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Abstract

The Burgers equation and the Camassa-Holm equations can both be recast as the
Euler equation for a right-invariant metric on the diffeomorphism group of the circle,
the L2-metric for Burgers and the H1-metric for Camassa-Holm. Their geometric
behaviors are however very different. We present a survey of this geometrical approach
and discuss these differences.

1 Introduction

The idea of studying geodesic flow in order to analyze the motion of inertial continuum
mechanical systems is due to Arnold [2]. He showed that the Euler equations of the motion
of a rigid body and the Euler equations of hydrodynamics (with fixed boundary) can both
be obtained as the geodesic equations of a one-sided invariant Riemannian metric on a
Lie group. In each case the metric corresponds to the kinetic energy of the system and is
given by an inner product on the Lie algebra of the group.

For the rigid body the group is the rotation group SO(3) and the inner product on the
Lie algebra so(3) ≃ R

3 (the space of angular velocities) is given by

< ω, η >= Aω · η

where A is the inertia tensor of the rigid body.

For hydrodynamics, the group is the infinite-dimensional Lie group SDiff(D) of smooth
volume- and orientation-preserving diffeomorphisms of the fluid domain D. The Lie al-
gebra SVect(D) of SDiff(D) consists of all divergence-free vector fields tangent to the
boundary of D and is equipped with the L2 inner-product

< u, v >=

∫

D

(u · v) dµ.

This structure is the prototype for the mathematical treatment of many important
physical systems. Other equations from mathematical physics were found to have an
interpretation as geodesic flows on diffeomorphism groups (see for example [21, 22, 31, 32]).
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However, Arnold’s initial paper remains essentially formal. Subsequent analytical work
have been achieved later. Ebin and Marsden [13] enlarged the actual configuration space of
smooth diffeomorphisms to diffeomorphisms of Sobolev class Hs, making possible further
analytical studies. This work was then extended by Shkoller in [34] to the mean motion
of an ideal fluid where the L2-metric on SDiff(D) is replaced by the H1-metric.

The aim of this paper is to present a detailed overview of two such systems arising in
fluid mechanics: the inviscid Burgers equation and the Camassa-Holm equation. Both
of these systems appear as the Euler equation on the diffeomorphism group of the circle
Diff(S1) for some right-invariant metric, the L2-metric for Burgers’ equation and the H1-
metric for Camassa-Holm’s equation. It is interesting to consider both of these metrics
as particular members of the more general family of Hk-metrics (k ∈ N) where k = 0
correspond to the L2-metric. As we shall see, the geometric behavior of these two systems
k = 0 and k ≥ 1 appear to be very different.

Besides the motivation of understanding Burgers’ and Camassa-Holm’s equations from
a geometrical point of view, there is another reason to study Euler equations for Hk-
metrics on Diff(S1). The rigorous analytical analysis of Euler equations on smooth diffeo-
morphisms groups is a difficult problem. Diff(S1) is the simplest of the diffeomorphisms
groups and it is expected that understanding some mechanisms within this setting can
give insight to deal with more ambitious situations.

Before proceeding with the special case of Euler’s equation on Diff(S1) in Section 3,
we first review some fundamental aspects of the general Euler equation on an abstract
Lie group in Section 2. Section 4 is devoted to the study of short-time existence for
geodesics of the Hk-metrics on the diffeomorphism group of the circle. Section 5 is about
the regularity of the Riemannian exponential map. A final section recapitulates the main
results and deals with the case of the Virasoro group and the KdV equation: a case which
has been considered prior to the case of Diff(S1) but which, form a didactic point of view,
has to be studied afterwards because of additional technical difficulties.

2 Euler equation on an abstract Lie group

The configuration space of the motions of a rigid body around its center of mass can
be identified with group of rotations SO(3). A motion of the body is represented by
a (parameterized) curve lying in the group SO(3). The “velocity vector”, given by the
derivative of the motion, lies in the tangent space to the group element. It can be pulled
back to the Lie algebra so(3) (identified with the 3-space R

3) by left translation and defines
the angular velocity ω. The kinetic energy corresponds to a left-invariant Riemannian
metric on SO(3). Its value at the identity element is given by

K =
1

2
Aω · ω, ω ∈ R

3

where A is the inertia tensor of the body Σ

Aω =

∫

Σ
r ∧ (ω ∧ r) ρdr.

If there are no external forces, the motions are the extremals of the kinetic energy, that
is the geodesics of the left-invariant metric on SO(3) defined by the inertia operator A.
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Equations for angular velocities were derived by Euler [14] in 1765 and Lagrange [25] in
1788

ω̇1 =
I2 − I3
I1

ω2ω3, ω̇2 =
I3 − I1
I2

ω1ω3, ω̇3 =
I1 − I2
I3

ω1ω2,

where ωk are the angular velocities around principal axis and Ik are the eigenvalues of the
inertia tensor A.

The derivation of the general Euler equation for an arbitrary Lie group G given in this
section is for a right-invariant metric. It follows one given by Euler and Lagrange for the
rigid body (see [23] for more details).

2.1 Right-invariant metric on a Lie group

A right-invariant metric on a Lie group G is completely determined by its value at the
unit element e of the group, or in other words, by an inner product on its Lie algebra g.
This inner product can be expressed in terms of a symmetric linear operator

A : g → g
∗,

that is (Au, v) = (Av, u) for all u, v ∈ g∗, where the round brackets stand for the pairing
of elements of the dual spaces g and g∗. We call A the inertia operator, in reminiscence
of the motion of the rigid body.

2.2 Eulerian velocities and momenta

Let g(t) be a smooth curve on G. The velocity vector or Lagrangian velocity is defined as
the derivative ġ(t), which lies in TgG. Left and right Eulerian velocities are defined by

uL = Lg−1 ġ, uR = Rg−1 ġ,

where L, R stand for left and right translations on G respectively. Similarly, we get left
and right Eulerian momenta by

mL = L∗

gm, mR = R∗

gm.

where

m(t) =< ġ(t), · >g(t), m(t) ∈ T ∗

g(t)G,

is the co-velocity. These four objects are related by

mR = AuR, uR = Adg uL, mR = Ad∗g mL, (2.1)

where Ad is the adjoint action of G on g defined by

Adg u = LgR
−1
g u, g ∈ G, u ∈ g

and Ad∗ is the coadjoint action of G on g∗ defined by

(Ad∗g m,u) = (m,Adg−1 u) g ∈ G, u ∈ g, m ∈ g
∗.
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2.3 Euler’s theorems

The invariance of the metric under right translations generates a conserved momentum as
a result of Noether’s theorem and leads to Euler first theorem which is a generalization of
the angular momentum conservation law for the motion of a free rigid body.

Theorem 1 (Euler’s first theorem). The left Eulerian momentum associated to a geodesic
of a right-invariant metric on a Lie group G is independent of t

dmL

dt
= 0. (2.2)

Remark 1. In the case of the motion of an incompressible fluid, this conserved momentum
corresponds to the isovorticity : the curl of the velocity vector field is transported along
the flow.

Taking the time derivative of the third relation of (2.1) and using (2.2), we then obtain
Euler equation on g∗. Its expression involves the definition of the coadjoint action ad∗

um
of g on g∗, defined by

(ad∗

um, v) = −(m, adu v), u, v ∈ g, m ∈ g
∗.

Theorem 2 (Euler’s second theorem). The right Eulerian momentum associated to a
geodesic of a right-invariant metric on a Lie group G satisfies the following evolution
equation

dmR

dt
= ad∗

uR
mR, (2.3)

which is called Euler equation on g∗.

Remark 2. There is another interpretation and another way to derive Euler equation on
g∗. On a general Riemannian manifold, the geodesic flow is a Hamiltonian flow for the
canonical symplectic structure on the cotangent bundle. The Hamiltonian is given by the
energy functional. In the special case of a Lie group G, the canonical symplectic structure
is invariant (either by left or right translations). It does not get down to a symplectic
structure on the quotient space T ∗G/G ∼= g∗ but the corresponding Poisson structure
induces a natural Poisson structure on g∗ called the Lie-Poisson Brackets

{f, g }LP (m) = m([dmf, dmg]), f, g ∈ C∞(g∗).

A one-sided invariant metric on G generates a reduced Hamiltonian function HA and a
reduced Hamiltonian vector field XA on g∗

HA(m) =
1

2
(m,A−1m), XA(m) = ad∗A−1mm, m ∈ g

∗

where A is the inertia operator.
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2.4 Euler equation on g

To obtain a contravariant formulation of (2.3), that is an equation on g rather than g∗, we
need the adjoint (relative to the metric A) of ad, that is a bilinear operator B : g× g → g

such that

< adu v,w >=< B(w, u), v >, u, v, w ∈ g. (2.4)

Equation (2.3) can then be rewritten as a quadratic differential equation on g,

u̇R = −B(uR, uR), (2.5)

which we call Euler equation on g associated to the right-invariant metric defined by the
inertia operator A.

Remark 3. Integration of the geodesic equations is reduced to two successive quadratures

u̇L = −B(uR, uR), ġ = Rg uR.

When the metric is bi-invariant, B(u, u) = 0, and the geodesics through the unit element
are just one-parameter subgroups of G.

2.5 Sectional curvatures

The Levi-Civita connection of a right-invariant metric is also right-invariant. It is thus
defined by its value at the unit element

(∇ξu
ξv) (e) =

1

2
[u, v] −

1

2

(

B(u, v) +B(v, u)
)

,

where ξu and ξv are the right-invariant vector fields generated by u and v. The sectional
curvatures of such a metric are also right-invariant and also determined by their value at
the unit element of the group. They have been computed by Arnold [2].

Theorem 3 (Arnold, 1966). The sectional curvature Cuv for a right-invariant metric on
a Lie group G at the unit element e for the 2-plane defined by orthonormal vectors u, v ∈ g

is given by

Cuv =< δ, δ > +2 < α, β > −3 < α,α > −4 < Bu, Bv > (2.6)

where

2α = [u, v], 2β = B(u, v) −B(v, u), 2δ = B(u, v) +B(v, u)

and

2Bu = B(u, u), 2Bv = B(v, v).
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3 Euler equations on Diff(S1)

In this section, we extend the theory presented in the preceding section for a finite dimen-
sional Lie group G to the group Diff(S1) of smooth, orientation preserving diffeomorphisms
of the circle. This group is naturally equipped with a Fréchet manifold structure. More
precisely, we can cover Diff(S1) with charts taking values in the Fréchet vector space1

C∞(S1) and in such a way that the change of charts are smooth maps (see [11] or [13] for
more details).

Since the composition and the inverse are smooth maps for this structure we say that
Diff(S1) is a Fréchet-Lie group [17]. Its “Lie algebra” Vect(S1) is isomorphic to C∞(S1)
with the Lie bracket given by

[u, v] = uxv − uvx.

3.1 H
k metrics

A right-invariant metric on Diff(S1) is defined by an inner product a on the Lie algebra of
the group Vect(S1) = C∞(S1). In this article, we study the case where a is the Hk-Sobolev
inner product (k ≥ 0),

ak(u, v) =

∫

S1

(

uv + uxvx + · · · + u(k)
x v(k)

x

)

dx u, v ∈ C∞(S1). (3.1)

This inner product generates, by translation on each tangent space, a weak-Riemannian
metric on Diff(S1). It is called “weak” because, even if it is non-degenerate, it is not an
isomorphism between the tangent space and the co-tangent space. Besides, the topology
induced by the associated norm is not complete and is weaker than the initial C∞ topology.

In finite dimensional Riemannian geometry, the geodesic pseudo-distance d(x, y), de-
fined as the infimum of the lengths of all piecewise C1 curves from x to y, is in fact a
distance, that is d(x, y) > 0 if x 6= y. This may not be the case for a weak-Riemannian
metric. For the Hk metric on Diff(S1), Michor and Mumford [29] proved the following
result.

Theorem 4 (Michor & Mumford 2005). The Riemannian pseudo-distance dk induced
by the Hk-metric on Diff(S1) is a distance for k ≥ 1. It vanishes identically for k = 0
(L2 metric).

Sketch of proof. For any piecewise C1 curve ϕ in Diff(S1) we have

Lk(ϕ) =

∫ 1

0

∥

∥ϕt ◦ ϕ
−1

∥

∥

Hk dt ≥

∫ 1

0

∥

∥ϕt ◦ ϕ
−1

∥

∥

H1 dt = L1(ϕ), k ≥ 1.

Hence, it is enough to show that the pseudo-distance d1 induced by the H1-metric is a
distance on Diff(S1). Let ϕ1 ∈ Diff(S1) be a diffeomorphism which is different from the

1A topological vector space E has a canonical uniform structure. When this structure is complete and
when the topology of E may be given by a countable family of semi-norms, we say that E is a Fréchet
vector space. In a Fréchet space, such classical results like the Cauchy-Lipschitz theorem or the local inverse

theorem are no longer valid in general as they are in on Banach manifold. The typical example of a Fréchet
space is the space of smooth functions on a compact manifold where semi-norms are just the Ck-norms
(k = 0, 1, . . . ).
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identity. We are going to show that the H1-length of any path ϕ(t, ·) joining Id and ϕ1

is bounded from below by some positive constant independent of the path. First, notice
that since ϕ1 6= Id, the smooth periodic function f = (ϕ1)x−1 does not vanish identically
and hence

∫

S1

f(ϕ−1
1 (y)) dy −

∫

S1

f(x) dx =

∫

S1

f(x) (ϕ1)x (x) dx −

∫

S1

f(x) dx

=

∫

S1

[(ϕ1)x − 1]2 dx > 0.

Let

a(t) =

∫

S1

f(ψ(t, x)) dx,

where ψ(t, ·) = ϕ−1(t, ·). We have

ȧ =

∫

S1

(f ′ ◦ ψ)ψt dx = −

∫

S1

(f ′ ◦ ψ)ψxu dx = −

∫

S1

(f ◦ ψ)xu dx,

where u = ϕt ◦ ϕ
−1 because ψt = −ψxu. Integrating by parts we get

ȧ =

∫

S1

(f ◦ ψ)ux dx

and hence

|ȧ| ≤ max
(

|f |
)

∫

S1

|(u)x| dx ≤ C ‖u‖H1 .

Therefore

0 < |a(1) − a(0)| ≤ CL1(ϕ),

and since C does not depend on the path, we are done.

To show that the pseudo-distance d0 vanishes identically on Diff(S1), we introduce the
subset H of all diffeomorphisms ϕ1 ∈ Diff(S1) with the following property: For each ε > 0
there exists a smooth curve ϕ(t, ·) from the identity to ϕ1 in Diff(S1) with energy

E0(ϕ) =

∫

S1

‖u‖2
L2 dt ≤ ε.

Since L0(ϕ)2 ≤ E0(ϕ), it is enough to show that H = Diff(S1). We claim that H is a
normal subgroup of Diff(S1) [29]. Moreover, since Diff(S1) is a simple group (i.e has no
nontrivial normal subgroup) [16], it is enough to show that H is not reduced to {Id},
which is done in [29], using compression waves. �
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3.2 Euler equations

The topological dual of the Fréchet space Vect(S1) is isomorphic to the space of distri-
butions on the circle. We define the regular dual of Vect(S1), denoted Vect∗(S1), as the
subspace of linear functionals with a smooth density m ∈ C∞(S1)

u 7→

∫

S1

mudx.

The L2 inner product defines an isomorphism between Vect(S1) and its regular dual
Vect∗(S1). The inertia operator Ak associated to the Hk metric (3.1) is defined as an
operator from Vect(S1) to its regular dual Vect∗(S1), both spaces being identified with
C∞(S1). It is given by

Ak = 1 −
d2

dx2
+ · · · + (−1)k

d2k

dx2k

which is a continuous, symmetric, invertible linear operator. The corresponding Euler
equation is

ut = −A−1
k [2Ak(u)ux + uAk(u)x] . (3.2)

Two cases are of special interest: k = 0 and k = 1.

Burgers equation. For k = 0 (that is for the L2-metric), the corresponding Euler
equation (3.2) is the inviscid Burgers equation [4]

ut + 3uux = 0, (3.3)

also known as Hopf equation. Equation (3.3) can be studied quite explicitly [18]. All
solutions of (3.3) but the constant functions have a finite life span and (3.3) is a simplified
model for the occurrence of shock waves in gas dynamics.

Camassa-Holm equation. For k = 1 (that is for the H1-metric), the corresponding
Euler equation (3.2) is the Camassa-Holm equation

ut − utxx + 3uux − 2uxuxx − uuxxx = 0. (3.4)

Equation (3.4) is a model for the unidirectional propagation of shallow water waves [5, 19].
It has a bi-Hamiltonian structure [15] and is completely integrable [8]. Some solutions of
(3.4) exist globally in time [6], whereas others develop singularities in finite time [6, 27].
The blowup phenomenon can be interpreted as a simplified model for wave breaking –
the solution (representing the water’s surface) stays bounded while its slope becomes
unbounded [6].

3.3 Sectional curvatures

The existence of a covariant derivative compatible with a right-invariant, weak Riemannian
metric is ensured by the existence of the adjoint operator B (see [10] for details). For the
Hk metric we have

Bk(u, v) = A−1
k [2Ak(u)vx + vAk(u)x] .
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The sectional curvatures are then computed using Arnold’s formulas (2.6).

For k = 0 (Burgers equation), we get

Cuv =

∫

S1

[u, v]2 dx

so that all sectional curvatures are non-negative.

For k = 1 (Camassa-Holm equation), we get

4Cuv =

∫

S1

[

(

2mvx + vmx + 2nux + unx

)

A−1
(

2mvx + vmx + 2nux + unx

)

]

dx

+2

∫

S1

[

(

uxv − uvx

)(

2mvx + vmx − 2nux − unx

)

]

dx

−3

∫

S1

[

A
(

uxv − uvx

)(

uxv − uvx

)

]

dx

−4

∫

S1

[

(

2mux + umx

)

A−1
(

2nvx + vnx

)

]

dx

where A = I − d2/dx2, m = A(u), n = A(v). This expression is difficult to analyze.
However, for u = cos(px) and v = cos(qx), where p 6= ±q and p, q 6= 0, we get

Cpq =
P (p, q)

Q(p, q)

where the denominator

Q(p, q) = 8π
(

p2 + 1
) (

q2 + 1
) (

(q − p)2 + 1
) (

(q + p)2 + 1
)

is always positive and the numerator

P (p, q) = −4
(

q8 + p8
)

− 4
(

q6 + p6
)

+ 8
(

q4 + p4
)

+ 8
(

q2 + p2
)

− 2 p4 q4 + 88 p2 q2 + 93
(

p2 q4 + p4 q2
)

+ 41
(

p2 q6 + p6 q2
)

changes sign. Hence, for the Camassa-Holm equation, the sectional curvature takes posi-
tive and negative values depending on the direction plane (u, v).

4 Short-time existence of the geodesics

The fist step that is needed to make meaningful this geometrical approach is to establish
short-time existence of the geodesics. There is no general theorem for short-time exis-
tence of evolution equations on a Fréchet space other than the Nash-Moser theorem [17].
However, to check that a given equation satisfies the hypothesis required by this theorem
can be very difficult. A direct proof of short-time existence was provided in [11] for the
right-invariant metric on Diff(S1) generated by the Hk Sobolev norm for k ≥ 1. Even if
the spirit of the proof is “Nash-Moser”, the proof does not rely on this theorem and is
much simpler.
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Theorem 5 (Constantin & Kolev 2003). Let k ≥ 1. For all T > 0, there exists a
neighbourhood of the origin V in Vect(S1) such that for all u0 ∈ V , there exists a unique
geodesic

ϕ ∈ C∞
(

[0, T );Diff(S1)
)

for the metric Hk, starting at ϕ(0) = Id ∈ Diff(S1) in the direction u0 ∈ TIdDiff(S1).
Moreover, the solution depends smoothly on the initial data u0 ∈ C∞(S1).

Remark 4. For k = 0, which corresponds to the inviscid Burgers equation, one can prove
short-time existence by other means [18, 10] but the proof below does not apply. The only
geodesic that can be continued indefinitely in time is that in the constant direction.

The idea of the proof given in [11] is to study the geodesic flow on each Hilbert manifold

Dn =
{

ϕ is an orientation-preserving, C1-diffeomorphism of class Hn
}

for n ≥ 2k + 1, obtaining short-time existence on a maximal interval [0, Tn). Thereafter
one checks that the decreasing sequence Tn does not go to 0 as n → +∞, ensuring thus
short-time existence on Diff(S1) =

⋂+∞

n=2k+1 D
n.

Notice that it is advisable to avoid considering directly the Euler equation

ut = −Bk(u, u) = −A−1
k [2Ak(u)ux + uAk(ux)] . (4.1)

The reason is that Ak is a differential operator of degree 2k, and therefore the right
hand-side of (4.1) is a pseudo-differential operator of degree 1 because of the “bad term”
uAk(ux). Hence (4.1) is not an ordinary differential equation in Hn(S1).

The following observation was used in [11] to overcome this difficulty. The operator

Ck(u) = Ak(uux) − uAk(ux)

is a quadratic differential operator of degree 2k. Therefore, if k ≥ 1, the right hand-side
of

ut + uux = −A−1
k [2Ak(u)ux − Ck(u)]

is a pseudo-differential operator of degree 0. Moreover, ut + uux is just vt ◦ ϕ
−1, where

v = ϕt = u ◦ϕ is the Lagrangian velocity. It is therefore convenient to recast the problem
as

{

ϕt = v,

vt = Rϕ ◦ Pk ◦Rϕ−1(v),
(4.2)

where Pk = −A−1
k ◦Qk and Qk(u) = 2Ak(u)ux − Ck(u).

Step 1

For each n ≥ 2k+1, system (4.2) is a smooth ordinary differential equation on the Hilbert
manifold Dn ×Hn(S1). This results from the following proposition.
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Proposition 1. For each k ≥ 1 and each n ≥ 2k + 1, the operator

P̃k(ϕ, v) =
(

ϕ,Rϕ ◦ Pk ◦Rϕ−1(v)
)

is a smooth map from Dn ×Hn(S1) to itself.

Remark 5. We cannot conclude directly from the smoothness of Pk that P̃k is smooth
because neither the composition nor the inversion are smooth maps on Dn. The Hilbert
manifold Dn is only a topological group [13].

Proof. To prove the smoothness of P̃k, we write it as the composition P̃k = Ã−1
k ◦ Q̃k,

where

Ãk(ϕ, v) =
(

ϕ, Rϕ ◦ Ak ◦Rϕ−1(v)
)

and

Q̃k(ϕ, v) =
(

ϕ, Rϕ ◦Qk ◦Rϕ−1(v)
)

Notice first that

Rϕ ◦Ak ◦Rϕ−1(v) =

k
∑

p=0

(−1)p (v ◦ ϕ−1)(2p) ◦ ϕ

is a polynomial expression in the variables

1

ϕx
, ϕxx, . . . , ϕ

(2k), v, vx, . . . , v
(2k).

For example for k = 1, we get:

Rϕ ◦A1 ◦Rϕ−1(v) = v + vx
ϕxx

ϕ3
x

− vxx
1

ϕ2
x

,

and to prove the general case, we let ap = (v ◦ϕ−1)(p) ◦ϕ, and use the recurrence relation

ap+1 =
1

ϕx
a′p.

A similar reasoning for Rϕ ◦Qk ◦Rϕ−1(v), where

Qk(u) = 2Ak(u)ux −
k

∑

p=0

(−1)p
2p
∑

i=1

Ci
2pu

(i)u(2p−i+1),

shows that it is also a polynomial expression in the variables

1

ϕx
, ϕxx, . . . , ϕ

(2k), v, vx, . . . , v
(2k).

To conclude that Ãk and Q̃k are smooth maps from Dn ×Hn(S1) to Dn ×Hn−2k(S1),
we use the following known facts (see for example [1]):
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1. For n ≥ 1, Hn(S1) is a Banach algebra and hence polynomial maps on Hn(S1) are
smooth.

2. For n ≥ 1, the map Hn(S1) → Hn−1(S1), v 7→ vx is smooth.

3. For n ≥ 1, the map Hn(S1) ∩ {v > 0} → Hn(S1), v 7→ 1/v is smooth.

To show that Ã−1
k : Dn × Hn−2k(S1) → Dn × Hn(S1) is smooth, we compute the

derivative of Ãk at an arbitrary point (ϕ, v), obtaining

DÃk(ϕ, v) =

(

Id 0
∗ Rϕ ◦ Ak ◦Rϕ−1

)

.

It is clearly a bounded linear operator in view of the preceding analysis. It is moreover a
topological linear isomorphism since Ak itself is invertible. The application of the inverse
mapping theorem [26] in Banach spaces achieves the proof. �

At this stage, we regard (4.2) as an ordinary differential equation on Dn × Hn(S1)
(n ≥ 2k + 1), with a smooth right-hand side, viewed as a map from Dn × Hn(S1) to
Hn(S1)×Hn(S1). The Cauchy-Lipschitz theorem [26] for differential equations in Banach
spaces ensures that for every ε > 0, we can find a positive number Tn = Tn(ε) such that
for every u0 in the ball Bn(0, ε) in Hn(S1), equation (4.2) with initial data ϕ(0) = Id
and v(0) = u0 has a unique solution (ϕ, v) ∈ C∞([0, Tn);Dn × Hn(S1)). Moreover, this
solution (ϕ, v) depends smoothly of the initial data u0 and can be extended to some
maximal existence time T ∗

n > 0.
The existence of solutions to the geodesic equation on the enlarged configuration space

Dn being established, the main question is how to use this to deduce the existence of
geodesics on Diff(S1). This is precisely the point where the rigorous approach usually
breaks down and one can not deduce results on the actual configuration space (see the
case of the Euler equation and of other hydrodynamical equations in [3]). Next step
consists in showing that it is possible to deal with the actual configuration space Diff(S1).

Step 2

Consider the initial value problem (4.2) with initial data u0 ∈ C∞(S1). Each solution of
the corresponding Cauchy problem in Dn+1 ×Hn+1(S1) is itself a solution of the Cauchy
problem in Dn × Hn(S1). What could happen is that the upper bound T ∗

n+1(u0) of the
maximal existence time interval of the solution in Dn+1×Hn+1(S1) is smaller than T ∗

n(u0).
This second step consists to show that we have in fact

T ∗

n(u0) = T ∗

n+1(u0), ∀n ≥ 2k + 1.

The key ingredient to prove it is precisely the conservation of the momentum (2.2).

Lemma 1. Let n ≥ 2k+1. If (ϕ, v) is the solution of (4.2) with initial data u0 ∈ Hn(S1),
defined for t ∈ [0, T ), then

m(t, ϕ(t, x)) · ϕ2
x(t, x) = m0(x), t ∈ [0, T ),

where m = Ak(u) and u(t, x) = v(t, ϕ−1(t, x)).
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This conservation law enables us to show that if T ∗

n+1 < T ∗

n then the solution

(ϕ(t), v(t)) ∈ Dn+1 ×Hn+1(S1)

would converge in Dn+1 ×Hn+1(S1) as t ↑ T ∗

n+1 which would give a contradiction. There-
fore T ∗

n = T ∗

n+1 (see [11] for the details).

Remark 6. It was already known [6] that the maximal existence time for the Camassa-
Holm equation does not depend on the degree of smoothness of u0 ∈ Hn(S1) (n ≥ 3). In
fact, all solutions of the Camassa-Holm equation with initial data u0 ∈ Hn(S1) (n ≥ 3)
are uniformly bounded and the only way that a solution fails to exist for all time is that
the wave breaks (the solution remains bounded while its slope becomes unbounded at a
finite time) [7]. Moreover, the solution is defined for all times if and only if m0 = u0 − u

′′

0

does not change properly sign [27].

5 The Riemannian exponential map

In classical Riemannian geometry, the Riemannian exponential map is a local diffeomor-
phism and normal coordinates play a very special role especially to establish convexity
results.

On Diff(S1) the existence of this privileged chart is not ensured automatically. One may
find useful to recall on this occasion that the group exponential of Diff(S1) is not a local
diffeomorphism2. A remarkable result established in [10] is that for the Camassa-Holm
equation and more generally [11] for Hk metrics with k ≥ 1, the Riemannian exponential
map is a smooth local diffeomorphism.

Theorem 6 (Constantin & Kolev 2003). For k ≥ 1, the Riemannian exponential map exp

for the Hk-metric on Diff(S1), is a smooth local diffeomorphism near the origin.

Remark 7. Recently, it has been proved [20] that this Riemannian exponential map is in
fact an analytical Fréchet map.

Sketch of proof. The approach relies on two important consequences of the conservation
of the momentum (Lemma 1), whenever n ≥ 2k + 1:

Claim 1 In the scale provided by the Sobolev spaces Hn(S1), the geodesic ϕu0
(t) issuing

from the identity in the direction of u0 inherits at each time t > 0 exactly the same
regularity of u0 (if u0 6∈ Hn+1(S1), then ϕu0

(t) 6∈ Hn+1(S1) for t > 0).

Claim 2 For u0 ∈ C∞(S1) there is no function w ∈ Hn(S1) \Hn+1(S1) such that

Dexp(u0).w ∈ Hn+1(S1).

2Indeed, this map is not locally surjective. Otherwise, every diffeomorphism sufficiently near to the
identity (for the C∞ topology) would have a square root. However one can build (see [30]) diffeomorphisms
arbitrary near to the identity which have exactly 1 periodic orbit of period 2n. But the number of periodic
orbits of even periods of the square of a diffeomorphism is always even. Therefore, such a diffeomorphism
cannot have a square root.
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Taking these two facts for granted, we proceed as follows. exp, as a map from H2k+1(S1)
to D2k+1 is smooth and Dexp(0) = Id. Hence, according to the inverse mapping theorem
[26] in Banach spaces, we can find open neighborhoods V2k+1 ⊂ H2k+1(S1) and O2k+1 ⊂
D2k+1 of 0 and Id respectively such that exp : V2k+1 → O2k+1 is a smooth diffeomorphism.
We claim that

exp : V2k+1 ∩ C∞(S1) → O2k+1 ∩ Diff(S1)

is a smooth diffeomorphism. First, Claim 1 ensures that this map is a bijection. We
are going to show that it is smooth as well as its inverse. Let u0 ∈ V2k+1 ∩ C∞(S1). The
regularity properties of exp ensure that Dexp(u0) is a bounded linear operator from Hn(S1)
to Hn(S1) for every n ≥ 2k+ 1. We now prove inductively that it is an isomorphism. For
n = 2k + 1 this is so by our choice of V2k+1 and O2k+1. If it is true for 2k + 1 ≤ j ≤ n,
then Dexp(u0) is injective as a bounded linear map from Hn+1(S1) to Hn+1(S1) since its
extension to Hn is injective. Claim 2 ensures that it is a continuous linear isomorphism.
Using again the inverse mapping theorem in Banach spaces, we claim that the map

exp : V2k+1 ∩H
n(S1) → O2k+1 ∩ Dn

and its inverse

exp
−1 : O2k+1 ∩ Dn → V2k+1 ∩H

n(S1)

are smooth maps for all n ≥ 2k + 1, which achieves the proof. �

This theorem has an interesting corollary: the geodesic is locally the shortest path
between two closeby points of Diff(S1).

Theorem 7 (Constantin & Kolev 2003). If η, ϕ ∈ Diff(S1) are closed enough then η and
ϕ can be joined by a unique geodesic. This unique geodesic is length minimizing among
all piecewise C1-curves joining η to ϕ on Diff(S1).

Remark 8. Contrary to the H1 metric (Camassa-Holm equation), the Riemannian ex-
ponential map for the L2 metric (Burgers equation) is not a local C1-diffeomorphism near
the origin [10]. This suggests that the geometric approach is less meaningful in this case.
In fact, the notion that geodesics minimize length is lost in this case since the geodesic
pseudo-distance vanishes (see [29] and Section 3.1).

6 Conclusion

In this paper, we have presented the geometric approach of Euler equations associated to
the Hk metrics (k ∈ N) on Diff(S1). From the point of view of mathematical physics, only
two cases are meaningful: the L2 metric (k = 0) which corresponds to Burgers equation
and the H1 metric which correspond to the Camassa-Holm equation. It is however fruitful
to embed the problem in the whole family of Hk metrics to discover that there is a critical
value k = 0 (Burgers) and that the rest of the family (k ≥ 1) shares numerous properties
with the Camassa-Holm equation (k = 1). Let’s summarize the main results.
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• The Riemannian pseudo-distance associated to the Hk metric on Diff(S1) is a dis-
tance if k ≥ 1. It vanishes for k = 0.

• For k ≥ 1, the geodesic equation is an ordinary differential equation on the enlarged
configuration space Dn (n ≥ 2k + 1). This is false for k = 0.

• There is short-time existence, uniqueness and smooth dependance on the initial data
of the geodesic flow for k ≥ 1. If singularities develop, this happens at order less or
equal to 2k.

• The Riemannian exponential map is a smooth local diffeomorphism for k ≥ 1. It is
not a C1 local diffeomorphism for k = 0.

One aspect of the Burgers and Camassa-Holm equations that could be expected to
carry over to all Hk metrics is the existence of a bi-Hamiltonian structure [5, 8]. As we
have seen, the Euler equation on the dual g∗ of a Lie algebra is Hamiltonian with respect
to the canonical Lie-Poisson structure. In some cases there is another Poisson structure
on g∗ such that the equation is Hamiltonian with respect to this second structure as
well. The Burgers and Camassa-Holm equations are bi-Hamiltonian with respect to so-
called affine Lie-Poisson structures, leading to integrability and the existence of an infinite
number of conservation laws for these equations. It happens however that Burgers and
Camassa-Holm equations are the only one in the family of Hk metrics on Diff(S1) which
are bi-Hamiltonian with respect to an affine Lie-Poisson structure on Vect∗(S1) [12].

Historically, the bi-Hamiltonian formalism has been introduced3 by Gel’fand, Dorfman,
Magri and others at the end of the 1970’s for the Korteweg-de Vries equation

ut + 3uux − cuxxx = 0, c ∈ R. (6.1)

Notice that the Korteweg-de Vries equation can not be recast as an Euler equation
on Diff(S1) because the expression 3uux − cuxxx is not quadratic in u. However, it has
been shown [22] that it can be written as an Euler equation for the L2 metric on the
Virasoro group, a central extension of Diff(S1) by R. This equation was already known in
the seventies to be Hamiltonian with respect to both brackets on C∞(S1) defined by the
operators D and −(Dm+mD) + cD3.

The Lie-Poisson bracket on the regular dual of the Virasoro algebra, Vir∗ = C∞(S1)⊕R,
is represented by matrix

J(m,α) =

(

−Dm−mD + αD3 0
0 0

)

.

The functions F (m,α) on Vir∗ which depend only on α are therefore Casimir functions
(which are first integrals of all Hamiltonian vector fields) for the canonical structure
on Vir∗. In particular, the Euler flow for the L2 metric on Vir∗ leaves invariant each
hyperplane α = c (constant). The Lie-Poisson structure induces on each hyperplane
α = c (isomorphic to C∞(S1)) a Poisson structure which is represented by the operator
−(Dm + mD) + cD3. This gives a geometric explanation for the appearance of the op-
erators D and −(Dm + mD) + cD3 in the 1970’s. For c = 0, we recover the canonical
Poisson structure on Vect(S1) and the Burgers equation.

3See the review [33].
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A similar approach can be pursued for the general Camassa-Holm equation

ut − utxx + 3uux − 2uxuxx − uuxxx + cuxxx = 0, c ∈ R

which can be obtained as the Euler equation for the H1 right-invariant metric on the
Virasoro group [21].

For the Virasoro group, short-time existence of the geodesic flow for the Hk metric was
established in [9] using the approach given in Section 4. The Riemannian exponential map
is however a smooth local diffeomorphism only for k ≥ 2 in that case cf. [9].
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