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Abstract

We introduce a differential geometry description of the path lines, stream lines and
particles contours in hydrodynamics. We present a generalized form of a Korteweg-de
Vries type of equation for the exterior of a circle. Nonlinearities from the boundary
conditions, surface tension and the Euler equations are taken into account, but the flow
is considered inviscid and irrotational. For the circular case we describe the traveling
waves shapes, solitons and the particles trajectories.

1 Introduction: path lines, stream lines and particles con-
tours

We introduce the working space (¢,7) € R x R?. From the Lagrangian point of view the
fluid particle motions are nonintersecting regular curves I'z, in this base space, parametrized
by time and described by equations 77 (¢, 7). They are called paths, or material lines, [1],
or lines of motion [2]. Since they do not intersect, each such curve is labeled by one of its
points, 7y, for example the position of the particle when ¢ = 0. The tangent to this curve
is

fr = (1,0)(1+vi) 2,

where 0, = 07 (t,79)/0t is the Lagrangian velocity of the particle along the path. All
these paths do not intersect and completely fill the base space when 7 € R?.

If we choose a fixed point in space 7, some of the paths 7 will intersect this fixed point,
7r(t,7y) = 7, so that we can write the "list” of these particles versus time: 7y = 7(¢, 7).
We define the Eulerian velocity at (¢,7) by substituting this 7y(¢,7) list in the velocity
expression

Tp(t,7) = Tp,(t, 7o (t, 7)). (1.1)

If we need a physical quantity ), defined for any fluid particle, for the particle labeled
by 7, the Lagrangian value Qp(t,7p) is defined along I'r,. Suppose this 'z, intersects a
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fixed line 7 =const. at 77(¢,7) = 7. By solving this equation with respect to 7, we have
7o = 7o(t, 7). We can define now the Eulerian value of @ by

QE(LF) = QL(t7FO(t7F))' (12)

While following the particle in its motion, the quantity Q7 has a variation dQ(t,7) =
(dQr/dt)dt. At 7 =const. the quantity Qg has another variation dQr = (0Qg/0t)dt. By
differentiation of Eq. (1.2) we have

dQr = dQg + (dFL . VQE)dt (1.3)

Since we follow the particle in its motion we have dr, = ¥ dt.

2 The fluid fiber bundle

We introduce the available space for the fluid (the reference fluid container [3],[4]) as a
domain D of R3, and add an extra dimension for time to form a base space D x R.
The particle paths 7 (7, t) are smooth time-parametrized curves in this base space. The
projection on the horizontal planes (projections perpendicular on the time axis) of the
tangent vectors to these curves represent the velocity fields of the particles. The two
velocities, i.e. the Lagrangian (material) and Eulerian (spatial) velocities, have the same
value at the same point of the base space. The only difference between these two types
of velocities consists in the parametrization of the vector fields. The Lagrangian velocity
field is defined along the particle paths in the base space, while the Eulerian velocity field
is defined on the horizontal plane, in points where these paths intersect it, at a moment
of time ¢. The integral curves of the Eulerian velocity field contained in any ”horizontal”
plane are the stream lines at that moment of time. However, the paths lines do not
identify with the lift of the stream lines in the base space. Namely, if we choose a point 7
in some horizontal plane ¢t and we compare the path line crossing through this point, and
the vertical lift of the stream line crossing the same point, these two curves are different
in general. An example is presented in Fig.1. For any given fixed point 7 in the initial
plane we can draw all paths crossing this at different moments of time, Fig. 2. The
intersections of all these paths with a certain horizontal plane t generate a streak line
initiated by a ”nozzle” placed at 7. In traditional approaches the motion of the particles
is described by a one-parameter (time) group of diffeomorphisms acting on the domain
D(7). The Lagrange coordinate of a particle is the result of the action of this group on the
corresponding element 7. If the motion is incompressible, the group of diffeomorphisms
is volume preserving. In this formalism, the infinitesimal generator of the group is the
Lagrangian field of velocities.

However, such a model is not exact. That is because it associates the same geometrical
space to physical spaces with different signification, namely the material points (initial
positions space), and the spatial points per se. Even if initially (¢ = 0) the positions
7o of all fluid particles, 7y € D, belong the a position space, during the motion these
vectors actually form a space of parameters, labeling the particles. On the other hand,
the positions of the particles at any arbitrary moment of time (given by the Lagrangian
equations of motion 77 (7,t)) belong to a space of positions.
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Figure 1: A 2-dimensional fluid domain D(7) and two path lines 7f,(¢) whose tangents are the
Lagrangian velocities v,. The projection of the Lagrangian velocity field on the tangent space of
the fluid domain is the Eulerian velocity field vc. The integral curves of the Eulerian vector field
in the fluid domain, at a given moment of time ¢, are the stream lines at that moment (dotted
lines).

o t=0

Figure 2: Paths emerging from a nozzle point 7 (dashed-dotted axis) at different moments of
time. The intersections of all such paths with a horizontal plane ¢ provide a streak line (dotted).
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We present a formalism in which a fluid is described using cross-sections ¢ in a fiber
bundle F over some base manifold X. In the case of a fixed container for the fluid (even the
case of the whole space) we consider the base to be the space of particles (usually labeled
by their initial positions) and the fiber is the space available for particles positions. On the
contrary, a free surface introduces one more freedom in the problem. We cannot construct
using the same pattern because we allow different particles to belong to different shapes
simultaneously, which is impossible. In order to build a fiber bundle in this case we use a
formalism from the mechanics of deformable bodies. The base space is the manifold of all
possible shapes, and the standard fiber is particle position space. The role of the particle
labeling space is taken over by the nontrivial structure group.

The base manifold is usually a space-time manifold built as a product between a smooth
3-dimensional oriented Riemannian manifold (M, g), where g is the metric, and R for time,
i.e. X = M x R. The coordinates in X are z = (z#) = (2',t) € X, with i =1,...,3, 4 =
1,...,4. For fluid dynamics we can choose the fiber F' = M with coordinates y € F' [3].
Consequently, the local coordinates in this F bundle over X are (x,t,y) and the projection
isll: F— X, (x,t,y) — (z,t). Transformations and operations that affect only the
base (spatial changes like rotations, etc.) are called fiber-preserving transformations. A
lift of any geometrical object v (a curve, surface, function, form, etc.) defined in the base
space, is a map of this object into the fiber bundle, v — «/ € F, such that it projects back
down to the original object in M, ITo~" = .

Cross-sections in this bundle o : X — F represent time dependent configurations, i.e.
particle position fields. The cross-section has the coordinates o(x) = (z#, 0% (x)) = (2, y).
On the top of the configuration bundle € we can construct another fiber bundle J'F over F
called the first jet bundle, [3, 5], with the fiber above (z,y) consisting of linear maps from
the tangent space of the base space to the tangent space of the bundle, v : T, X — T{, ,y F,
satisfying dm oy = Id, x.

For any cross-section ¢ in F over X, the differential do, at x is an element of the jet
bundle J 1.7-"0(90). Consequently, the map x — do, is a cross-section of the jet bundle over
X. This section, denoted jlo is called the first jet extension of o. In coordinates, it is
given by jlo(z) = (2, 0%(z),8,0"), where 8, = (8;,0;). It is this triple which represents
the fluid motion. The first three base coordinates space components x, originally coming
from the initial positions of the fluid particles, now represent the particle labeling. The
o'(x) components identify the position of the z particle in space, and the d;0* components
represent the velocity of the particle x.

For the case when the fluid moves in a fixed region, i.e. with fixed boundaries, the group
structure of the fiber bundle F is the identity, and the bundle is trivial, 7 = X x M. The
spatial part of the base manifold M represents the reference configuration (initial positions
of all fluid particles). Actually, the coordinate = ceases to represent the initial position,
but remains attached to the particle and labels it for the rest of the evolution. So, the
space part of the base manifold = (the material points) labels the fluid particles through
the one-to-one correspondence between particles and their initial positions in the reference
fluid container. The time base X corresponds to the time evolution. The fiber over any
base point is the same manifold, meaning that the space available for any particle is the
same at any moment of time. Its coordinates y are called F{, ;) represents the available
space for particle x at the moment ¢, and it is diffeomorphic with M, i.e. the reference
fluid container [3, 4]. In the case of F, the requirement for the existence of a projection
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II: F — X from the definition of a fiber bundle guaranties that all points of the fiber, at
any point of the base, are filled with fluid.

The fluid motion is described by a cross-section o(x,t) of the bundle F representing
the particle placement field. Not any cross-section can represent a real motion of the fluid,
and some minimal constrains are needed. First, o is not allowed to create or annihilate
fluid particles, and second, two different particles cannot hold the same spatial point at the
same moment of time. These two constrains are fulfilled by requesting that the Lagrangian
paths of the fluid particles represent a diffeomorphism of the reference fluid container. In
the fiber bundle formalism these two physical constraint require a similar thing. The
restriction of the cross section o(x,t)|i—¢, at a constant ¢t = ¢y (for every moment of time
to) needs to be a diffeomorphism of the manifold ' = M. Of course, this is also possible
because the bundle is trivial, and there is a canonical diffeomorphism between any two
fibers at any two points.

In the local coordinates of a given fiber, y(z,t) € F4+) represents the spatial position of
the particle x at moment ¢, (z,t¢,y)o(z,t). The path lines are the restrictions of the cross-
section 7, (x,t) = J’m:(moyt) for fixed point in the space part of the base space. The tangent
vectors to these curves can be expressed in two ways. If we write 0 (z,t) = do"(x,t)/0t we
have the Lagrangian (material) velocity field. The superscript v (as in vertical) represents
the components of the cross-section along the fiber. The Lagrangian velocity field is
actually represented by the last three components of the cross-section in the first jet
bundle do. Namely jlo = (o, 0;0,71).

Conversely, if we invert the equation y(z,t) with respect to y, we can express the
velocity field in coordinates Up(z(y),t) = Ugr(y,t), which is nothing but the Eulerian
velocity field. So, even if locally the Eulerian and Lagrangian velocities coincide at the
same point of the fiber bundle F, they are vector fields in different spaces. The Eulerian
velocity is a vector space defined on the standard fiber manifold F. Indeed, because
the fiber at any point F, ;) is diffeomorphic with the standard fiber F, according to the
minimal constrains, we can map vectors tangent to any fiber, into vectors tangent to the
standard fiber F' = M. So, a cross-section o in F generates a vector field on F' at any
moment of time, the Eulerian flow. The integral curves of this field are, at every moment
of time, the collections of time-dependent stream lines, they lie in the standard fiber, and
they have no special assigned parameter. Contrary to the stream lines, the path lines are
time-parametrized, hence constant, and they lie in the fiber bundle. Again, the collection
of path lines do not coincide with the flow net in general (they coincide if the flow is
stationary). It is also true that the path lines never cross the flow net lines.

Since o (M, tg) ~ M is a diffeomorphisms because of the minimal constraints, the image
of any compact set in M is a compact set in F{, ;). Such sets are the particle structures
that remain ”stable” to this extent. If such a set is a submanifold of dimension 1, we call it
particle line, or material line, or circuit lines, or filament. Once identified in the reference
fluid container, this line conserves its topological proprieties in time. If the submanifold
is 2-dimensional, it is a particle surface, or free fluid surface, etc., and so on. We noticed
above that the particle paths are restrictions of the cross-sections describing the dynamics
for constant x. Similarly, particle lines are restrictions of the cross-section for constant
time, and on subsets of the M manifold: o(z,1)|(zep,=ty) = 7(¥)|zeD-

There is another interesting approach about the path lines as orbits of a group of diffeo-
morphisms of the spatial part of the base space. Actually, any such diffeomorphism (any
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Figure 3: Structure of the fiber bundle associated with a fluid.

flow) can be understood as a relabeling operation of the fluid particles. Such a relabeling
operation is connected with a continuous symmetry of the system. If we consider the fluid
a Lagrangian system, and the flow is incompressible, the Noether current associated to
this symmetry is the fluid momentum conservation.

In the following, we give an interpretation of the transformation between variation of
Eulerian and Lagrangian quantities in terms of a connection. Let us consider again the
fiber bundle F representing a fluid confined in a fixed space domain identified by the
manifold M > (2%), where i,5 = 1,...,3 and g = 0,...,3. The base space is the direct
product X = M x R > (a#) = (2%, 2" = ). We choose the fiber F' = M, a trivial identity
structure group G = {e}, the projection II, F, = II"!(z) and a cross-section ¢ : X — F.
The cross-section maps z = (z#) — 0 = (z,07(z)), and its differential do : TX — TF
maps T, X 3 9(z) = (7,0°) = (v/,0%) = (vV) — @& = (@, w°, 0) = (', w’,w!) € T,y F,
with @ = (i, 7). In components, the action of the differential, which is a section in the
first jet fiber bundle over F, reads

0o Oo” Dol ox” dod . Dol
~) — J730 woZE ) — M i, 27 0)
do () (83:“1) ) <8x“v it > (axu” A T >

A do 0
v i j 0 _ (= - - 09
<v ,<v _8i>0 +wv v ) (v,l,(v V)o +v —8ta>. (2.1)

If we restrict ourselves on curves being path lines in the time parametrization, the tangent
vectors are © = (¥,1), i.e. v* = 1. The interpretation of Eq. (2.1) is as follows. Spatial
part & of vectors in the tangent space to the base are in one-to-one correspondence with
vectors in the tangent space to the fiber, by the triviality of F. So & is actually a fiber
vector, that is an ”Eulerian” vector in a local space frame. This Eulerian vector is mapped
to a vector in the tangent space to the bundle, which is a ”Lagrangian” vector.

TM > v — [(U V) + %] g, with ¢ = (z,0) € TF. (2.2)
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If we put g = &, Eq. (2.2) reads do(vUr) = 9L, that is the well known transformation
between the partial time derivative and the material (total) derivative, Eq. (1.3). In this
sense, Eq. (2.2) describes a connection in F in the first jet bundle J! (for example see
Olver’s book [5]). Coming down to the F bundle we note that the only possible connection
is a trivial one, with zero coefficients. This is because the bundle is trivial, so the only
admissible infinitesimal transformations are translations. The situation is different if the
shape of the fluid container is allowed to change in time.

If the shape of the reference fluid container changes with time (boundaries not fixed
anymore) the fiber F, depends on the point (z°,¢) € X through the time dependence and
the bundle is not anymore a global Cartesian product. Consequently, it has a non-trivial
structure group G.

We consider the fluid ”drop” as a connected, simple-connected domain Dy, ~ D3 C R?
with smooth boundary (shape) 0D = ¥, and under no external forces or torques. By
~ D3 we mean a diffeomorphisms with the 3-dimensional disc z? + y? + 22 <= 1. The
drop has a set of possible shapes. If we can parametrize the set of all possible shapes with
coordinates, we could set the structure of a manifold M. The shape coordinates can be
determined by the expansion in spherical harmonics, for example, and we can associate to
M the l5(C) space structure with the topology induced by the norm. We call M the shape
space of the drop. The base space will be, like in the previous case, X = M x R 3 (X,1).

For any shape we choose a trihedron fixed in this shape, for example the origin in
the center of mass, and the axes directed towards the positions of some chosen zeros of
the spherical harmonics. The configuration of the fluid within the given shape ¥ will be
referred to this trihedron. For a given shape X, all possible configurations of the fluid
particles {7]7" € Dy} can be described by the set of diffeomorphic (shape invariant) trans-
formation of Dy onto itself. These transformations form a Lie group of diffeomorphisms
Diff . Any element gy, of this group maps some distribution of particles inside this shape
into another distribution of particles within the same shape. So, by the minimal con-
strains, the fiber over x = (X,t) € M is represented by the group of diffeomorphisms of
the shape II"!(X,¢) =Diffs. The structure group is the group of diffeomorphisms of the
3-dimensional disc, Diff p,, which is the group model for all the other diffeomorphisms
groups. Consequently, F is a principal bundle, and the coordinate on the fiber over (¥, ¢)
is a certain group transformation Diff »,  g» : Dy, — Dsy.

This construction must be carried out for all possible shapes. Thus, the total config-
uration space of the fluid F is a fiber bundle over the base X, of fiber Diffs. A shape
evolution will be identified by a (time-like) curve v € X, that is a regular curve of shapes
Y.(t) parametrized by time. For any particular shape we have to integrate a set of dynam-
ical equations A(X,7,t) in order to find the positions of the particles associated to that
shape. The shape at any moment of time determines the position of particles within the
fiber. Hence, a cross-section o : X — F represents the evolution of the drop, namely in
components ¢ — X(t) — 7L(70,t) = gs)(70). From the geometrical point of view, the
dynamical equations of the free surface fluid are equations for this section. These are basi-
cally the equation of continuity, equations for momentum conservation (Euler equations)
and energy transfer equation.

For any shape in M we need to specify its fixed reference trihedron, and its reference
(we may call it initial) distribution of particles 7. This choice is not unique, and the
freedom involved is a typical gauge freedom.
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Translation of the drop center of mass could be eliminated from the beginning, but the
shapes should also conserve total angular momentum. Angular momentum can be changed
by deformations (motion in the base space) and also by particle rotations (motions in the
fiber). We need to ”synchronize” the succession of deformations with a unique succession
of rotations, such that total angular momentum to be constant. In that, we can introduce
a new type of connection, different from that one introduced above between Eulerian and
Lagrangian approach on tangent vectors Eq. (2.2).

For any given smooth curve v in the base space M, we need to lift it to a curve +' in the
total space F in a unique way. Remember that a lift is a map v € M — +' € F such that
II(v'") = 7. However, the lift of a path is not unique by definition. The mathematical tool
needed to make it unique is the connection. A connection, or better said its differential
expression, would assign to any tangent vector v(z) € T, M an element in TF),, which is
the Lie algebra of the group Diffs,. Globally, when we move along a closed path in M
the corresponding lifted path in F may not be closed. That is for vy(z¢) = yz1 we may
have 7/(x¢) = +'z1 in F. Two different points on the same fiber mean a relabeling of the
particles, or a motion inside the drop. Such a relabeling could be associated with a finite
non-zero rotation of the drop. The drop begins to move by changing its shape and ends up
to the same initial shape after a finite amount of time. But during this motion, it actually
undergoes a net rotation.

A similar situation happens when we build the configuration space of a deformable
body. Again, we choose for any shape a trihedron fixed in this shape. The orientation
of the body, ignoring free translations of the center of mass, could be described by a
proper rotation matrix R € S O(3) which maps the body fixed trihedron to a space frame
contained in the ambient space in which the drop is constrained to move, i.e. R3. Thus,
the total configuration space F is a fiber bundle over the base M x R, of fiber SO(3).

Like in the case of the drop, the angular momentum of the body can be changed by
deformations (motion in the base space) and also by rotations (motions in the fiber). In
this example, the connection assigns to any tangent vector ¥(x) € T'M an element in
T'SO(3), which is nothing but the Lie algebra so(3). When we move along a closed path
in M the corresponding lifted path is not closed in general. Two different points on the
same fiber mean a change in the orientation, a rotation. The body moves and changes its
shape, but during this motion, it undergoes a rotation. However, because the SO(3) Lie
group is not commutative there are problems in integrating this lifted path in the fiber.

3 Path lines, stream lines and particle contours

We discus here only finite time flows with ¢ € [t1,t2],—00 < t1 < t2 < co. We begin
our construction with the fluid initial reference container, i.e. a domain Dy C R3. We
construct the base space X = R? x [t1, 5], and we assign a local coordinate system in 7y €
Dy. We assume we are given the fluid flow as smooth homeomorphisms 77, : Dy X [t1, ta] —
R?3 such that the restriction 77| Dox{t} 18 injective for any fixed ¢ € [t1,t2]. In coordinates
this reads (7o,t) — 7(70,t). The family of curves L = {y; = 71(70,t)|70 € Do} is the
particle paths, with tangents 7, = ¥, and metric gr = v%. These curves can be lifted in
the base space and mapped into a family L = {7} = (71(0,t),t) € R3 x [t1,t2]|70 € Do}
The metric of 7} is g = v? + 1. Both v, and 7} are Lagrangian path lines viewed in
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different spaces.

For any t € [t1,t2] we can construct D; = #'(Dg,t) € R3. A particle contour is a
parametrized curve I'o = {yo(s) C Dy, s € I} C Dy. The question is what happens to such
a particle contour in time. Is I'y = {v(s,t) = 7r.(70(s),t)} a regular curve with the same
topology as I'g? We have the following result

Theorem 1. The set Iy defined by v(s,t) as above is a reqular parametrized curve if
J(FL (70, 1)) |i=const. '{Fo # 0,
for Vs € It € [t1,ts]. Heret is the tangent vector to a curve.

Proof. We have

or oxt dy?  Oxt
sty = SO = L (), (3.1)
ds 0v? ds oxy °

which represents the requested inequality. |

In other words, a particle contour at the initial moment of the flow remains a regular curve
while transported by the flow in time if the unit tangent of this initial curve is not in the
kernel of the Jacobian matrix of the Lagrangian paths function of the initial coordinates
(the flow). If conditions in Theorem 1 are fulfilled the particle contour I'y remains a regular
curve during the flow, so one can apply circulation or other types of theorems on it.

The question is if the set Uy, 4,1 D¢ is a submanifold of R3? If it is, we can assign
local coordinates for its points in the form p = (7,t). In other words, if the reunion of
all path lines over a certain finite interval of time is dense enough to form a topological
space. The answer can be given at least locally, by using the flow box theorem. Obviously,
the Lagrangian velocity field of any particle vy, fulfils the conditions for the existence of
flow boxes on X. Indeed, for any t € [t1,t2]], and any point p = (7,¢) C D; we can find a
neighborhood V (7) and t & 6t such that it exists @ > 0 and the triple

(V(7), (t = ot t + 0t))a, v (FL(7o, 1), t + N)),

is a flow box.

Moreover, we assume that the fluid flows in such a way that X is a topological space
with the product topology of R? x R. We also assume that the fluid flows in a bounded
region (bounded fixed region or free compact surface), so the Lagrangian velocity field has
compact support in X. Consequently ~y7(7,t) are maximal integral curves and form a
foliation of X. Since the field of velocities of particles has compact support, it is complete,
and any of its integral curves can be extended so that its domain of parameter becomes R.
So the Lagrangian paths ~yr,(7) form a foliation of the manifold D; which is homeomorphic
with Dy. We mention again that inside each D, we have 05 (7L (7, t),t) = 71(7, ), but
inside the same D; the integral curves of 7 7, are not the ~y, curves.

There are of course differences and similarities between the stream and path lines. In
Fig.4 we present a cross section into a spherical drop of incompressible inviscid fluid in
oscillation with an [ = 2 mode. The thin lines are the stream lines and the thick line is a
path line.
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Figure 4: Cross section into a spherical drop of incompressible inviscid fluid in oscillation in a 1=2
mode. The thin curves are the stream lines, while the thick curve is an example of a path line.

Establishing a Lagrangian-Eulerian change of frames in lower dimensional flows is not
quite trivial. In order to introduce Eulerian coordinates on a moving curve, for example a
thin vortex filament in motion, we consider that the Lagrangian coordinates along a curve
of length L are given by the arc-length parametrized form of the curve #(s,t). The curve
is in motion, and the velocity can be expressed in its Serret-Frenet local frame {f,7} in
the form V (s,t) = Ul(s, )7 + W (s, )t We introduce the mapping e : [0, L] — C

e(s,t):/ ei9(3’7t)d$/7

from the Lagrangian coordinate to the Eulerian one, where § = [° k(s/,¢)ds’ is the tangent
angle of the curve, and & is its curvature. In the Eulerian coordinate we can express all
the intrinsic properties of the curve,namely § = —iln(es), kK = —iegs/es, and the dynamics
of the transformation of coordinates is given by ey = [(W — iU)es|s [6]. In terms of
the new coordinate e and time the dynamical equation for the velocity components is
0:¢% = (W — iU).. Let us choose now a curve motion with zero normal velocity and
constant tangential velocity. Since such a motion is only a re-parametrization of the curve,
i.e it is not a real motion, we expect the Eulerian coordinate to remain constant. Indeed,
from the above relations we have e, = 0 so e =const.

4 Application: solitary waves and path lines for a two-
dimensional liquid drop

Nonlinear oscillations of a liquid drops introduce new phenomena and more complicated
patterns (higher resonances, solitons, compactons, breakup, fragmentation, fractal struc-
tures, superdeformed shapes) than cannot be described by a linear theory. There are
experiments [7] where special rotational patterns of circulation emerge: a running wave
originates on the surface of the drop and then propagates inward. The dynamics govern-
ing one-dimensional surface oscillations of a perfect (p =const.), irrotational fluid drop (or
bubble, shell) can be described by the velocity potential ® (‘7 = V®) and a corresponding
Hamiltonian [8]. By expanding the Hamiltonian and dynamical equations in terms of a
small parameter, i.e. the amplitude of the perturbation 7 over the radius of drop Ry, the
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usual linear theory is recovered in the first order. Higher order non-linear terms introduce
deviations and produce large surface oscillations like cnoidal waves [9, 10]. These oscilla-
tions, under conditions of a rigid core of radius Ry — h and non-zero angular momentum,
transform into solitary waves.

The total hydrodynamic energy E consists of the sum of the kinetic 7" and potential
U energies of the liquid drop. The shape function is assumed to factorize, r(0,¢,t) =
Ro(1 4+ g(0)n(p,t)). All terms that depend on 6 are absorbed in the coefficients of some
integrals and the energy reduces to a functional of i only. The potential energy is given
by the surface energy Us = (A, — Ao)|v,, where o is the surface pressure coefficient,
A, is the area of the deformed drop, and Ag the area of the spherical drop, of constant
volume V. The kinetic energy T = p fz OV - dS /2, the kinematic free surface boundary
condition @, = 9yr + (9pr)Py/r* + (9pr)Py/r?sinf, and the boundary condition for the
radial velocity on the inner surface 0,®|,—g,—p = 0, result in the expression

0do. (4.1)

R2,0 /7r /27T Ro®n; sinf + RLognd)(I)(I)(p(l — sin H)d
L+ g + g

If the total energy, written in the second order in 7, is taken to be a Hamlltoman H [n], the

time derivative of any quantity F'[n] is given by F}; = [F, H|. Defining F' = f —Vit)deo
it results

dF 2m 2m

o= | mdo = [ @Cam, +6Csm, ~2Cimsse)as = . (42)

which leads to the KdV equation. Here Cy = JR%(Sll:(O) + S 9/2) + RGpV2(3’3 L2,
Cs = oR3S19/2 + R3pV2(2S* 3Ry + 825 5 + RoS%5 35)/2, C4 = aRosgg 0/2, with sgfjl -
Ry ! foﬂ hlgt 9y Jsin®0df. Terms proportional to nn¢ can be neglected since they introduce
a factor n3/L? which is small compared to 73, i.e. it is in the third order. Therefore,
the energy of the non-linear liquid drop model can be interpreted as the Hamiltonian
of the one-dimensional KdV equation. The coefficients in Eq. (4.2) depend on two sta-
tionary functions of 6 (the depth h(f) and the transversal profile g(6)), hence, under the
integration, they involve only a parametric dependence.

The KdV equation has the following cnoidal wave (Jacobi elliptic function) as exact
solution

n=a3+ (o — ag)snz( 03((11:2376_’40‘2)@ - Vt)'m), (4.3)

where a1, as, a3 are constants of integration, m? = (a3 — as)/(as — a1). This solution

oscillates between as and ag, with a period T' = 2K(m)\/%, where K(m) is the

period of a Jacobi elliptic function sn(z|m). The parameter V is the velocity of the
cnoidal waves and o + ag + ag = 3(‘/277002) In the limit a; = as = 0 the solution Eq.

(4.3) approaches

n0C3
12C4

n = nosech? [ (6 — Vt)] , (4.4)
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Figure 5: Nonlinear modes in a two-dimensional drop.

Figure 6: Eulerian velocity field in a cnoidal wave.

which is the soliton solution of amplitude 7y. Small oscillation occur when as — a9 and
m — 0,7 — m/2. Consequently, the system has two limiting solutions, a periodic and a
localized traveling profile, which deform one into the other, by the initial conditions and
the velocity parameter V', Fig.5. The cnoidal solution Eq. (4.3) depends on the parameters
a; subjected to the volume conservation and the periodicity condition of the solution (for
the final soliton state this condition should be taken as a quasi-periodicity realized by the
rapidly decreasing profile). The periodicity restriction reads

K< /w)szag_al, n=12,...,2v/az — ay. (4.5)
a3 — n

Hence, a single free parameter remains, which can be taken either one out of the three a’s,
V or ng. In order to find the velocity filed, and consequently to integrate the correspond-
ing Hamiltonian system to obtain the particles path, we have to calculate the velocity
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potential. Following the procedure in [9] we expand the potential as a power series

o= Z_;)(R;o - 1) Fa(0, 0, 1).

The potential fulfils the Laplace equations plus boundary conditions at the rigid core
surface and at the free surface which generate recursion relations for all the unknown
functions f,, depending only on fj, which reads

0fo _ V R} sin? On(1 + 2n)
do h

With 7 given by Eq. (4.3), and appropriate choice for the angular velocity V of the
cnoidal wave shape, the depth h of the boundary layer we obtain the velocity potential,
and through its derivatives the local velocity field. In Fig.6 we present such a velocity
field, in the Eulerian frame for a cnoidal wave with period 7/3.

5 Conclusions

In the present paper we introduced a fiber bundle differential geometry formalism for the
stream, streak and path lines in a fluid, for both fixed container and free surface. As a
direct application we study the dynamics of a two-dimensional liquid drop with surface
tension, from the Hamiltonian point of view. Cnoidal and solitary surface waves are
obtained as solutions for this system. The Eulerian velocity field shows motion of the
particles up and down and forward-backward pretty much like in a Stokes wave [11] (see
[10, 12] for the case of solitary waves). The problem of particle paths under a soliton profile
on a circle will be addressed in a forthcoming paper. In the direction of extension of the
framework presented in this paper towards other nonlinear hydrodynamics configurations,
we would like to include two nonlinear wave systems that have been exactly solved: the
Gerstner’s solution for the classical deep water wave, [13] (see also a recent discussion
about this problem in [14]), and the edge wave solution [15]. These systems are the only
ones having explicit solutions for the nonlinear governing equations for gravity water waves
with a non-flat free surface.
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