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Abstract

We study the integrability properties of the hierarchy of a class of nonlinear ordinary
differential equations and point out some of the properties of these equations and their
connection to the Ermakov-Pinney equation.

1 Introduction

It is well-known that the Ermakov-Pinney equation [4, 15] in its simplest form is given by

ω′′ =
K

ω3
, (1.1)

where K is a constant. In most theoretical problems the sign of the constant K is imma-
terial and is usually rescaled to unity. In practical applications K is interpreted as the
square of the angular momentum [18, 2] and hence it would be taken as positive to avoid
‘collapse into the origin’. In the study of the time-dependent linear oscillator (in both the
classical and quantal problem) the equation

ρ̈ + ω2(t)ρ =
1

ρ3
(1.2)

occurs as the differential equation which determines the time-dependent rescaling of the
space variable and the definition of ‘new time’ [10, 11, 12, 13, 6, 7, 8]. Equation (1.2) is
the general form of (1.1).

Here we further discuss the integrability properties of a hierarchy of ‘Euler’ equations
and state some of the properties of these equations [5] and their subsequent connection to
the Ermakov-Pinney equation.
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2 The ‘Euler’ hierarchy

We recall that Euler & Leach [5] considered the class of equations of the form

y(n+1) = h(y, y(n))y′ (2.1)

and in the case that (2.1) took the specific form

yy(4) + 5
2y′y′′′ = 0 (2.2)

showed by means of a sequence of nonlocal transformations that it could be reduced to
d4Y/dX4 = 0. If we assume that equation (2.1) admits the algebra

Γ1 = ∂x, Γ2 = x∂x + my∂y, Γ3 = x2∂x + 2mxy∂y, (2.3)

we obtain the equation

yy(n+1) + αy(n)y′ = 0, α =
n + 1

n − 1
, n 6= 1 (2.4)

provided m = 1
2(n − 1) which is a particular case of a class of equations considered for

their interesting integrability properties in [14].
The Ermakov-Pinney connection to (2.4) is found in the existence of the integrating

factor, y
n+1

n−1
−1. The corresponding generalised Ermakov-Pinney equation is

y(n) =
K

y(n+1)/(n−1)
, (2.5)

where K is the constant of integration. Equation (2.5) has the algebra sl(2, R) with
representation

Γ1 = ∂x,

Γ2 = x∂x +
n + 1

2(n − 1)
y∂y,

Γ3 = x2∂x +
n + 1

(n − 1)
xy∂y. (2.6)

We note that (2.4) has a four-dimensional algebra, videlicet sl(2, R) ⊕ A1, since it is
homogenous in both x and y1.

3 Singularity analysis of equations (2.4)

We consider the singularity analysis for the class of equations (2.4) for n = 2, 3, 4, 5, 6, 7.
A detailed presentation of the singularity analysis to ordinary differential equations can
be found in [3, 17, 16]. The corresponding set of equations is given by

E2 : yy(3) + 3y′y′′ = 0 (3.1)

1This is in contrast to (2.2) which has just the three Lie point symmetries, ∂x, x∂x and y∂y, that is,
the algebra A2 ⊕A1. Interestingly, when (2.2) is reduced, the resulting third-order equation has three Lie
point symmetries due to the presence of a hidden symmetry in (2.2)[9].
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E3 : yy(4) + 2y′y(3) = 0 (3.2)

E4 : yy(5) +
5

3
y′y(4) = 0 (3.3)

E5 : yy(6) +
6

4
y′y(5) = 0 (3.4)

E6 : yy(7) +
7

5
y′y(6) = 0 (3.5)

E7 : yy(8) +
8

6
y′y(7) = 0. (3.6)

Table 1: The exponents of the leading-order term for the above equations are given below:

Equation Exponents

E2 0, 1; 1
2

E3 0, 1, 2; 1

E4 0, 1, 2, 3; 3
2

E5 0, 1, 2, 3, 4; 2

E6 0, 1, 2, 3, 4, 5; 5
2

E7 0, 1, 2, 3, 4, 5, 6; 3

In general the exponents of the leading-order term are the integers 0, n(1);n/2, where
n is the number of the equation. We note that the exponents are non-negative integers
apart from the fractions found in the equations of odd number.

4 Observations

We have found that in the singularity analysis of the class of equations (2.4) the exponent
of the leading-order term is either a non-negative integer or 1

2n. This means that only those
members of the class of equations given by (2.4) with n an even integer are candidates for
the standard singularity analysis and then can only possess the Painlevé Property in the
weak form. In this context we also note that the equations corresponding to even values of
n are those which can be integrated without needing a nontrivial integrating factor. The
resonance analysis for the n = 3, 5 and 7 cases also gives the following for the half integer
exponent.
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Equation Resonances

E2 −1, 0, 1

E4 −1, 0, 1, ±
√

3
2

E6 −1, 0, 1, others

The resonances listed as ‘others’ are messily irrational and are not worth recording. The
additional resonances for higher values of even n are much worse. Consequently the
equations cannot possess the weak Painlevé Property apart from E2. In the case of a
zero exponent for the leading-order term one can substitute a MacLaurin expansion. The
arbitrary constants of integration are the first n + 2 coefficients in the expansion. The
standard approach for the positive exponents is to make the transformation y −→ 1/w.
In the case of E2 the resonances are 0, −1 and −2. This indicates a Left Painlevé Series.
There are no incompatibilities at the resonances. The situation becomes more complex
with increasing order of the equation. In the case of E3 the double exponent of 1 leads
to a double zero and so a logarithmic term must be introduced. On the other hand the
exponent 2 leads to a Left Painlevé Series. A new feature arises when one examines E3.
For the exponent 1 there is a standard Right Painlevé Series in fractional powers and for
3 a Left Painlevé Series. For the exponent 2 one has resonances of mixed sign and so the
series is a complete Laurent expansion [1].

In terms of the trivial, that is, constant, integrating factor we may write

E2 :
(

y2
)

′′′

= 0, (4.1)

that is, E1 is really a linear equation of the third order. In a similar way we can write

E4 :
(

yy′′ − 1
3y′2

)

′′′

= 0, (4.2)

which loses the linearity of (4.1), but can be written as

w′′ =
A0 + A1x + A2x

2

w5
, w = y1/3, (4.3)

which is of generalised Emden-Fowler structure and a generalised Ermakov-Pinney equa-
tion. For the next case we have

E6 :
(

yy(4) − 8
5y′y′′′ + 9

10y′′2
)

′′′

= 0, (4.4)

which does not appear to admit the type of simplification mentioned above. A symmetry
analysis of

yy′′ − 1
3y′2 = 0 (4.5)
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gives eight Lie-point symmetries whilst

yy(4) − 8
5y′y′′′ + 9

10y′′2 = 0 (4.6)

gives ∂x, y∂y, x∂x and x2∂x + 5xy∂y.

Although the members of the hierarchy with odd values of n may be integrated once
to obtain the equivalent Ermakov-Pinney equation, they do not admit the ease of partial
integrability shown by the members of the hierarchy for even n.

5 Conclusion

The equations (2.4) have the same basic singularity properties for even values of n. For
n odd the members of the hierarchy do not allow for an easy integration. In terms of
the reduced equation which is written in terms of the third derivative we find that E4

reduces to a second-order ordinary differential equation with eight Lie point symmetries
and thereafter we get an equation which has the same symmetries as the original equation.
For example the next reduced equation in the hierarchy,

yy(6) − 12
7 y′y(5) + 15

7 y′′y′′′ − 8
7y′′′2 = 0,

gives the symmetries ∂x, y∂y, x∂x and x2∂x +7xy∂y. For general n the symmetries are the
same for the first three plus x2∂x + (n − 2)xy∂y or, as one may prefer,

Γ1 = ∂x, Γ2 = x∂x + 1
2(n − 2)y∂y , Γ3 = x2∂x + (n − 2)xy∂y and Γ4 = y∂y

with the algebra sl(2, R) ⊕ A1.
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