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Abstract

This investigation deals with the mechanism of peristaltic transport of a non-Newtonian,
incompressible and electrically conducting fluid with variable viscosity and an endo-
scope effects. The magnetic Reynolds number is taken to be small. The mechanical
properties of the material are represented by the constitutive equation for a third
grade fluid. The fluid fills the gap between coaxial uniform tubes, such that the inner
tube is rigid and outer tube with sinusoidal wave travelling down its wall. Numerical
solutions are given for large wavelength at low Reynolds number.

1 Introduction

Peristaltic is defined as a wave of relaxation contraction imparted to the walls of a flexible
conduit, thereby pumping the enclosed material. The need for peristaltic pumping may
arise in circumstances where it is desirable to avoid using any internal moving parts such
as pistons in a pumping process. Moreover, the peristalsis is also a well known mechanism
of fluid transport in biological system. Specifically it has been found to be involved in
swallowing food through the esophagus, urine transport from the kidney to the bladder
through the urethra, movement of chyme, transport of lymph in the lymphatic vessels and
in the vasomotion of small blood vessels such as arteries, venules and capillaries. Roller
and finger pumps also operate on this principle. Moreover, peristalsis has been proposed
as a mechanism for the transport of spermatozoa in vasdeferens (a duct which connects
the ductus epididymidis to an ampulla).

Even though peristalsis existed very well in physiology, its relevance came about mainly
through the works of Kill [1]. Later several mathematical and experimental models have
been developed to understand the fluid mechanical aspects of peristaltic motion. A large
body of work already exists on mathematical and experimental models containing a New-
tonian or non-Newtonian fluid in a channel or axisymmetric tube [2-22].
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Despite the above studies, less attention has been given to the peristaltic flow of fluid
with variable viscosity and an endoscope effects. Recently, Misery et al. [23] analyzed
the hydrodynamic peristaltic flow of a Newtonian fluid with variable viscosity and an
endoscope. The endoscope effect on peristaltic motion occurs in many clinical applications.
In fact there is no difference between an endoscope and catheter from the fluid dynamics
point of view, but from the physiological point of view we cannot use a catheter for small
intestine.

The paper is organized in the following way. We give the basic equations in Section 2.
The problem description is given in Section 3. In Section 4, we present the expressions for
flow rate, pressure rise and frictional forces on the tubes. A numerical solution is presented
in Section 5. Finally, the conclusions are made in Section 6.

2 Basic equations

The equations governing the conservations of mass and linear momentum for an incom-
pressible fluid are expresed as follows:

div V = 0, (2.1)

ρ
dV

dt
= −∇p + ρf + div S. (2.2)

In the above equations V is the velocity vector, p is the pressure, t is the time, ρ is the
density, d/dt is the material time derivative, ∇ is the spatial gradient operator, f is the
body force vector per unit mass and S is the extra stress tensor. For third grade fluid
with variable viscosity the constitutive equation of S is

S =

3
∑

i=1

Si, (2.3)

where

S1 = µ(R)A1, (2.4)

S2 = α1 A2 + α2 A2
1, (2.5)

S3 = β1 A3 + β2 (A1A2 + A2A1) + β3

(

trA2
1

)

A1, (2.6)

in which µ is the viscosity function and α1, α2, β1, β2 and β3 are the material constants.
The Rivlin-Ericksen tensors, An, are defined through the recursion formula

A1 = ∇V + ∇V ∗, (2.7)

An =
dAn−1

dt
+ An−1∇V + ∇V ∗An−1, n = 2, 3, . . . , (2.8)

where (∗) is matrix transpose. A detailed thermodynamic analysis of the stress, repre-
sented by Eq. (2.3), is given in [2,3], where it is shown that if all the motions of the fluid
are to be compatible with thermodynamics in the sense that these motions satisfy the
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Clausius-Duhem inequality and if it is assumed that the specific Helmholtz free energy is
a minimum when the fluid is locally at rest, then

µ ≥ 0, α1 ≥ 0, |α1 + α2| ≤
√

24µβ3, β1 = β2 = 0, β3 ≥ 0. (2.9)

A complete detail on third grade fluid is given in Dunn and Rajagopal [25]. For thermo-
dynamically compatible fluid, Eq. (2.3) reduces to

S = µA1 + α1A2 + α2A
2
1 + β3(trA

2
1)A1 (2.10)

and for zero normal stress parameters we have

S =
[

µ + β3(trA
2
1)

]

A1. (2.11)

In our analysis, however, we consider the model (2.3) for generality.
It is worth emphasizing that the governing equations for third grade fluids in particular

and viscoelastic fluids in general are of higher order than the Navier-Stokes equations.
For non-Newtonian fluids, the no-slip boundary condition is insufficient and thus, one
needs additional conditions at the boundary. A detailed critical review on the boundary
conditions and of the existence and uniqueness of the solution has been given in the
references [24-29].

3 Problem description

We consider the flow of an incompressible, electrically conducting third grade fluid with
variable viscosity through the gap between inner and outer tubes. The inner tube is
rigid while the outer tube has a sinusoidal wave travelling down its wall. We choose the
cylindrical coordinate system (R,Z), where the Z-axis lies along the centerline of the
inner and outer tubes, and R is the distance measured radially. A uniform magnetic field
B0 is applied in the transverse direction to the flow. The magnetic Reynolds number is
considered small and so induced magnetic field is neglected. The geometries of the wall
surfaces are defined by

r1 = a1, (3.1)

r2 = a2 + b sin
2π

λ
(Z − ct). (3.2)

In the above equations, a1 is the radius of the inner tube, a2 is the radius of the outer
tube at the inlet, b is the wave amplitude, λ is the wavelength and c is the wave speed.
In Figure 1 the endoscope could be represented by a line that is free to move between the
boundaries r1 and r2 with the fluid.

Let U and W be the velocity components in the R and Z directions, respectively, in
the Laboratory frame. Then Eqs. (2.1) and (2.2) give

1

R

∂

∂R
(R U) +

∂W

∂Z
= 0, (3.3)

ρ

[

∂

∂t
+ U

∂

∂R
+ W

∂

∂Z

]

U = −
∂p

∂R
+

1

R

∂

∂R

(

R SR R

)

+
∂

∂Z

(

SR Z

)

−
S

θ θ

R
, (3.4)
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Figure 1: Schematic of problem.

ρ

[

∂

∂t
+ U

∂

∂R
+ W

∂

∂Z

]

U = −
∂p

∂Z
+

1

R

∂

∂R

(

R SR Z

)

+
∂

∂Z

(

SZ Z

)

− σB2
0W, (3.5)

where σ is the electrical conductivity of the fluid.
In the Laboratory frame (R,Z), the flow in the gap between inner and outer tubes is

unsteady. However, if observed in a coordinate system (r, z) moving at the wave speed c
(wave frame), it can be treated as steady. The coordinates and velocities in two frames
are related through

z = Z − ct, r = R, (3.6)

u = U, w = W − c, (3.7)

where u and w are the velocity components in the directions of r and z, respectively. The
boundary conditions in the wave frame are

w = −c, u = 0 at r = r1 = a1, (3.8)

w = −c, u = 0 at r = r2 = a2 + b sin
2π

λ
z. (3.9)

It would be expedient to simplify the governing equations by introducing non-dimensional
variables. The following variables could thus be introduced:

r =
r

a2
, r1 =

r1

a2
=

a1

a2
= ǫ < 1,

z =
z

λ
, µ(r) =

µ(r)

µ0
, u =

λu

a2c
, w =

w

c
, (3.10)

p =
a2

2p

cλµ0
, t =

ct

λ
, S =

a2

µ0c
S,

r2 =
r2

a2
= 1 + φ sin 2πz, (3.11)

where µ0 is the viscosity on the endoscope and ǫ is the radius ratio. We note here that
the viscosity is a property of the fluid and depends on the mechanical properties of the
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fluid. By non-dimensionalising the model equation converting the problem to a Laboratory
frame we have removed the dependence of the model on the physical parameters. We make
the assumption that the viscosity depends on the radial coordinate to make meaningful
progress in solving the model equation.

The Reynolds number Re, the wave number δ, the amplitude ratio φ and the Hartmann
number M are defined by

Re =
ρc a2

µ0
, δ =

a2

λ
≪ 1, φ =

b

a2
< 1,

M =

√

σ

µ0
B0 a2. (3.12)

With the help of Eqs. (3.6), (3.7) and (3.10) - (3.12), the Eqs. (3.3) - (3.5) and boundary
conditions (3.8) and (3.9) become of the following form:

Reδ3

[

u
∂

∂r
+ w

∂

∂z

]

u = −
∂p

∂r
+

δ

r

∂

∂r
(rSrr) + δ2 ∂

∂z
(Srz) − δ

Sθθ

r
, (3.13)

Reδ

[

u
∂

∂r
+ w

∂

∂z

]

w = −
∂p

∂z
+

1

r

∂

∂r
(r Srz) + δ

∂

∂z
Szz − M2(w + 1), (3.14)

1

r

∂

∂r
(ru) +

∂w

∂z
= 0, (3.15)

w = −1, u = 0 at r = r1 = ǫ, (3.16)

w = −1, at r = r2, (3.17)

where

λ1 =
α1c

µ0a2
, λ2 =

α2c

µ0a2
, γ1 =

β1c
2

µ0a2
2

, γ2 =
β2c

2

µ0a2
2

, γ3 =
β3c

2

µ0a2
2

. (3.18)

We note that a closed form solution of the dynamical equations for arbitrary values of
all parameters seems to be impossible. According, we carry out the investigation on the
basis of the long wavelength at low Reynolds number assumption. The large wavelength
analysis is applicable for the flow of semen in vas deferens, movement of chyme in small
intestine and transport of semen in the ductus afferents of the male reproductive tract.
Under long wavelength consideration, Eqs. (3.13) and (3.14) yield

−
∂p

∂r
= 0, (3.19)

∂p

∂z
=

1

r

∂

∂r
(rSrz) − M2(w + 1), (3.20)

where

Srz = µ(r)
∂w

∂r
+ 2(γ2 + γ3)

(

∂w

∂r

)3

. (3.21)
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Eq. (3.19) indicates that p is independent of r. Hence p is only a function of z.
From Eqs. (3.20) and (3.21) we can write

dp

dz
=

1

r

∂

∂r

[

r

{

µ(r)
∂w

∂r
+ 2Γ

(

∂w

∂r

)3
}]

− M2(w + 1), (3.22)

in which the Deborah number Γ is

Γ = γ2 + γ3. (3.23)

4 Rate of volume flow

The dimensional rate of fluid flow in the Laboratory frame is given an

Q = 2π

∫ r̄2

r̄1

W RdR. (4.1)

In above equation r1 is a constant and r2 depends upon Z and t.
The rate of fluid in wave frame is

q = 2π

∫ r2

r1

w r dr. (4.2)

With the help of Eqs. (3.6) and (3.7) and integration the two rates are related by the
following equation

Q = q + πc
(

r2
2 − r2

1

)

. (4.3)

The time mean flow over a period T1(= λ/c) at a fixed Z-position is given by

Q̂ =
1

T1

∫ T1

0
Qdt. (4.4)

The above expression finally yields

Q̂ = q + πc

(

a2
2 − a2

1 +
b2

2

)

(4.5)

which may be written as,

Q̂

2πca2
2

=
q

2πca2
2

+
1

2

(

1 − ǫ2 +
φ2

2

)

. (4.6)

The above expression in nondimensional variables is

Θ = F +
1

2

(

1 − ǫ2 +
φ2

2

)

, (4.7)
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where

F =
q

2πa2
2c

=

∫ r2

r1

rwdr, (4.8)

Θ =
Q̂

2πca2
2

, (4.9)

are the non-dimensional flow rate and time mean flow, respectively.

In non-dimensional variables, the pressure rise ∆Pλ and the frictional forces on the

inner F
(i)
λ and outer F

(0)
λ tubes are respectively given by

∆Pλ =

∫ 1

0

(

dp

dz

)

dz, (4.10)

F
(i)
λ

=

∫ 1

0
r2
1

(

−
dp

dz

)

dz, (4.11)

F
(o)
λ =

∫ 1

0
r2
2

(

−
dp

dz

)

dz. (4.12)

5 Numerical Solution

We use bvp4c in MATLAB to solve (3.22) numerically. The dotted lines in the figures are
the boundaries r1 and r2. In Figures 2, 3, 4 and 5 we have chosen

dp

dz
= z, µ(r) = 1. (5.1)

For this choice of the pressure gradient we find that

∆Pλ =
1

2
, (5.2)

F
(i)
λ

= −
ǫ2

2
, (5.3)

F
(o)
λ

= −
1

2
+

φ

π
−

φ2

4
. (5.4)

In Figures 6, 7, 8 and 9 we have chosen

dp

dz
= z, µ(r) = exp(−r2). (5.5)

We have chosen to show the results for the case when µ(r) is a Gaussian profile because
these results provided us with the best comparison with the case µ(r) = 1. Numerical
calculations with other functional forms of the viscosity were undertaken.
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Figure 2: Plot for M = 0 and Γ = 0.
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Figure 3: Plot showing variation in M for fixed Γ.
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Figure 4: Plot showing variation in Γ for fixed M .
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Figure 5: Plot showing variation in M and Γ.
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Figure 6: Plot for M = 0 and Γ = 0.
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Figure 7: Plot showing variation in M for fixed Γ.
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Figure 8: Plot showing variation in Γ for fixed M .
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Figure 9: Plot showing variation in M and Γ.
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6 Concluding remarks

In Hayat et al. [30] we have shown that the pressure rise increases while the frictional
forces decrease with increasing Hartmann number. In this paper we have kept the pressure
rise and frictional force along the inner wall constant. The frictional force on the outer wall
varies quadratically with increasing φ. By fixing the angle φ we are fixing the frictional
force on the outer wall as well. We have compared graphs for constant viscosity and
variable viscosity with a Gaussian profile.

In Figures 2, 3, 4 and 5 we plot the effects of variation in Hartmann and Deborah
numbers on the velocity w where the viscosity is constant. We note that increasing the
Hartmann number decreases the magnitude of the velocity. Increasing the Deborah num-
ber increases the magnitude of the velocity. In Figure 5 when both the Hartmann and
Deborah numbers are non-zero the magnitude of the velocity is not as affected when
compared with zero Hartmann and Deborah numbers in Figure 2. The Hartmann and
Deborah numbers not only affect the magnitude of the velocity but also the shape of the
velocity surface.

In Figures 6, 7, 8 and 9 we consider the effects of a variable viscosity with a Gaussian
distribution. The effects of varying the Hartmann and Deborah numbers are the same
as indicated above. The magnitude of the velocity is significantly higher with variable
viscosity. This can clearly be seen when comparing Figures 2 and 7. Also, the shape of
the velocity surface is significantly altered. The velocity profile is now ”fatter” and wider.
In conclusion we note that the main contributions of a variable viscosity is in changing
the magnitude of velocity and shape of the velocity surface.
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