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Abstract

We present a simple approach showing that Gerstner’s flow is dynamically possible:
each particle moves on a circle, but the particles never collide and fill out the entire
region below the surface wave.

1 Introduction

The motion of a body of water as waves propagate along the surface is a ubiquitous, easily
observable, yet eminently perplexing phenomenon. The undulations on the water sur-
face often adopt inherently beautiful forms, such as the concentric circles observed when
ripples spread out from a source of disturbance, or the smooth and regular features of
steady periodic waves. Yet despite mankind’s innate curiosity concerning water wave mo-
tion, it was really only in the 18th century that efforts to provide a rigorous mathematical
description of fluid motion began in earnest [31]. It was during this time that Daniel
Bernoulli introduced the term hydrodynamics to comprise the two sciences of hydrostatics
and hydraulics, and this was the era when the foundations of the modern theory of hydro-
dynamics were laid down by Bernoulli, Euler, Lagrange and d’Alembert, among others.
The 19th century produced many major advances in this nascent science, notably from
such luminaries as Navier, and especially Stokes, and from the time of these seminal works
to this present day such vast development and progress has been made in the subject that
fluid dynamics now comprises several branches of mathematics and indeed science.

Yet, and given how hydrodynamics has developed symbiotically with so many branches
of mathematics, it is startling how many gaps remain in the basic mathematical theory
of fluid dynamics, even in the idealised case of a so-called perfect fluid (homogeneous
and inviscid). Nowhere is this shortfall encapsulated better than the fact that there are
very few explicit solutions known for the full governing equations of a perfect fluid with
a non-flat free surface [19, 4, 16, 24]. The first such solution, which will be presented
below, was described by Gerstner as far back as 1802 [19], c.f. [31], and was independently
re-discovered later by Rankine [32]. Furthermore, Gerstner’s solution is restrictive insofar
as it exists only for deep water, and it describes a rotational wave. In recent years there
has been growing interest in free surface water waves (see [1, 2, 5, 6, 7, 8, 9, 11, 12, 13, 14,
15, 18, 20, 21, 22, 25, 35, 36]), but the current state of affairs regarding explicit solutions
has not advanced much since the last century.
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A mathematical analysis of Gerstner’s solution was performed by Constantin in [3]
which investigated rigorously, for the first time, the evolution of the fluid domain under
the propagation of Gerstner’s wave. It was shown, using a mixture of analytical and
topological methods, that it is indeed possible to have a motion of the whole fluid body
where all the particles describe circles with a depth-dependant radius— the fluid domain
as a whole evolves in a manner which is consistent with the full governing equations. It is
interesting to note that the analysis presented here was adapted by the same author in [4]
to present an explicit solution of the governing equations which describes the propagation
of edge-waves along a sloping beach. It is our aim in this paper to present an alternative
approach to the analysis of Gerstner’s wave, mainly the use of degree theory, and in the
process hope to simplify some of the proofs contained in [3].

Notice that approaches concentrating on the analysis of particle paths within the fluid
were recently shown to be of interest in the context of tsunamis [10]. It is thus of interest
to broaden our understanding of the few cases where we can analyse the particle paths for
explicit solutions to the governing equations for water waves.

2 Governing equations for a perfect fluid

In many commonly occurring circumstances the motion of water waves appears to be two-
dimensional. For instance, individual waves which are generated far offshore by distur-
bances such as the wind can be observed grouping into wave-trains, which then propagate
along the surface of the ocean in the horizontal direction perpendicular to the crest-line
[23]. Assuming the waves to be two dimensional, that is, the motion is identical in any
direction parallel to the crest line, we need only consider a cross section of the flow in the
direction perpendicular to the crest line, using the Cartesian coordinates (x, y) where the
x−axis is the direction of wave propagation while the y−axis points vertically upwards.
Furthermore, for water waves of non-negligible amplitude, such as those to be found on
the ocean, it is reasonable to neglect the effects of surface tension [23] and so from now
on we assume that the only restorative force being applied to the fluid is gravity— we are
dealing with gravity waves.

The free surface is described by y = η(x), with mean water level y = 0. Often in
water wave problems it is the determination of the free-surface which is of most interest
to us, and it is undetermined a priori. To describe deep water waves we assume the fluid
domain to be the semi-infinite region {(x, y) : x ∈ R, y < η(t, x)} which is bounded above
by η. Let (u(t, x, y), v(t, x, y)) be the velocity field of the flow in the fluid domain. We
adopt the assumption of homogeneity (constant density) in the fluid— this is physically
reasonable for the case of surface waves propagating on a deep ocean [17]— which implies
the equation of mass conservation

ux + vy = 0. (2.1)

Making the further assumption of inviscid flow, the governing equations for the motion of
the waves are given by Euler’s equation

{

ut + uux + vuy = −Px,
vt + uvx + vvy = −Py − g,

(2.2)
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where P (t, x, y) denotes the pressure and g is the gravitational constant of acceleration.
To decouple the motion of the air from that of the free surface particles [23] we introduce
the dynamic boundary condition

P = P0 on y = η(t, x), (2.3)

where P0 is the constant atmospheric pressure. Since the free-surface is always composed
of the same particles we have the kinematic boundary condition

v = ηt + uηx on y = η(t, x). (2.4)

The boundary condition at the bottom, expressing the fact that at great depths there is
practically no motion, is given by

(u, v) → (0, 0) as y → −∞, uniformly for x ∈ R, t ≥ 0. (2.5)

The governing equations for the deep water gravity wave problem are encompassed by the
nonlinear free boundary problem (2.1)–(2.5), cf. [23].

3 Gerstner’s wave

An in-depth description of Gerstner’s solution is performed in [3]: we will repeat some
of the main points here. Gerstner’s wave is a two-dimensional wave which adopts the
Lagrangian viewpoint, describing the evolution of individual water particles. A description
of Gerstner’s wave requires two parameters, a ∈ R and b ≤ b0 for a fixed b0 ≤ 0, and so the
lower half-plane represents the still water body. Suppose we choose a particular particle,
by fixing a and b. Gerstner’s wave is given by

x = a + emb

m
sin m(a +

√

g
m

t)

y = b − emb

m
cos m(a +

√

g
m

t)
(3.1)

where m > 0 is fixed. It follows that the path of the particle is a circle centred at (a, b)

with radius emb

m
, with the particle moving anti-clockwise with angular velocity

√

g
m

. We

can obtain a description of the motion of another particle simply by changing the values
of a and b in (3.1).

Let us call the set prescribed by {(a, b0) : a ∈ R} the still water surface. Then the
profile of the surface wave as time evolves is given by a smooth curve, obtained by setting
b = b0 in (3.1):

x = a + emb0

m
sin m(a +

√

g
m

t)

y = b0 − emb0

m
cos m(a +

√

g
m

t),
(3.2)

which is the equation of a troichoid for b ≤ b0. The extreme case with the still water surface
being at {(a, 0) : a ∈ R} leads to a surface wave having the profile of a cycloid, a continuous
curve with upward cusps. We have used the term “still water surface” somewhat loosely.
We will see that Gerstner’s wave describes rotational motion and this fact rules out the
possibility that the motion could have developed from a water body initially at rest [34].

In order to show that (3.1) provides a solution to the governing equations, we must
prove that it defines a motion of the whole fluid body for which:
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1. the equation of continuity (2.1) holds;

2. a suitable pressure exists which enables Eulers equation (2.2) and the boundary
condition (2.3) to be satisfied;

3. a particle on the free surface stays on the free surface, as governed by condition (2.4);

4. the limiting boundary condition (2.5) is satisfied.

In the literature [31] discussions of Gerstner’s wave typically focus on showing the com-
patibility of Gerstner’s transformation (3.1) with the full governing equations for two
dimensional waves. The paper [3] was the first work on this subject containing a rigorous
examination of the motion of the entire fluid domain under Gerstner’s wave motion (3.1).
The author proved that it was possible to have a motion of the fluid where all particles
describe circles with a depth-dependant radius. Our aim in this paper is to present an
alternative approach to this analysis, using degree theory, and in the process to simplify
some of the steps of [3].

We first note that it suffices to analyse Gerstner’s map (3.1) at the time t = 0, where
it is of the form

x = a + emb

m
sin ma

y = b − emb

m
cos ma,

(3.3)

since the general case follows by changing variables (a, b) → (a + t
√

g
m

, b), performing the

map (3.3), and then shifting the horizontal variable by t
√

g
m

. Now, the right hand side

of (3.3) has a straightforward a−dependence. As a varies by the amount 2π/m, the y
value reoccurs, while x is shifted linearly by 2π/m. Therefore it suffices in what follows
to analyse the map (3.3) on the restricted interval a ∈ [0, 2π/m].

For fixed b ≤ b0, we can plot the image of {(a, b) : a ∈ R} under (3.3) by regarding the
horizontal coordinate as a function of the vertical coordinate. It is here that the restriction
b0 ≤ 0 is important, for otherwise we would obtain the graph of a self-intersecting curve
[3]. For fixed b and a ∈ [0, π/m] we have
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,

while for a ∈ [π/m, 2π/m] we obtain
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We see in Figure 1 that for b < 0 the image of the line y = b is a smooth curve— a
troichoid— while in the extreme case b = 0 we get a piecewise smooth curve with sharp
peaks occurring at the points {((2n + 1)π/m, 1) : n ∈ Z}— a cycloid. Notice too that the
vertical half-lines {(2nπ/m, b) : b ≤ b0} and {((2n + 1)π/m, b) : b ≤ b0} are mapped into
{(2nπ/m, y) : y ≤ b0 − emb0/m} and {((2n + 1)π/m, y) : y ≤ b0 + emb0/m} respectively.
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Figure 1: Graph of {(a, b) : a ∈ [0, π/m]} under (3.3). For a typical value b ≤ b0 < 0 we get a
smooth curve; while the extreme case b = b0 = 0 results in a cusped curve along the surface.

For the sake of completeness we present the proof of a result from [3] stating that
Gerstner’s transformation is locally diffeomorphic and injective. A result on the global
nature of the transformation will soon follow.

Lemma 1. [3] For every fixed t ≥ 0, the map (3.1) defines a local diffeomorphism from
the domain D = {(a, b) : a ∈ R, b < 0} in the (x, y)−plane injectively into its image.

Proof. It follows from our previous comments that we can simplify our analysis by re-
stricting ourselves to the time independent map (3.3), and to the domain D′ = D∩{(a, b) :
a ∈ (0, 2π/m)}.

The differential of (3.3) at a fixed point (a, b) with b < 0 takes the form

(

1 + emb cos ma emb sin ma
emb sin ma 1 − emb cos ma

)

with determinant 1 − e2mb > 0. Applying the inverse function theorem proves that (3.3)
is a local diffeomorphism from D onto its image.

Regarding injectivity, let us adopt the notation of [3] and write the transformation (3.3)
in the form

F (x) = x + f(x),

where x = (x, y). If | · | denotes the usual Euclidean norm in R
2 we have from the mean

value theorem

|F (x1) − F (x2)| ≥ |x1 − x2| − |f(x1) − f(x2)|
≥ |x1 − x2| − max

s∈[0,1]
(‖Dfsx1+(1−s)x2

‖)|x1 − x2|.

Since the differential is given by

Df(a,b) = emb

(

cos ma sinma
sin ma cos ma

)
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we have ‖Df(a,b)‖ = emb and so

|F (x1) − F (x2)| ≥ (1 − emb)|x1 − x2|

where x1 = (a1, b1),x2 = (a2, b2) and b = max{b1, b2} in the relation above. This proves
the injectivity of the map. �

The above result shows that Gerstner’s wave gives us a local diffeomorphism that is globally
injective on D. We will show that it is in fact a global diffeomorphism from D onto the
fluid domain below the surface wave.

Lemma 2. For every fixed t ≥ 0, the map (3.1) defines a diffeomorphism from the domain
below {(a, b0) : a ∈ R} in the (x, y)−plane, where b0 ≤ 0, to the domain bounded above
by the surface wave y = h(t, x), where the profile of the surface wave is smooth if b0 < 0,
while if b0 = 0 we have a continuous, piecewise smooth curve with upward cusps.

Proof. Once again, we may focus on the restricted domain D′ = D ∩ {(a, b) : a ∈
(0, 2π/m)} and the time independent map (3.3). The properties regarding the shape
of the surface wave follow from our earlier discussions. As a result of Lemma (1), we will
have proven our result if we can show that the map (3.3) is surjective onto the domain
below the water surface.

It turns out that degree theory is tailor-made for supplying an answer to this question.
Intuitively, one can regard the degree of a function on a set as measuring the existence or
otherwise of zeros of that function on the set, and as such it is the ideal recourse when
one is seeking answers concerning surjectivity, fixed points etc with respect to a certain
mapping. For details regarding the construction of various types of degree c.f. [26, 28, 33].
We now recall the classical “Invariance of the Domain” theorem, in a form suitable for our
purposes: Let Ω be an open subset of R

n (not necessarily bounded). If f : Ω → R
n is one-

to-one and continuous, then f(Ω) is open and f(∂Ω) = ∂f(Ω); see [33]. It now follows that
Gerstner’s wave is surjective, using the following argument. If we define the domain Ω to
be the open semi-infinite set D′ with boundary {(0, b) : b ≤ b0}∪{(a, b0) : a ∈ [0, 2π/m]}∪
{((2π/m, b) : b ≤ b0}, then we have seen that F maps the boundary of D′ injectively
into {(0, y) : y ≤ b0 − emb0/m}∪{troichoid/cycloid}∪{(2π/m, y) : y ≤ b0 − emb0/m}. The
theorem asserts that the image of the boundary is the boundary of the image, and this,
together with the image of D′ being open, imply that the domain below the line {(a, b0) :
a ∈ R} in the (x, y)−plane, where b0 ≤ 0, is mapped surjectively by (3.3) onto the domain
bounded above by the troichoid, or cycloid, given by setting b = b0 in (3.3). Together with
earlier results, it now follows that (3.3) is a global diffeomorphism. �

We refer the reader to [3] for proof that Gerstner’s wave satisfies the governing equations
(2.1)–(2.3). Regarding the boundary conditions, we have seen above that particles on the
free surface remain on it at all times, and therefore the kinematic surface condition (2.4)
is satisfied. The velocity of a particle is given by

u(t, x(t), y(t)) =

√

g

m

(

emb cos m

(

a +

√

g

m
t

)

, emb sin m

(

a +

√

g

m
t

))

, (3.4)

and since y → −∞ =⇒ b → −∞, we have the absolute value of the velocity
√

g
m

emb → 0

as y → −∞, thereby satisfying (2.5).
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Finally, we show by direct calculation that Gerstner’s wave is rotational. For a two-
dimensional flow the vorticity of each individual water particle is conserved as the particle
moves about [30], and so it suffices to calculate the vorticity of the water particles at time
t = 0. For each particle, represented in (3.3) by the parameters (a, b) with b < b0, the
vorticity is calculated as vx − uy, and we use the relation

(

∂x

∂y

)

=

(

xa ya

xb yb

)−1 (

∂a

∂b

)

=
1

1 − e2mb

(

1 − emb cos ma −emb sin ma
−emb sinma 1 + emb cos ma

)(

∂a

∂b

)

,

together with

va =
√

mgemb cos ma = ub, vb =
√

mgemb sin ma = −ua,

to obtain

vx − uy =
−2

√
mge2mb

1 − e2mb
.

Therefore the flow under Gerstner’s wave is rotational, with vorticity only depending
on the b−value of the particle’s parameterisation and rapidly decreasing as we descend.
Furthermore, the negative value of the vorticity shows that it is in the opposite sense to
the motion of the particles.
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