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Abstract

Noether’s theorem is used to determine first integrals admitted by a generalised Lane-
Emden equation of the second kind modelling a thermal explosion. These first integrals
exist for rectangular and cylindrical geometry. For rectangular geometry the first
integrals show the symmetry of the temperature gradients at the rectangular walls. For
a cylindrical geometry the first integrals show the dependence of the critical parameter
on the temperature gradient at the cylinder wall. The well known critical value for
the Frank-Kamenetskii parameter, § = 2, is obtained in a very natural way.

1 Introduction

The steady-state heat balance equation,

E
2 _—— =
kE.NVT + cQAexp ( T) 0, (1.1)

is used to model a thermal explosion in a vessel. The constant k. is the thermal conduc-
tivity, o the density, ) is the heat of reaction, A the frequency factor, E the energy of
activation of the chemical reaction, R the universal gas constant and T the gas tempera-
ture. The heat balance equation (1.1) is non-dimensionalised by the substitution

E
0=—= (T -1 1.2

where Tj is the ambient temperature. The heat balance equation (1.1) reduces to

0
2 _ =
\Y 9+5exp(1+60) 0, (1.3)
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where
cQA E E
6= | —— —_ 14
[ ke RT&GXP( RTO)] (14
and
RT,
=" 1. 1.
e=— << (1.5)

The Laplacian operator V2 is given by

? N-10
Vie 4+ ——. 1.6
or? * r Or (1.6)
The constant § is known as the Frank-Kamenetskii [10] parameter. By ignoring coefficients
of € and letting # = y and N = k + 1 equation (1.3) reduces to

k
y'+ Y +dexp(y) = 0. (1.7)

For well defined geometries we have k = 0 for a rectangular slab, £ = 1 for an infinite
circular cylinder and k = 2 for a sphere. Boundary conditions for the thermal explosion
problem in a rectangular geometry are given by [10]

y(£1) = 0. (1.8)

The boundary conditions (1.8) fix the temperature at the walls. Boundary conditions for
the thermal explosion problem in a cylindrical geometry are given by [10]

y(0)=0, (a) y(1) =0.  (b) (1.9)

Boundary condition (1.9a) ensures continuity at the centre of the vessel. Boundary con-
dition (1.9b) fixes the non-dimensional temperature at the wall.

The existence and uniqueness of solutions of (1.7) solved subject to (1.9) has been
proved by Russell and Shampine [18]. They develop three numerical approaches to solving
singular boundary value problems of the form (1.7) solved subject to (1.9). Balakrishnan et
al. [4] have solved (1.7) numerically for non-integer values of k. Harley and Momoniat [12]
use Lie point symmetries to investigate the stability of the boundary conditions (1.9) for
non integer values of k. Frank-Kamenetskii [10] (see also Chambré [8] and Chandrasekhar
[9]) has determined closed form solutions to (1.7) for the cases k = 0 and k£ = 1. Closed
form solutions for the case k = 2 have not been determined. Nonlocal symmetries admitted
by (1.7) have been investigated by Harley and Momoniat [11]. These nonlocal symmetries
lead to new solutions which are valid after blow-up. Wazwaz [19] has used the Adomian
decomposition method to obtain a power series solution to (1.7) for constant 6. Momoniat
and Harley [15] improved the radius of convergence of the power series solution based on
a symmetry reduction approach.

The rest of the paper is divided up as follows: in Section 2 we discuss the theory of first
integrals. In Section 3 we obtain and analyze first integrals admitted by (1.7) for £ = 0
and k = 1. Concluding remarks are made in Section 4.
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2 First integrals

In this section we discuss some of the theory of first integrals and symmetries. We write
a second-order ordinary differential equation as

F(z,y,y,y") =0, (2.1)
where ' = d/dx. A first integral or conservation law admitted by (2.1) satisfies
DzI(:C,y,y'ﬂ(Q.l) =0, (2.2)

where D, is the operator of total differentiation given by

9 8 0

D, =—+y = —+.... 2.3

ox

A first integral I(z,y,y’) can be calculated by solving (2.2) directly where a suitable ansatz
for I(x,y,y') is chosen.

The Lie group method applied to differential equations [5, 13, 17] is a useful tool for
determining the solutions admitted by differential equations. The Lie group approach
considers an infinitesimal local transformation of the dependent and independent vari-
ables of the differential equation under consideration. A Taylor expansion of these local
transformations is given by

T~ + af(z,y) + O(a?), 7~y + an(z,y) + O(a?), (2.4)

to first order in a. The transformations (2.4) leave the equation under consideration form
invariant, i.e. (2.1) is transformed into

__dg 4%y

The transformations (2.4) form a group. The constant a is the group parameter. The
generator of the group is given by

X = £0; + 10y, (2.6)

where 0, = 0/0x and 0y = 0/0y. The coeflicients ¢ and 7 of the symmetry generator
(2.6) are calculated by solving a determining equation

xBp !y =0. 2.
(@,9,9,9") oy 0 (2.7)

The generator X2 is a second prolongation of X given by
xXP =X +¢Wa, +¢@a,, (2.8)
where

C(l) =Nz + (ny - 590)?/ - fyy&’ (2'9)
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6(2) = Ngg + (277xy - fmm)y/ + (nyy - 2§zy)y/2 - gyyylg + (ny - zfm)y” - 3§yy/y//7 (2-10)
and where subscripts denote differentiation (see e.g. Bluman and Kumei [5]). The sym-
metry generator (2.6) can be used to determine a group invariant solution admitted by
(2.1) or reduce the order of (2.1).

In this paper we are interested in constructing first integrals of the equation under
consideration. Noether’s theorem [16] gives a relationship between symmetries and La-
grangians admitted by the equation under consideration. Noether’s theorem [16] states
that if we can find an operator X given by

X = &0, + 0y, (2.11)
where
X(L)+ LD,¢ = D, B, (2.12)

where D, is the operator of total differentiation given by (2.3) and L is a solution of the
Euler-Lagrange equation

d OL 0L
— ===, (2.13)
dx 0y Oy
where B is a gauge term, then
oL
I=LE+ (n—¢&Y) 5 — B, (2.14)
dy
is a first-integral of the equation under consideration, i.e. solving
I = constant (2.15)

gives a solution of the equation under consideration. The operator X is known as a
Noether or variational symmetry of the Lagrangian.

If the equation (2.1) admits a Lagrangian formulation, then Noether’s theorem [16] can
be used to determine first integrals admitted by (2.1). Bluman [6] and Anco and Bluman
[1, 2, 3] introduced the Direct Construction Method to determine conservations laws or
first integrals of systems of equations that do not possess a Lagrangian formulation. Kara
and Mahomed [14] have investigated the relationship between symmetries and conservation
laws. They have determined a formula from which symmetries of conservation laws can
be constructed without recourse to a Lagrangian.

Bozkhov and Martins [7] have shown that for £ = 0 (1.7) admits the generator of Lie
point symmetries

Z =0, X =18, — 20y, (2.16)

where 0, = 0/0x, 0, = 0/0y. For the case k =1 (1.7) admits the generator of Lie point
symmetries X and

Y =z(logx — 1)0, — 2log x0,,. (2.17)

For values of k # 0,1 (1.7) only admits X as a Lie point symmetry. Bozkhov and Martins
[7] show that X is in fact a Noether symmetry of (1.7) for & = 1. This implies that for
k =1 in (1.7) we can use X coupled with Noether’s theorem [16] to determine a first
integral admitted by (1.7).
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3 First integrals of a Lane-Emden equation

3.1 k=0
We first consider the case k = 0. Equation (1.7) reduces to the autonomous
y" + dexp(y) = 0. (3.1)
The second-order autonomous ordinary differential equation (3.1) admits the Lagrangian
L=y?—25exp(y) + f(2), (3.2)

where f(x) is a gauge term. A straightforward application of (2.12) shows that Z is a
Noether symmetry of (3.2), where

B(z,y) = f(z). (3.3)
From (2.14) we find that
I =y +25exp(y). (3.4)

It is easy to check that D I =0 on (3.1).
Equation (3.1) admits another Lagrangian

L=y +y 26z exp(y) +9(y)), (3.5)
with Z as the corresponding Noether symmetry,
B(z,y) = 20 exp(y) (3.6)

and (3.4) as the corresponding first-integral.
A solution to (1.7) for k = 0 can be obtained by solving

I = constant = ¢y, (3.7)

for ¢y a constant. Substituting (3.4) into (3.7) we obtain

y'? = co — 20 exp(y). (3.8)
Imposing (1.8) we find that
Y (1) = y*(1). (3.9)

This result confirms the symmetry of the boundary conditions at the boundary walls. We
can use (3.10) instead of (1.8) to solve (1.7) for k = 0 and we will get the same solution.
This result allows us to then only consider half of the rectangular geometry. We can thus
impose boundary conditions (1.9). Imposing 3'(0) = 0 we find that (3.8) can be written
as

y'? = 25 [exp(y(0)) — exp(y)] - (3.10)
Imposing the boundary condition y(1) = 0 we find that
y?(1) = 26 [exp(y(0)) — 1]. (3.11)

In Figure 1 we plot the implicit function (3.11) for y(0) by specifying values of y'(1).
From Figure 1 we note that by increasing the magnitude of the temperature gradient at
the wall of the rectangular vessel, the temperature at the centre of the vessel increases in
an exponential way:.
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Figure 1: Plot of (3.11) for different values of .

3.2 k=1

For k = 1 Bozkhov and Martins [7] show that X from (2.16) is a Noether (variatonal)
symmetry of (1.7). Equation (1.7) admits the Lagrangian

L=ax <%y’2 — 5ey) + f(x) (3.12)
where a is a constant. Using (2.14) we find the corresponding first integral

I= %ny'Q + 22y + 6x2eY. (3.13)
The approach taken by Chambré [8] is to solve the equation

I=c, (3.14)

where ¢ is a constant. Substituting (3.13) into (3.14) and imposing y'(0) = 0 we obtain
¢1 = 0. Imposing y(1) = 0 we find that

1
6= —5y(1) -2/ (1), (3.15)
We plot the expression (3.15) in Figure 2. From (3.15) we find the maximal value of § is
2. Hence y'(1) = —2. The critical value of § was obtained by Frank-Kamenetskii [10] and
Chambré [8] after solving (1.7) for k = 1. Here we have shown that we can determine this
critical value without having to first obtain a solution to the ordinary differential equation

4 Concluding remarks

In this paper we have used Noether’s theorem [16] to determine first integrals of the gen-
eralised Lane-Emden equation of the second-kind (1.7). For the case k = 0, a rectangular
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Figure 2: Plot of (3.15).

geometry, we have shown the symmetry of the temperature gradient at the boundary
walls. We have also obtained two new boundary conditions that can be use to solve (1.7)
for k£ = 0. By using this physical symmetry and imposing the boundary conditions that
correspond to the cylindrical geometry case we have shown how the temperature at the
centre of the rectangular vessel can be controlled by modifying the temperature gradient
at the walls of the rectangular vessel. For the case k = 1, a cylindrical geometry, we
have shown how the critical value of § = 2 can easily be obtained without recourse to
a solution of the problem. These results have given us both mathematical and physical
insights into the problem. Future work involves applying the approach presented here to
other boundary value problems.
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