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On the Fluid Motion in Standing Waves
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Abstract

This paper concerns linear standing gravity water waves on finite depth. We obtain
qualitative and quantitative understanding of the particle paths within the wave.

1 Introduction

The study of permanent progressive water waves is a classical topic within mathematical
analysis, and its challenging problems have continued to draw attention up to this day
2, 8,9, 10, 17, 26, 31]. As the name suggests, standing waves do not propagate, but arise—
for example—as the superposition of progressive waves traveling in opposite direction. A
typical instance of this are waves reflected against a vertically flat rock formation. Standing
waves can also be observed by setting water in a container in motion. For some historical
background on the mathematical theory of standing waves we refer to [12, 22, 28|.

The particle path approach led to the only existing explicit solution for gravity waves
with a non-flat surface [16, 29| (see also the discussion in [4] and the adaption to edge
waves in [3]). These solutions are rotational, with a particular distribution of vorticity.
Recently, new findings have shed light on the behavior of particles within exact and linear
progressive waves in general [5, 6, 11, 18, 19]. Those show in what way the classical
first order truncation—describing the trajectories as closed ellipses—is an approximation.
Typically one obtains that the trajectories are not closed, and that the particles display a
forward drift (even so for linear waves). The effects of vorticity do influence this pattern
in different ways [14, 15|, but near the flat bed the non-closed oval paths are preserved.
Since standing waves arise as the result of two such waves, it is a natural question to
ask what happens in this case. Just as the limit of L-periodic traveling waves, being
solitary waves [1], do not preserve the particle paths of periodic waves 7], one expects
the particles within a standing wave to behave differently than within a periodic steady
wave. That notion is supported by physical measurements, indicating that the particle
trajectories corresponding to standing waves resemble parabolas [30]. This paper confirms
that hypothesis, providing detailed information on the behavior for every particle within
the fluid.
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Another impetus comes from the recent investigations [20, 21, 22, 28]. There, the
authors establish the existence of standing gravity waves as solutions of the exact water
wave problem. The intractability of the exact problem however makes it generally very hard
to find exact properties of its solutions. Since near the laminar flows a good approximation
is given by the corresponding linear system, that is the natural starting point for further
understanding of the exact waves. In this investigation we also show in what way linear
waves are “accurate” for small amplitudes, and inaccurate for larger waves.

The paper has the following disposition: Section 2 describes the physical background
leading up to the mathematical water wave problem. We rescale, linearize and present
a solution of the linear problem. Section 3 contains the main results, Lemma 3.1 and
Theorem 3.5. Via standard methods for ordinary differential equations we deduce the
Lagrangian solutions in terms of closed expressions. This admits for the presentation of
some properties of standing waves. Finally, in Section 4 we illustrate our results with the aid
of numerical examples. Note that since in this case we were able to deduce exact solutions,
the figures presented do not represent approximations through numerical schemes, but
plots of closed functions.

2 Preliminaries

Choose Cartesian coordinates (z,y) with the y-axis pointing vertically upwards. so that
the origin lies on the flat bed below the crest. Let (u(t,x,y), v(t,z,y)) be the velocity field
of the flow, let h > 0 be the depth below the mean water level y = h, and let y = h+n(t, x)
be the water’s free surface. We assume that gravity is the restoring force once a disturbance
was created, neglecting the effects of surface tension. Homogeneity (constant density) is
a physically reasonable assumption for gravity waves |25], and it implies the equation of
mass conservation

Uz + vy =0 (2.1a)

throughout the fluid. Appropriate for gravity waves is the assumption of inviscid flow [25],
so that the equation of motion is Euler’s equation
Up + Uty + VU, = — Py,
P T v (2.1b)
v+ uvg +vvy = =Py — g,

where P(t,z,y) denotes the pressure and ¢ is the gravitational constant of acceleration.
The free surface decouples the motion of the water from that of the air so that, ignoring
surface tension, the dynamic boundary condition

P=PF on y=h+ntz), (2.1c)

must hold, where Py is the constant atmospheric pressure [23] . Moreover, since the same
particles always form the free surface, we have the kinematic boundary condition

v=mt+un, on y=ntz). (2.1d)

The fact that water cannot penetrate the rigid bed at y = 0 yields the kinematic boundary
condition

v=20 on y=0. (2.1e)
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2.1 Nondimensionalization

We now introduce a non-dimensionalization of the variables. As above, h is the average
height above the bottom, and we let a denote the typical amplitude, and A the typical
wavelength. Take \/gh as the scale of the horizontal velocity; that is the approximate
speed of irrotational long waves [23|. We then make the transformations

T v o Vaght U Av n
€T — — — = —_— U+— — V= —— — =,
A’ y h’ A ) m’ h»\/g_h’ ,,7 a

After applying those mappings, define furthermore a new pressure function p = p(t,z,y)
by the equality

P = Py+ gh(1 —vy) + ghp.

Here Py is the constant atmospheric pressure, and gh(1 — y) is the hydrostatic pressure
distribution, describing the pressure change within a stationary fluid. The new variable p
thus measures the pressure perturbation induced by the wave. The water wave problem
(2.1) then reads

Uy + vy =0, (2.2a)

Ut + Uy + VUy = —Pg, 2.2b
)\2

Vg F uvy + vy = — 3Py (2.2¢)

valid in the fluid domain 0 <y < 1+ 31, and

a
v=1g (0 + uny), (2.2d)

p= % n, (2.2¢)

valid at the surface y = 1 + £, in conjunction with the boundary condition (2.1e) on the
flat bed y = 0. Here appear naturally the parameters

a h

€= —, 6:=—,

h A
called the amplitude parameter, and the shallowness parameter, respectively. Since the
shallowness parameter is a measure of the length of the wave compared to the depth,
small § models long waves of small amplitude or, equivalently, shallow water waves. The
amplitude parameter measures the relative size of the wave, so small € is customarily used

to model a small disturbance of the underlying flow (cf. [23]).

2.2 The linearization

To enable the study of explicit solutions, we shall linearize around a laminar irrotational
flow, i.e. still water. For such flows we have a flat surface, ¥ = 1 (in non-dimensional
variables), corresponding to n = 0. We now write a general solution as a perturbation of
such a vanishing solution, i.e.

u=¢el, v=E¢cl, p=Eep. (2.3)
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Recall that small € corresponds to waves whose amplitude is small in comparison with the
depth. Since the surface is described by 1 + en, 1 should thus be of unit size. Dropping
the tildes, we obtain

Uz + vy =0, (2.4a)
ug + e(uuy + vuy) = —pg, (2.4b)
v + e(uvy + vuy) = —%, (2.4c)

valid in the fluid domain 0 < y < 1+ €n, and

v =1+ euny,, (2.4d)

p=m, (2.4e)
at the approximate surface y = 1. Moreover, v = 0 on the flat bed y = 0. The linearization
is attained by formally letting ¢ — 0, and it is given by

Uy = —Uy, U = —Pg, 8%v, = —Dy, (2.5a)

valid in 0 <y < 1, and

U =T, p=n, (25b)

for y = 1. A special class of waves are the standing waves for which the surface is periodic
separately in the (¢, z)-variables. A natural Ansatz is therefore n(t,x) := cos(ut) cos(2mx).
This leads to the solution

u(t, z,y) = 2m0C sin(ut) sin (27z) cosh (27dy) ,

v(t,x,y) = —2mwC sin(ut) cos (2mzx) sinh (27dy) , (2.6)

p(t,z,y) = pdC cos(ut) cos (2mx) cosh(2moy),

where

o 1

" 2msinh(270) /270 sinh(270) cosh(270)

The corresponding approximation to the original system (2.1) is

aw
L . L

u(t, z,y) Sh(hE) sin (wt) sin (kz) cosh (ky) ,

aw . .
u(t,z,y) = ~ Smh(hk) sin (wt) cos (kx) sinh (ky) ,
P(t,z,y) = P+ g(h —y) 27)

ag

_— h
+ cosh(hF) cos (wt) cos (kx) cosh (ky) ,

n(t,z) = h + acos (wt) cos (kx) .

2
k= Tﬂ and w:=y/gktanhhk (2.8)
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are the wave number and the frequency, respectively. The second equality in (2.8) can
be taken either as a definition, or as the dispersion relation determining the frequency w.
The size of the disturbance is proportional to a in the whole quadruple (1, u,v, p), so this
solution satisfies the exact equation with an error which is O(a?) as a — 0.

A few comments are in order about the solution (2.7). Looking at the form of 7 and v
we see that there is no vertical motion along the lines © = (n+1/2)7/k, n € Z. These are
the nodal lines. In contrast, the vertical motion of the surface is greatest at the antinodes,
x =nm/k, n € Z. Note also that there is no horizontal motion underneath the antinodes.
While the above solution is unimodal, it is in principle possible to imagine a multimodal
solution consisting of a linear combination of solutions of the form (2.7), with kK = mky and
w = nwq for m,n € Z. It is known, however, that for “most” parameter values the solution
of the dispersion relation (2.8) is unique (see [28| for the details). This is in contrast to the
deep water setting, where multimodal solutions of the linear problem are abundant and
where such solutions have been shown to exist in the exact water wave problem [20].

3 Main results

In this section we investigate the particle trajectories for the standing wave (2.7). We find
explicit formulas for the trajectories, from which it is possible to get a very clear picture of
the fluid motion. Our main results are presented in Theorem 3.5 at the end of the section.

The system (2.7) represents a solution, but in terms of paths (z(t),y(t)) it is still very
implicit. Indeed, it describes the system of ordinary differential equations

#(t) = cwsin (wt) sin (kx) cosh (ky) ,
y(t) = —cwsin (wt) cos (kz) sinh (ky) , (3.1)

for ¢ := a/sinh hk. This, however, can be explicitly solved. To state our findings, define
am(s, k) as the inverse of the (incomplete) elliptic integral of the first kind,

¢ 1
F(6.k ::/ du, —m<é<m,
(9:%) 0 1 — k2sin?(u ¢

ie. am(F (¢, k), k) = ¢, for —m < ¢ < 7 (see [24]). The Jacobi elliptic function am is
defined in this way for —2K < s < 2K where

K = K(k) = /2 L du,
0 1 — k2 sin?(u)

is the complete elliptic integral of the first kind.

Lemma 3.1. The solutions of (3.1) in (0,7/k) x (0,00) are given by

z(t) = %am(C(kc(l — cos(wt)) + so), C~ 1), C >0,

1 . C
y(t) = k arcsinh (sn(C(kc(l — cos(wt)) + s0), C‘li)) ’ (3:2)
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in {0} x (0,00) by

y(t) = 1 In (tanh (C — @ cos(wt)>> , C > E, (3.3)
k 2 2
and in (0,7/k) x {0} by
1 1— 0672kccos(wt)
x(t) = 7 arecos (1 T Co kel | C>0. (3.4)

Remark 3.2. In several references the particle paths for linear waves are described as
straight lines — see e.g. |13, 28]. This is indeed the solution which is obtained if (3.1) is
expanded to first order in a, or, equivalently, if the equations of motion are linearized in the
Lagrangian setting [28]. The solutions obtained here seem to agree better with experiments
(cf. [30]). We also note that, using a different approach, particle paths were calculated up
to fourth order in the amplitude for standing waves on deep water in [27]. Their result
agrees qualitatively with ours, in the sense that the particles oscillate back and forth along
arcs.

Proof. To find the solutions of (3.1), consider the transformation
t +— s(t) := ke(l — cos(wt)), R — [0, 2k¢].

We shall be looking for solutions (X(s),Y (s)) = (kz(t),ky(t)). Those will a priori be
periodic in t. However, assuming the existence of such solutions, it follows by uniqueness
of (3.1) that there can be no other solutions. Hence we may put

(kz(t), ky(t)) == (X (ke(1 — cos(wt)), Y (ke(1 — cos(wt))),

to obtain solutions globally defined in time from those defined only on [0, 2kc]. It conse-
quently suffices to solve the autonomous system

X =sin X coshY,
Y = —cos X sinhY, (3.5)
in the domain [0, 2ak/ sinh hk]. Notice that

2ak £

<2 -
sinhhk = ¢l sinhg

2e, (3.6)

which will eventually give us a natural bound for amplitude parameter.

We now study the system (3.5) in the domain 0 < X < 7, Y > 0. The vertical lines
X =0and X = 7 are oo-isoclines (X = 0) and the bottom Y = 0 is a 0-isocline (Y = 0).
When 0 < X < 7 it follows that X # 0 and we have

dY — tanh(Y)
dX  tan(X)’

which can be integrated to

Y(X) =Y(X;C) = arcsinh <sin((jX)> , (3.7)
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where C' > 0 in the domain that we are considering. Thus the particle trajectories lie on
the streamlines

e ={(X,)Y(X;0)): 0< X <7}.
Substitution of (3.7) into (3.5) yields

X = /sin?(X) 4 C2, (3.8)
meaning
X(s) = am(C(s + sq), C~14).

Using (3.7) we furthermore obtain that

Y (s) = arcsinh (Sn e +CSO)7 Cli)) :

where sn(s, k) = sin(am(s, k)). Returning to the physical variables, this yields (3.2).
To solve (3.5) when X = 0, we first note that if Y is a solution, so is =Y. Looking for
a negative solution gives us the possibility to integrate

Y =—sinhY, to Y=In (tanh (% + C’)) < 0.
Mapping ¥ — —Y, we obtain (3.3).
Similarly, if Y =0 in (3.5) we get

) 1— cos X -
X =sinX meaning In ($> =s+C.
sin X

Since the solution of (1 —cosx)/sinx = « is given by cosx = i;g;, this leads to (3.4). W

Notice that for X € (0,7) we have X > C' > 0. According to (3.7) this forces Y (s) to
blow up in finite time for any C' and s (this happens when X (s) = 7). To remedy this
situation we prove the following proposition concerning solutions (X, Y) in (0,7) x (0, c0).

Lemma 3.3. For 0 < s < 2¢ there exists a uniform constant Y, < arcsinh(1/sinh(2¢))
such that if Y(0) < Y, then X(s) <7 and Y (s) < oc.

Proof. Let P := (X(0),Y(0)) € I's, with 7/2 < X(0) < w. Then X(0) = © —
arcsin(C'/sinh(Y'(0))). The time it takes the solution starting at P to reach X = 7 is
given by

sy = s(m) — s(X(0)) =

s ™ X
[Ty
x(0) dX X(0) v/C? + sin*(X)
C
du

sinh(Y (0))
V(1 —u?)(C? + u?)

7—X(0) dx
B /0 VC? +sin(X) /o
_ / TRV dv S / ROy dv

0 V(1= C202)(1+v2) ~ Jo V1422

- /—sinhlm) dv - < 1 )
——— = arcsinh [ ———— |,
~Jo V1§ 02 sinh(Y)
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if Y(0) < Y. As the last expression tends to infinity as Y, — 0, we find that there is a Y
such that s, > 2¢ if Y/(0) < Yi. In view of that X > 0,the restriction that X (0) > /2 is
inessential as otherwise s, is even larger. [ |

Remark 3.4. Recall (3.6). As a consequence of Lemma 3.3, if we choose

2¢ < arcsinh #
€ resin Snh(v) )

the solutions starting at a point below Y = Y, will not blow up. Since the maximum of
the surface at time t = 0 is at y = h + a, this yields the condition

o< garcsinh (W) (3.9)

in physical variables. Given k and h this condition is clearly satisfied if a is sufficiently
small.

With abuse of notation we shall write (z,y) € I'c to denote the fact that (x,y) belongs
to the streamline sinh(ky)sin(kz) = C. We then have the following conclusions for the
particle trajectories of standing waves.

Theorem 3.5. Suppose that a,k, and h satisfy (3.9), and let (x,y) be the solution given
by Lemma 3.1 with (x(0),y(0)) = (xo0,y0) € [0,7/k) x [0, h+ a]. Then the general solution
of (3.1) is given by

nm

xn(t) == - +z((=1D)"), yut):=y(-1)"), n € 7,

and the following properties hold:
i. (x,y) is periodic with period 2w /w, and symmetric around m/w.
it. x 1s increasing in the interval 0 <t < 7w /w.
i11. For a fized value of xg, x(mw/w) is an increasing function of yo.
. If (2,9) € T with (0) > x, then T(r/w) > x(7/w).

v. For every C > 0 there exists a point (z+,ys) € o, with 0 < z, < w/(2k), so that the
distance x(m/w) — xg s an increasing function of xy for 0 < xy < x, and decreasing
for x. < xg.

Proof. We already proved that, assuming (3.9) and y(0) < a+ h, the unique and globally
defined solution of the initial value problem (3.1) for (0) € [0, 7/k) is given by (3.2), (3.3),
or (3.4), depending on initial data. It is then easy to check that (z,,,y,) also satisfies (3.1),
and by uniqueness, those are the only solutions.

Concerning properties: (i) follows from the solution formula (3.2), and since 0 < z <
m/k we see from (3.1) that the sign of # changes at most at ¢ = m/w, i.e. (ii) holds. To
prove (iii), we use the (X, Y )-coordinates and note that for fixed Xy, a higher value of Yj
also implies a higher value of C'. Referring to (3.8) we see that the solution with the higher
C will remain ahead of the other solution for small values of s > 0. It suffices to show that
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Figure 1: Streamlines sinh(ky)sinh(kz) = C (solid curves) and particle paths (hollow circles).
The dashed curves are the surface at time t =0, y = h + a cos(kx), and the line y = 0.3.

this continues to hold for 0 < s < 2kc. Assume instead that at some point the solution
with the lower C' catches up. Then (3.8) gives a contradiction since the solution with the
higher C' will have a greater value of X at the point of intersection. The statement (iv) is
due to the fact that two solutions can never intersect in (t, z,y)-space.

Now to (v). We work in the (X,Y')-coordinates and denote for any C' > 0 by X¢ the
solution of (3.8) with X¢(0) = 7/2. Any other solution X (s) of (3.8) for this C' is then
given by X (s) = X¢(s+so) for some so € R. The total distance traveled in the X-direction
by a solution starting at X¢(so) is given by

so+2kc dXC

d
dss

r(s0) := Xc(s0 + 2ke) — Xc(s0) = /

S0

so+2kc
_ / VC? + sin?(Xo(w)) du.

0

Differentiating this expression we find that

' (s0) = \/02 + sin? (X pax) — \/6’2 + sin?(Xy),

where Xy = Xc(sp) and Xpax = Xco(so + 2kc). This is positive as long as sin(Xpax) >
sin(Xp). The point z, corresponds to the Xy for which sin(Xpax) = sin(Xp). |
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Figure 2: The progression of the particles beneath the original crest as time evolves.

4 Examples

It is a remarkable fact that all linear standing waves admit explicit solutions of the particle
paths in terms of standard functions. Still, the expressions (3.2)-(3.4) are not oblique.
Since the solutions are at hand it is not hard to perform the calculations. We present
some figures illustrating Theorem 3.5. In these figures we have taken the parameter values
h=1,k=1 and a = 0.25.

Figures 1-3 illustrate the particle paths and streamlines. In figure 1 proposition (iii) of
Theorem (3.5) is apparent — for a given initial horizontal position, particles starting higher
up travel further to the right. Figures 2-3 display the motion inside the axes. Notice in
Figure 3 how the distance traveled first increases and then decreases as we follow the z-axis
from = 0 to # = 7. This is consistent with proposition (v) of Theorem (3.5)

Since the kinematic boundary condition at the surface (2.1d) is linearized, the prop-
erty that particles are trapped on the surface y = n(t,z) does not hold. By following the
progression of particles initially starting on the surface y = h + a cos(kx) we obtain a “La-
grangian” surface, which heuristically should stay near the surface y = h+a cos(wt) cos(kx)
if @ is small. This is illustrated in Figure 4. Qualitatively there is a close resemblance be-
tween the two pictures. We find that the agreement is better close to the antinode z = 0
than near the antinode x = m, where the Lagrangian surface lies above the surface for
t=(2n+1)r/w, n € Z. If the calculation is repeated for different values of a one obtains
a better agreement for smaller values, as is to be expected.

Acknowledgments. The support of the Goran Gustafsson Foundation for Research in
Natural Sciences and Medicine is gratefully acknowledged. The authors also would like to
thank the referee for his careful reading of the manuscript.
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Figure 3: The progression of the particles in (0, 7) at the flat bed as time evolves.

Figure 4: Above: The evolution of the surface y = h + a cos(wt) cos(kx). Below: The evolution of
a layer of particles starting on the surface at time ¢t = 0.
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