
Teaching Programming Subjects with Emphasis on

Programming Paradigms

Selvakumar Samuel

Asia Pacific University of Technology and Innovation, TPM, 57000 Bukit Jalil, Kualalumpur, Malaysia

selvakumar@apu.edu.my

 Abstract – No holistic approach is available to teach

programming subjects, especially for novices. The current practice

involves guiding the students to become the users of a

programming language or tools. This study explores an alternative

approach to teaching programming subjects. The students have to

learn programming languages with respect to programming

paradigms instead of learning how to write a solution for a problem

using a language directly. Solutions are designed by the software

engineers, programming paradigms are providing the way to

design our thoughts. Programming languages generally provide

libraries to implement the solution and provide the platform to run

the solution. Students should know languages should be chosen

primarily if it has paradigm support, according to the way the

solution is designed and the required libraries are available. This

makes the learners to understand the program language structure

and programming in a better way. This approach has been tested

with 30 batches of students in 7 universities. 80% of the students,

particularly beginners responded positively and 50% of the

students felt that, their fear on programming has been overcome.

Almost everyone understands the programming language,

architecture and program structure in a better way.

 Index Terms - Teaching, Programming Subjects,

Programming Paradigms, Programming languages.

1. Introduction

 Since 1970‟s programming subjects are being taught in

universities, but there is no holistic approach to teach

programming subjects. A programming paradigm is a way

of conceptualizing what it means to perform computation,

and how tasks that are to be carried out on a computer

should be structured and organized [1]. Programming

paradigms are the core for any computer programming

languages and a program design.

If students understand the role of programming

paradigm in a program design, they can design a solution for

any requirements with the use of a programming language

as every language embodies on one core programming

paradigm and support few other programming paradigms.

This report addresses some of the issues in relation to

teaching programming subjects for computing and non-

computing students and proposed a model to teach

programming subjects with the emphasis of programming

paradigms. Current teaching practices and the related issues

are evaluated briefly in Section 2. Programming paradigms

and programming languages are evaluated in view of the

proposed model in section 3. The proposed model is

explained in section 5.

2. Evaluation on Current Teaching Practices of

Programming Subjects and Issues

 Programming subjects are being taught in universities;

in the meantime, many software development companies

and corporate training companies are conducting training

programs and workshops for programming languages. This

is unusual for almost all other technical and non-technical

subjects. As we know the objectives of conducting trainings

or conducting workshops by the corporate training centers

are characteristically different with university education

systems. Generally trainings or workshops introduce a

language feature and make the attendees familiar with the

features eventually users of a language or a tool.

Unfortunately, university students are also learning

computer programming languages in a similar way, so that

at the end of the day they will become a user of the

computer programming languages.

 Another issue is, the same approach is being used to

teach programming subjects for computing and non-

computing students. Basically computing major, students

are learning additional programming subjects compared to

the non-computing major, students. This is the major

difference between them. Computing students should not

learn a programming language as a user of the language as

like non computing students. They should focus more on

language architecture, working principles, and other

technical details of a language design. Consequently,

students could be a programming language designer, instead

of merely a user.

3. Evaluation on Programming Paradigms and

Programming Languages

The following discussion is mainly based on the

proposed model.

In general programming paradigm is an approach to

design a computing solution for a problem. Programming

language paradigms such as structured, procedural, object

oriented programming, functional programming, logic

programming, concurrent programming and event-driven

programming [3,4,5] are common and dominant

programming paradigms in the current development

scenarios. Most of the current development scenarios need

multiple programming paradigms to write the computing

solutions as single programming paradigm is not sufficient

to design a solution for the current problems.

A programming language is actually a collection of libraries

or API‟s, which are based on a core programming paradigm

and supports some other programming paradigms.

International Conference on Advances in Education Technology (ICAET 2014)

© 2014. The authors - Published by Atlantis Press 94

For example Java programming language is based on object

oriented programming paradigm, but it supports structural,

procedural, functional, concurrent programming and event

driven programming. Mainly object oriented approach is

blended with event driven programming. Since the javas‟

core paradigm object oriented all the libraries are made as

classes and interfaces. Figure 1 lists JavaMe Packages, all

classes, abstract classes and interfaces in the left side panels

and members details in the right side panel. Complete

details can be found in Ref. [2].

Fig. 1 JavaMe API lists

Figure 2 in section 5 demonstrates the role of

programming paradigms in a simple Java code.

If a student knows how to use a class and its members

to write a computing statement, he can apply it to using

another class. There is no difference in using another class.

If a student knows how to use the „if..then..else..‟ statement

in one programming language, conceptually there is no

difference for the student to use it in another language

program design. The „class‟ or „if..then..else..‟ is not Java or

C++ or C#. The „class‟ and „if..then..else..‟ are

programming paradigm concepts. Therefore language

provides syntax and platform to implement, compile and run

the solutions. The main difference between the

programming languages are syntax, number of libraries,

name of the libraries, application of the libraries and

programming paradigm supports. So a student who knows

programming paradigm concepts clearly along with how to

implement it in a programming language, should be able to

implement it in another language with no major difference

except some syntactical differences, different library names

and different IDE‟s. These differences can be easily

identified when students become familiar with programming

paradigm concepts. The size of a project does not matter, as

designers are just going to repeat the programming concepts

depending on their requirements.

Students have to choose a programming platform for a

solution design provided that the particular language has

that library. For example, if a student wants to create a

Bluetooth application, the student has to check which

language has libraries for Bluetooth application

development. If there is no library support from a particular

platform, then there is no point using that particular platform

for the Bluetooth application development.

If a student knows object oriented programming

paradigm concepts thoroughly and knows how to implement

in a programming language, consequently they would know

how to implement in another object oriented language

provided if they know the syntactical differences. For eg. To

implement inheritance Java uses “extends” keyword, c++

use “:”, VB dotnet uses “Inherits” key word but the meaning

is same.

Any program is made up of “Function + Data +

Programming Paradigm Concepts + Logic”. Based on the

programming paradigm concepts the data and functions will

be adopted in a program. For e.g. in an object oriented

design program we will keep all the functions and data

members in a class mechanism which will be covered by

encapsulation mechanism. Programming logic is based on

our functional requirements. All the functional requirements

will be written as function definitions.

Students have to learn programming languages through

programming paradigm driven approach, i.e. while writing a

code student have to recall the programming paradigm

concepts. For e.g. in order to use a private member of a

class, students should know the access rights of a private

member. This concept is not a programming language

concept, it‟s a programming paradigm concept, it is

common for any language platform provided it supports that

particular programming paradigm concepts. Therefore a

language provides a platform to implement our solution

design.

4. Research Methodology

Observation and feedback methods have been used. As an

instructor and as a participant, programming subject classes

have been observed in 7 universities. To test the proposed

model, verbal and written feedback have been collected

from students and analyzed. The analysis results are briefly

discussed in section 6.

5. An Approach with Emphasis of Programming

Paradigm Concepts

 Following are the steps of this approach:

Step1: Type a code as Fig. 2 demo code:

The instructor has to use a text editor to type a simple

program. It is important for the instructor to type the code

(without referring any documents) in front of the students.

This will motivate the students and increase the confidence

about the instructor. This approach will grab the students‟

attention. Here Java is considered as an example. The

instructor can use notepad++ to type the code, and can use a

simple IDE such as JCreator Pro to test the code.

Instructors should avoid using advanced IDE‟s as it is

not suitable for the beginners. Particularly beginners need to

spend some time to understand the usage of IDE‟s. Current

IDE‟s generate some codes which help the programmers to

complete their tasks faster and in an organized way.

Generally, students don‟t understand and don‟t bother about

the codes which could be generated by the IDE‟s.

95

Fig. 2 Demo Java program indicating related programming concepts.

Once students are familiar with the programming

concepts and the respected programming language,

advanced IDE‟s can be used for program development. In

the workplace, students can use the advanced IDE‟s but in

the learning environment (universities), it is better to use

simple IDE‟s just to type, debug, compile and run the codes.

This will help the students to learn in a better way.

Step 2: Start with some questions:

 The instructor can ask some questions such as shown

below, before beginning to explain the programming

concepts.

Question 1: What does a program have?

Question 2: What is a programming language?

The usual questions are: „What is a program?‟ and „What is

a programming language?‟ The instructor should explain

the answers for these questions then should explain the

answers for the two questions above as discussed in Section

3 about programs and programming languages.

Step 3: Explain the demo program concepts

The instructor should explain the concepts and principles

behind each and every keyword of the program as indicated

in numbers (1 to 20 in Fig 2).

Instructors can consider the following points against the

numbers (1 to 20) to explain the programming concepts:

Number 1 & 7: Keyword is public – access specifiers and

encapsulation.

Number 2 & 3: Keyword is class – class concept.

Number 4: Keyword is int i – data types, variables and

initialization.

Number 5 & 14: Keyword is void display () – function

declarations and non-return function.

Number 6, 11 & 12: Keywords are System, out and

println() – Built-in class, class libraries, static concepts (11),

output function (12) & related principles behind

System.out.println().

Number 8: Keyword is „Demo obj‟ – object concept,

deriving object and „new‟ key word.

Number 9: obj.display() – accessing class members.

Number 10 & 19: Keywords are (int k) & (100) –

parameters, arguments, cal by reference, cal by name, etc.

Number 13 & 15: Keywords are „static‟ and „main‟ – static

concepts, main function and relate with „out (11)‟.

Number 16 & 17: Keywords are „String‟ and „s[]‟ – String

class, how string class and character data type, arrays and

object arrays (17).

Number 18: Key word is „Demo ()‟ – Constructor concepts.

Number 20: Data hiding, encapsulation and class member

access rights could be explained as the double line box

symbolically represents the said concepts.

While introducing the concepts behind this code,

instructors do not necessarily have to follow this order (1 to

20) as indicated in the demo program Fig 2. Orders are up to

their convenience and depend on their class duration.

When defining a concept, instructors could ask the

questions as discussed in STEP 2. For e.g.: To define a

„class‟ instructors can ask questions like “What does the

class consist of?” Then let the students see the demo

program class. Possible answers could be – “A class consists

of members such as data and methods”, “Methods has

instructions each instruction is written on the basis of certain

programming concepts”.

Step 3 will take a few classes and lab / tutorial sessions

to complete as it covers many programming concepts.

At the end of the session the students will understand

the role of programming paradigms and the respective

programming concepts in the program design. Although

given the demo program has only a few lines of code and

the outcome is just to display the result of (i*k), but it is

made up of many core programming concepts. Thus,

students will understand the importance of learning

programming paradigm concepts and how to use it while

writing a code in a programming language.

While teaching object oriented languages such as

„Java‟, the instructors should focus on object oriented

programming concepts. In order to demonstrate I/O

concepts procedural or structural programming language

such as „C‟ should be used.

 Finally the instructor could ask the students, in this code

where is “Java”? Or the role of “Java”? Hence the instructor

96

can conclude that the Java language is the platform for

development and it is made up of certain libraries. If

students know the programming paradigm well, they can

easily write the code.

Step 4: Practical/tutorial sessions

The instructor should introduce one or two basic IDE‟s

to the students. The advantages and disadvantages of using

IDE‟s should be discussed as step 1.

During every practical / tutorial session, the instructor

should give a demo code to the students by focusing on one

or two programming concepts.

The instructor has to ask the students to practice the

given code by editing and adding new similar functionalities

or similar codes, where by students will understand the

common errors and concepts behind the codes clearly.

At the end of the session the instructor can ask any one

or two students to present their work, which will increase

the confidence and decrease the programming anxiety of the

students.

Step 5: Introduce and discuss related and alternative

concepts:

Once programming concepts are explained with respect

to the fig. 2, the related concepts can be introduced. The

instructor should edit the fig. 2 demo code to introduce the

related and alternative concepts by adding new methods and

instructions.

For e.g.: return type functions should be introduced as

an alternative method for void type functions (point 5 in step

3), data types (point 4 in step 3) can be related with

parameter types (point 10 in step 3).

For e.g.: return type functions should be introduced as

an alternative method for the void type functions (point 5 in

step 3), data types (point 4 in step 3) can be related with

parameter types (point 10 in step 3).

Step 6: Compare syntaxes of different programming

languages:

While explaining the concepts, the instructor should

compare the syntax of one particular concept (e.g.:

inheritance) with other similar programming language as

discussed in Section 3.

Step 7: Explain the role of multiple programming

paradigms:

The instructor can explain how different programming

paradigms are blended in a program, although there is a core

programming paradigm for every programming language. In

our example (Fig. 2), Java is the language, object oriented

programming is the core and the procedural and structural

concepts are blended.

The above steps can be repeated if it is necessary, until

the end of the course.

6. Testing Results and Discussion

This approach has been tested with 30 batches of

computing and non-computing students in 7 universities.

Verbal and written feedbacks have been received from the

students. 50% of the students felt that, their fear on

programming has been overcome. Most of the non-

computing students said that, their interest in programming

languages has increased. 80% of the students, particularly

beginners responded positively and almost everyone said

that they understood the programming language,

architecture and program structure in a better way.

This approach also been introduced with some

programming subject instructors. They have acknowledged

as this approach is quite interesting and relatively one of the

fastest way to teach programming subjects and also they

have commented that the students are idle while the

instructor is typing the code. To rectify this issue instructor

should ask the students to follow them by copying the code

on paper, to be tested later in their lab or tutorial sessions.

7. Conclusion

 Based on the empirical understanding of the current

teaching approaches, teachers should focus on programming

concepts instead of teaching the programming languages

directly. Different languages should be used to demonstrate

the programming concepts while teaching the programming

concepts. Students should be trained as a designer of a new

language or new programming concepts instead of being

trained as a user of a language.

Acknowledgement

Thanks to God for making this paper successful. Sincere

thanks to our university management for the moral support

and resources provided during the research.

References

[1] T. Budd, “Multi programming Paradigm in Leda,” Addison Wesley,

pp. 3, 1993.

[2] http://docs.oracle.com/javame/config/cldc/ref-impl/midp2.0/jsr118/ind

ex.html.
[3] http://www.eecs.ucf.edu/~leavens/ComS541Fall97/hw-pages/paradigm

s/major.html.

[4] http://www.iue.tuwien.ac.at/phd/heinzl/node32.html.
[5] http://people.cs.aau.dk/~normark/prog303/html/notes/paradigms_theme

s-paradigm-overview-section.html.

97

http://docs.oracle.com/javame/config/cldc/ref-impl/midp2.0/jsr118/ind%20ex.html
http://docs.oracle.com/javame/config/cldc/ref-impl/midp2.0/jsr118/ind%20ex.html
http://www.eecs.ucf.edu/~leavens/ComS541Fall97/hw-pages/paradigm%20s/major.html
http://www.eecs.ucf.edu/~leavens/ComS541Fall97/hw-pages/paradigm%20s/major.html
http://www.iue.tuwien.ac.at/phd/heinzl/node32.html

