
∂

∂y
, X2 = e2βt ∂

∂t
− βue2βt ∂

∂u
, X3 = L′

2(t)
∂

∂u
, β = ν/α. (4.6)

5 Physical invariant solutions

Given the generator (4.1) the invariant solution corresponding to χ is obtained by solving
the characteristic system

dy

ξ
=

dt

τ
=

du

η
.

We use only the operators which give meaningful physical solutions of the initial and
boundary value problem (3.1) and (3.3). This means that only X2 in each case is consid-
ered.

5.1 Steady state solution corresponding to Case 1

The form of the invariant solution in this case corresponding to X2 is

u(y, t) = F (y) (5.1)

which is a steady state solution. The substitution of (5.1) into the partial differential
equation (3.1) results in the following reduced second-order ordinary differential equation

(

ν + ǫ

(

F ′(y)

)2)

F ′′(y) − C1MF (y) = 0. (5.2)
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The boundary conditions imply

F (0) = u0, F (∞) = 0, (5.3)

and

V (t) = u0, (5.4)

where u0 is a constant.
Note that no steady state solution exists when the magnetic field is zero as equation

(5.2) reduces to F ′′ = 0. Applying the boundary condition (5.3) on this equation results
in the trivial solution F = 0.

The double integration of (5.2) leads to

∫ F ±√
ǫdF

√

−ν ±
√

ν2 + 2ǫ(C1MF 2 + λ2)
= y + λ1, (5.5)

where λ1 and λ2 are constants that need to be fixed by (5.3). We observe that we can-
not impose the boundary condition u(y, 0) = g(y) for arbitrary g(y). The expression of
vorticity is

wz = −dF

dy

= ±

√

−ν ±
√

ν2 + 2ǫ(C1MF 2 + λ2)

ǫ
. (5.6)

We focus our attention on the solution (5.5). For a real solution we require the positive
sign in the integrand. From (5.3) the boundary condition F (0) = u0 implies

±
√

ǫ

∫ u0 dF
√√

ν2 + 2ǫC1MF 2 + 2ǫλ2 − ν
= λ1.

Thus equation (5.5) becomes

±
√

ǫ

∫ F

u0

dF
√√

ν2 + 2ǫC1MF 2 + 2ǫλ2 − ν
= y. (5.7)

We now investigate when the boundary condition F (∞) = 0 of (5.3) is satisfied for the
solution (5.7). Clearly the integral of (5.7) must be divergent as F → 0 so as to ensure
that y → ∞. It is seen that if λ2 6= 0, then the integrand behaves like

[
√

ν2 + 2ǫλ2 − ν]−1/2 as F → 0

which means that the integral in (5.7) is convergent as F → 0. For λ2 = 0, the integral in
(5.7) is divergent since the left hand side of (5.7) is

±
(

ǫ
ν

)1/2 ∫ F
u0

dF
q√

1+2ǫν−2C1MF 2
−1

= ±
(

ν
C1M

)1/2
∫ F
u0

( 1
F + O(F ))dF as F → 0

= ±
(

ν
C1M

)1/2
ln
(

F
u0)

)

+ O(F 2) as F → 0.
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This tends to infinity if we take the negative sign. Therefore the solution (5.7) subject to
the boundary conditions (5.3) is

( ǫ

ν

)1/2
∫ u0

F

dF
√√

1 + 2ǫν−2C1MF 2 − 1
= y. (5.8)

The vorticity (5.6) upon using (5.8) becomes

wz =
(ν

ǫ

)1/2
√

√

1 + 2ǫν−2C1MF 2 − 1. (5.9)
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Figure 1: Solution of (5.11) and (5.12) for M∗ = 1.

We now write the equation (5.2), the solution (5.8) and the vorticity (5.9) in dimen-
sionless form. The scaling transformations

y = u0

( ǫ

ν

)1/2
ȳ, F = u0F̄ (5.10)

results in equation (5.2) and the boundary conditions (5.3) becoming
(

1 +

(

dF̄

dȳ

)2
)

d2F̄

dȳ2
− M∗F̄ = 0 (5.11)

and

F̄ (0) = 1, F̄ (∞) = 0, (5.12)

respectively, where

M∗ = C1Mu2
0

ǫ

ν2
(5.13)
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is the Hartmann number. So the equation (5.11) depends only on one parameter, viz. the
Hartmann number M∗. Similarly, under the scaling transformation (5.10) the solution
(5.8) becomes

∫ 1

F̄

dF̄
√√

1 + 2M∗F̄ 2 − 1
= ȳ. (5.14)

The equation (5.14) is the solution of the boundary value problem (5.11) and (5.12). By
means of the scaling

wz =
(ν

ǫ

)1/2
w̄z (5.15)

the vorticity, in terms of the Hartmann number, is

w̄z =

√

√

1 + 2M∗F̄ 2 − 1. (5.16)

We present the solution of (5.11) and (5.12) for M∗ = 1 in Figure 1 and various values
of M∗ in Figure 2. We plot the graph of the vorticity against F̄ in Figure 3.
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Figure 2: Solution of (5.11) and (5.12) varying M∗.

We have plotted Figures 1 and 2 to observe the behaviour of the flow when varying
different emerging parameter M∗. Figure 1 presents the solution of the problem consisting
of Eqs. (5.11) and (5.12). This indicates that F̄ decreases as ȳ increases. It can be noted
from Figure 2 that the velocity decreases when the Hartmann number M∗ increases.

We have also plotted the vorticity (5.16) as a function of the velocity in Figure 3 and
it is seen that the vorticity increase with the velocity. In Figure 4, we represent the effect
of the Hartmann number M∗ on the vorticity and it shows that the vorticity increases as
the Hatmann number increases.
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Figure 3: Solution of (5.16) for M∗ = 1.
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Figure 4: Solution of (5.16) varying M∗.
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5.2 Invariant solution corresponding to Case 2

The invariant solution for this case for X2 is given by

u(y, t) = F (y)e−βt. (5.17)

The insertion of (5.17) into (3.1) gives the reduced equation

γ

(

F ′(y)

)2

F ′′(y) − F (y) = 0, (5.18)

where γ = ǫ/(C2M). Through Eqs. (3.3) and (5.17) and selecting V (t) = C2e
−βt, the

corresponding boundary conditions are

F (0) = C2, F (∞) = 0. (5.19)

To integrate the boundary value problem (5.18) and (5.19), we let

F ′(y) = K(F ) (5.20)

and substitute (5.20) into (5.18) to obtain

F − γK3 dK

dF
= 0. (5.21)

The integration of (5.21) gives

K(F ) =

(

2

γ
F (y)2 + B1

)1/4

, (5.22)

where B1 is a constant. Equation (5.20) together with (5.22) yields

dF

dy
=

(

2

γ
F (y)2 + B1

)1/4

. (5.23)

Thus

∫ F (2

γ
F 2 + B1

)

−1/4

dF = y + B2, (5.24)

where B2 is another constant.
Now we impose the boundary conditions (5.19) on the solution (5.24). The boundary

condition F (0) = C2 of (5.19) imposed on the solution (5.24) yields

∫ C2 dF

(B1 + 2
γ F 2)1/4

= B2.

Therefore with this boundary condition, solution (5.24) becomes

∫ F

C2

dF

(B1 + 2
γ F 2)1/4

= y. (5.25)
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Figure 5: Numerical solution of (3.1) when there is no magnetic field (H = 0), with ǫ = 1.1,

ν = 1.85, α = 1, M = 1, V (t) = e−t and g(y) = e−y
2

.

Now we invoke F (∞) = 0 of (5.19) on the solution (5.25). We first consider the case
B1 6= 0. The integral (5.25) needs to be divergent as F → 0 for y → ∞. For small F
the left hand side of (5.25) is convergent. Hence the boundary condition F (∞) = 0 is not
satisfied. For the case B1 = 0, the solution (5.25) gives

(γ

2

)1/4
[2F 1/2 − C

1/2
2 ] = y (5.26)

which means that the integral is convergent. Thus the solution (5.25) does not satisfy the
boundary condition F (∞) = 0.

Therefore for this case we do not obtain a time-dependent solution using symmetry.

6 Numerical solution of the PDE (3.1)

In this section we present numerical solutions of the partial differential equation (3.1)
subject to (3.3) at various times for different values of the magnetic field and for some
emerging parameters.

In Figures 5 to 7, we have plotted numerically the velocity profile for different values
of time, when the magnetic field is first taken to be zero (Figure 5), then constant (Figure
6) and dependent on time (Figure 7). In the case of H = 0, the velocity decreases and
then increases when the value of t is increased. For each of the curves there is increase of
the velocity before decay due to velocity of plate decreasing. The velocities in Figures 5-7
are similar in a qualitative sense. However the shape of velocity differs slightly depending
on the form of the magnetic field considered. It can be said that the shape of the velocity
is more parabolic in the case when the strength of the magnetic field is non zero. Finally
the variation of ǫ on the velocity is seen in Figure 8. It shows that velocity first decreases
slightly and then increases when ǫ is increased.
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Figure 6: Numerical solution of (3.1) when the magnetic field is taken constant (H = 1), with

ǫ = 1.1, ν = 1.85, α = 1, M = 1, V (t) = e−t and g(y) = e−y
2

.
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Figure 7: Numerical solution of (3.1) for a time dependent magnetic field (H = 1 + 2e−2t), with

ǫ = 1.1, ν = 1.85, α = 1, M = 1, V (t) = e−t and g(y) = e−y
2

.
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Figure 8: Numerical solution of (3.1) varying ǫ, with ν = 1.85, H = 1 + 2e−2t, α = 1, M = 1,

t = 0.2, V (t) = e−t and g(y) = e−y
2

.

7 Concluding remarks

In this paper we have considered the Rayleigh problem of an incompressible electrically
conducting non-Newtonian fluid of third grade with magnetic field. After having formu-
lated the problem, we obtained a non-linear third-order partial differential equation. The
Lie symmetry approach was employed for the reduction of this equation. We obtained a
first-order differential equation that the magnetic field H had to satisfy in order for the
existence of Lie point symmetries. Two cases arose and one symmetry was invoked for
each case. Invoking the relevant symmetry, we were able to reduce the partial differential
equation to a second-order non-linear ordinary differential equation for each of the cases.
In the first case, we presented the steady state solutions for various values of the emerging
parameter and in the second case, the analytical solution that was obtained did not satisfy
the boundary conditions. Thus we have shown that static solutions only exist for H 6= 0
by using symmetry methods. Finally, we presented numerical solutions of the partial dif-
ferential equation with a choice of variable magnetic field as well as suitable boundary
conditions in Figures 5 to 8. We briefly comment on the characteristic diffusion distance.
The velocity (vorticity) diffuses a characteristic distance (νt)1/2 in time t. This is clearly
illustrated in Figures 5 to 8. This may explain why u decays significantly after t ≈ 1 and
not, e.g., t ≈ 10.
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