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Bilevel decision techniques have been mainly developed for solving decentralized management problems with 
decision makers in a hierarchical organization. When multiple followers are involved in a bilevel decision problem, 
called a bilevel multi-follower (BLMF) decision problem, the leader’s decision will be affected, not only by the 
reactions of these followers, but also by the relationships among these followers. The referential-uncooperative 
situation is one of the popular cases of BLMF decision problems where these multiple followers don’t share 
decision variables with each other but may take others’ decisions as references to their decisions. This paper 
presents a model for the referential-uncooperative BLMF decision problem. As the kth-best approach is one of the 
most successful approaches in dealing with normal bilevel decision problems, this paper then proposes an extended 
kth-best approach to solve the referential-uncooperative BLMF problem. Finally an example of logistics planning 
illustrates the application of the proposed extended kth-best approach. 

Keywords: Bilevel programming, kth-best approach, Decision making, Optimization. 

1. Introduction 

In general, a bilevel decision problem has three 
important features: (1) there exists two decision units 
within a predominantly hierarchical structure; (2) the 
decision unit at the lower level executes its policies 
after, and in view of, a decision made at the upper level; 
(3) each unit independently optimizes its objective but is 
affected by the actions of other unit. The decision unit 
(decision maker) at the upper level is termed as the 
leader, and at the lower level, the follower.1 The leader 
cannot completely control the decision made by his/her 
follower but is influenced by the reaction of the 
follower. The optimal solution of the follower allows 
the leader to compute his/her objective function’s value. 
Such a decision situation has appeared in many 
decentralized organizations, and been mainly handled 
by linear bilevel programming (BLP) technique. A 
number of bilevel decision approaches and algorithms 

have been proposed to find an optimal solution for a 
linear bilevel decision problem, such as the Kuhn-
Tucker approach,2 branch and bound approach,3 the kth-
best approach,4 and others.1,5,6 

When a bilevel decision problem is described by a 
linear BLP, at least one optimal (global) solution can be 
attained at an extreme point of the constraint region. 
This result was first established by Candler and 
Townsley7 with no upper-level constraints and with 
unique lower level solutions. Afterwards Bard8 and 
Bialas and Karwan9 proved this result under the 
assumption of that the constraint region is bounded. The 
result for the case where the upper level constraints 
exist was established by Savard10  without any  
particular assumptions. Based on this result, Candler 
and Townsley7 and Bialas and Karwan9 proposed 
respectively the kth-best approach that computes global 
solutions of linear BLP problems by enumerating the 
extreme points of the constraint region. The kth-best 

International Journal of Computational Intelligence Systems, Vol.1, No. 3 (August, 2008), 205 - 214

Published by Atlantis Press 
Copyright: the authors

205

zegerkarssen
Typewritten Text
Received: 03-01-2008
Revised: 30-06-2008

zegerkarssen
Typewritten Text

zegerkarssen
Typewritten Text

zegerkarssen
Typewritten Text



G. Zhang, C. Shi, and J. Lu   

approach has then been proven to be a valuable analysis 
tool with a wide range of successful applications for 
linear BLP.1,7,9 Our previous work11-13 extended the kth-
best approach in handling a more wide range of bilevel 
decision problems. 

In real-world bilevel decision problems, the lower 
level may involve multiple independent decision units, 
that is, multiple followers. For example, the CEO of a 
company is the leader and all directors of branches of 
this company are the followers in making a product 
development plan. The leader (the CEO)’s decision will 
be affected, not only by the reactions of the multiple 
followers (these directors of branches), but also by the 
relationships among these followers. We call such a 
problem a bilevel multi-follower (BLMF) decision 
problem. These followers may do or may don’t share 
their decision variables, objectives or constraints. For 
example, those directors may have same objective of 
maximizing their profits in making the product 
development plan, but may have different constraints 
which are based on their individual conditions. 
Obviously, a BLMF decision problem occurs commonly 
in any organizational decision practice, and involves 
many different decision situations which are dependent 
on the relationships among the followers. 

 We have established a framework14 for the BLMF 
decision problem, where nine main kinds of 
relationships amongst the followers have been identified. 
The uncooperative relationship, defined as the case in 
which there are no shared decision variables among the 
followers, is the most popular one of BLMF decision 
problems in practice. This uncooperative relationship 
can lead to two situations. One is that no follower take 
any reference from other followers’ decisions, related 
research results have been reported in literature.2, 15 
Anotheruncooperative situation occurs when despite the 
followers are uncooperative in that there is no sharing of 
decision variables, they do, however, cross reference 
information by considering other followers’ decision 
results in each of their own decision objectives and 
constraints. We call this case as a referential-
uncooperative situation, and this paper will particularly 
focus on this situation. We have developed an extended 
branch and bound algorithm for solving this problem.16 
This paper further presents an extend kth-best approach 
to more effectively solve this problem.   

This paper is organized as follows. In Section 2, a 
model for the referential-uncooperative situation of a 

linear BLMF decision problem is presented, and the 
definition for an optimal solutions and related theorems 
are given. An extended kth best approach for solving the 
referential-uncooperative BLMF decision problem is 
proposed in Section 3. A case-based example for the 
extended kth-best approach is illustrated in Section 4. 
Concluding remarks are given in Section 5. 

2. A Model for the Referential-Uncooperative 
BLMF Decision Problems  

A BLMF decision problem has been defined to have 
two or more followers at the low lever of the bilevel 
problem. Under this definition, if two followers don’t 
have any shared decision variables, it is called an 
uncooperative relationship between the two followers. 
But if one of them has a reference to another follower’s 
decision information in his/her objective or constraints, 
the two followers are defined as having a referential-
uncooperative relationship. When there is a referential-
uncooperative relationship in a BLMF decision model, 
this model is called a referential-uncooperative BLMF 
decision model. We present this model as follows. 

For ,nRXx ⊂∈ ,im
ii RYy ⊂∈ KYYXF ××× L1:

,1R→ and ,: 1
1 RYYXf Ki →××× K ,,,2,1 Ki K= a 

linear BLMF decision problem where )2(≥K  followers 
are involved and there are no shared decision variables, 
but shared information in objective functions and 
constraint functions among the followers which is 
defined as follows: 

∑
=∈

+=
K

s
ssKXx

ydcxyyxF
1

1 ),,,(min K                   (1a) 

subject to byBAx
K

s
ss ≤+ ∑

=1
                              (1b) 

∑
=∈

+=
K

s
sisiKiYy

yexcyyxf
ii 1

1 ),,,(min K  (1c) 

subject to i

K

s
sisi byCxA ≤+ ∑

=1
          (1d) 

where ,nRc∈ ,n
i Rc ∈ ,im

i Rd ∈ ,sm
is Re ∈ ,pRb∈  

∈ib ,iqR ,npRA ×∈ ,imp
i RB ×∈ ,nq

i
iRA ×∈ ∈isC

,si mqR × =si,  .,,2,1 KK  

To find an optimal solution for this model (1a)-(1d), 
we introduce definitions of constraint region, projection 
of S  onto the leader’s decision space, feasible set for 
each follower, and inducible region for a linear BLMF 
decision problem in Definition 1.  
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Definition 1  
(a) Constraint region of a linear BLMF decision 
problem: 

,),,,{( 11 kK YYXyyxS ×××∈= KK  

 ,
1

byBAx
K

s
ss ≤+ ∑

=
,

1
i

K

s
sisi byCxA ≤+ ∑

=
}.,,2,1 Ki K=  

The constraint region refers to all possible 
combinations of choices that the leader and followers 
may make. 

(b) Projection of S  onto the leader’s decision space: 

,,:{)(
1

byBAxYyXxXS
K

s
ssii ≤+∈∃∈= ∑

=
 

},,2,1,
1

KibyCxA i

K

s
sisi K=≤+ ∑

=
 

(c) Feasible set for each follower� 

)(XSx∈∀ : =)(xSi }),,,(:{ 1 SyyxYy Kii ∈∈ K . 

The feasible region for each follower is affected by 
the leader’s choice of x , and the allowable choices of 
each follower are the elements of S .  
(d) Each follower’s rational reaction set for )(XSx∈ : 

∈∈= iiii yYyxP :{)( ,,,2,1),,ˆ,(min[arg Kjyyxf jii K=  
:ij ≠ )]}(ˆ xSy ii ∈ . 

where ,,,2,1 Ki K=  
,,(:)({)](ˆ:),ˆ,(min[arg 1yxfxSyxSyyyxf iiiiijii ∈=∈  

≤), KyK ),,ˆ,( jii yyxf )}(ˆ,,,,2,1 xSyijKj ii ∈≠= K  

The followers observe the leader’s action and 
simultaneously react by selecting iy  from their feasible 

set to minimize their objective function. 
(e) Inducible region: 

,),,,(:),,,{( 11 SyyxyyxIR KK ∈= KK  
},,2,1),( KixPy ii K=∈  

Thus the model given by expressions (1a)-(1d) can 
be rewritten in terms of the above notations as follows 

}),,,(:),,,(min{ 11 IRyyxyyxF KK ∈KK               (2) 

We propose the following theorem to characterize 
the condition under which there is an optimal solution 
for a referential-uncooperative linear BLMF decision 
problem shown in (1a)-(1d). 
 

Theorem 1 If S  is nonempty and compact, there exists 
an optimal solution for a linear BLMF decision 
problem. 
 
Proof: Since S  is nonempty, there exist a point 

Syyx K ∈),,,( **
1

* K . Then, we have 

* ( )x S X∈ ≠ ∅  

by Definition 1(b). Consequently, we have 
*( )iS x ≠ ∅ , Ki ,,2,1 K=  

by Definition 1(c). Because S is compact and Definition 
1(d), we have 

,,,2,1),,ˆ,(min[arg:{)( ** KjyyxfyYyxP jiiiiii K=∈∈=

,(:)({:{)]}(ˆ: *** xfxSyyYyxSyij iiiiiiii ∈∈∈=∈≠

),,,,2,1,,ˆ,(),, *
1 ijKjyyxfyy jiiK ≠=≤ KK  

*ˆ ( )}}i iy S x∈ ≠ ∅  

where Ki ,,2,1 K= . Hence, there exists )( *0 xPy ii ∈ , 

Ki ,,2,1 K=  such that .),,,( 00
1

* Syyx K ∈K Therefore, 
we have: 

,),,,(:),,,{( 11 SyyxyyxIR KK ∈= KK  
( ), 1,2, , }i iy P x i K∈ = ≠ ∅K  

by Definition 1(e). Because we are minimizing a linear 

function ∑
=∈

+=
K

s
ssKXx

ydcxyyxF
1

1 ),,,(min K over IR, 

which is nonempty and bounded an optimal solution to 
the linear BLMF decision problem must exist.  

3. An Extended kth-Best Approach for the 
Referential-Uncooperative BLMF Decision 
Problems 

We first give a set of related properties in this section. 
Based on the set of properties an extended kth-best 
approach for solving referential-uncooperative decision 
problems is presented. 
 
Theorem 2 The inducible region can be written 
equivalently as a piecewise linear equality constraint 
comprised of supporting hyper planes of constraint 
region S . 
 
Proof: Let us begin by writing the inducible region of 
Definition 1(e) explicitly as follower: 
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,),,,(:),,,{( 11 SyyxyyxIR KK ∈= KK  

:~min[ iiiiii yeye = ,~
,1
∑

≠=
−−≤

K

iss
ssii yBAxbyB  

,~
,1
∑

≠=
−−≤

K

iss
sisiiiji yCxAbyC  

},,2,1],0~,,,2,1 KiyKj i KK =≥=  
Let us define: 

,),,,( 1
' T

Kbbbb K= ,),,,( 1
' T

KAAAA K=

,),,,( 1
' T

Kiiii CCBB K=  
where Ki ,,2,1 K=  

Now we have 

,),,,(:),,,{( 11 SyyxyyxIR KK ∈= KK  

:~min[ iiiiii yeye = ≤ii yB ~' ],0~,
,1

''' ≥−− ∑
≠=

i

K

iss
ssi yyBxAb  

 },,2,1 Ki K=  (3) 

Let us define: 

]0~,~:~min[),(
,1

'''' ≥−−≤= ∑
≠=

i

K

iss
ssiiiiiiji yyBxAbyByeyxQ

              (4) 
where ,,,2,1 Ki K= .,,2,1 ijKj ≠= K  

For each value of )(XSx∈ , the resulting feasible 
region to problem (1) is nonempty and compact. Thus, 
for iQ , which is a linear program parameterized 
in jyx, , Kj ,,2,1 K=  and ij ≠ , always has a solution.  

From duality theory we get 

}0,:)(max{ ''

,1

'' ≥−≥−+ ∑
≠=

ueuBbyBxAu iiii

K

iss
ss       (5) 

which has the same optimal value as (4) at the 
solution .*u  Let suu ,,1 K be a listing of all the vertices 
of the constraint region of (5) given by 

}.0,:{ ' ≥−≥= ueuBuU iii  Because we know that a 
solution to (5) occurs at a vertex of U, we get the 
equivalent problem: 

}},,{:)(max{ 1'

,1

'' sl
i

K

iss
ss

l uuubyBxAu K∈−+ ∑
≠=

      (6) 

which demonstrates that ),( ji yxQ  is a piecewise linear 

function.  
Rewriting IR  as: 

:),,,{( 1 SyyxIR k ∈= K ),( ji yxQ 0=− iii ye  

},,,2,1,,,2,1 ijKjKi ≠== KK           (7) 

yields desired result. 
 
Corollary 1 The problem (1) is equivalent to 
minimizing F over a feasible region comprised of a 
piecewise linear equality constraint. 
 
Proof: By (2) and Theorem 2, we have the desired 
result. 

Each function iQ defined by (4) is convex and 
continuous. In general, because we are minimizing a 

linear function ∑
=

+=
K

s
ss ydcxF

1
 over IR, and because 

F is bounded below S  by, say, :min{
1
∑
=

+
K

s
ss ydcx  

Syyx K ∈),,,( 1 K }, the following can be concluded. 
 
Corollary 2 A solution for the linear BLMF decision 
problem occurs at a vertex of IR. 

 
Proof: A linear BLMF decision problem can be written 

as in (2). Since ∑
=

+=
K

s
ss ydcxF

1
 is linear, if a solution  

exists, one must occur at a vertex of IR.  
 
Theorem 3 The solution ),,,( **

1
*

Kyyx K of the linear 
BLMF decision problem occurs at a vertex of S. 
 
Proof: Let ),,,(,),,,,( 1

11
1

1 r
K

rr
K yyxyyx KKK be the 

distinct vertices of S. Since any point in S can be written 
a convex combination of these vertices, let ,( *x ,*

1y ,K  

,),,,() 1 1
* ∑ == r

j
j
K

jj
jK yyxy Kα where ,11 =∑ = j

r
j α  

,0≥jα  rj ,,2,1 K=  and .rr ≤  It must be shown that 
1=r . To see this let us write the constraints to (1) at 

),,,( **
1

*
Kyyx K  in their piecewise linear form (7). 

**),(0 iiili yeyxQ −=  
Ki ,,2,1 K= ilKl ≠= ,,,2,1, K  (8) 

Rewrite (8) as follows: 

),((0 j
l

j

j
ji yxQ ∑= α )(∑−

j

j
ijii ye α  

),( j
l

j
i

j
i yxQ∑≤ α j

iii
j

j ye∑− α  

where Ki ,,2,1 K= , ilKl ≠= ,,,2,1 K  
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By convexity of ),( li yxQ , we have 

)),((0 j
iii

j
l

j
i

j
j yeyxQ −≤ ∑α  

where Ki ,,2,1 K= , .,,,2,1 ilKl ≠= K  
But by the definition, 

),( j
l

j
i yxQ = j

iiiiii
xSy

yeye
j

i

≤
∈ )(
min , 

Ki ,,2,1 K= , .,,,2,1 ilKl ≠= K  

Therefore, ,0),( ≤− j
iii

j
l

j
i yeyxQ =j ,,,2,1 rK =i  

,,,2,1 KK ilKl ≠= ,,,2,1 K .Noting that ,0≥jα =j 1, 
r,,2 K , the equality in the preceding expression must 

hold or else a contradiction would result in the sequence 
above.  

Consequently, −),( j
l

j
i yxQ j

iii ye = ,0 ,,,2,1 rj K=

,,,2,1 Ki K= .,,,2,1 ilKl ≠= K  This implies that ,( jx  

,1
jy ), j

KyK ,IR∈ rj ,,2,1 K= and ,,( *
1

* yx ,K )*
Ky  

can be written as a convex combination of points in IR . 
Because ),,,( **

1
*

Kyyx K  is a vertex of IR, a 
contradiction results unless .1=r  
 
Corollary 3 If x  is an extreme point of IR; it is an 
extreme point of S. 
 
Proof: Let ),,,(,),,,,( 1

11
1

1 r
K

rr
K yyxyyx KKK be the 

distinct vertices of S. Since any point in S can be written 
a convex combination of these vertices, let ,( *x  

,),,,(),, 1 1
**

1 ∑ == r
j

j
K

jj
jK yyxyy KK α  where 

j
r
j∑ =1α  

,1= rjj ,,2,1,0 K=≥α  and .rr ≤  It must be shown 
that 1=r . To see this let us write the constraints to (1) 
at ),,,( **

1
*

Kyyx K  in their piecewise linear form (7). 

** ),,,2,1,,(0 iiili yeilKlyxQ −≠== K  Ki ,,2,1 K=  

Rewrite the above formulation as follows: 

)),((0 j
l

j

j
ji yxQ ∑= α )(∑−

j

j
ijii ye α  

j
iii

j
j

j
l

j
i

j
i yeyxQ ∑∑ −≤ αα ),(  

where ,,,2,1 Ki K=  . ,,,2,1 ilKl ≠= K  
By convexity of ),,( li yxQ  we have: 

)),((0 j
iii

j
l

j
i

j
j yeyxQ −≤ ∑α  

where .,,,2,1 ,,,2,1 ilKlKi ≠== KK  
But by the definition, 

j
iiiiii

xSy

j
l

j
i yeyeyxQ

j
i

≤=
∈ )(
min),(  

,,,2,1 Ki K= ilKl ≠= ,,,2,1 K  

Therefore, ,0),( ≤− j
iii

j
l

j
i yeyxQ ,,,2,1 rj K= =i  

,,,2,1 KK  .,,,2,1 ilKl ≠= K Noting that ,0≥jα =j  
,2,1 r,K , the equality in the preceding expression must 

hold or else a contradiction would result in the sequence 
above. Consequently, ),( j

l
j

i yxQ ,0=− j
iii ye =j 1,2…, 

,r =i ,,,2,1 KK ,,,2,1 Kl K= .il ≠ This implies that 
,),,,( 1 IRyyx j

K
jj ∈K =j  r,,2,1 K  and ,,( *

1
* yx ,K  

)*
Ky  can be written as a convex combination of points 

in .IR Because ),,,( **
1

*
Kyyx K  is a vertex of IR, a 

contradiction results unless .1=r  This means that 
),,,( **

1
*

Kyyx K  is an extreme point of .S  
Theorem 3 and Corollary 3 have provided theoretical 

foundation for a new algorithm used in our extended 
kth-best approach. It means that by searching extreme 
points on the constraint region S, we can efficiently find 
an optimal solution for a linear BLMF decision 
problem. The basic idea of the algorithm is that 
according to the objective function of the upper level, 
we arrange all the extreme points in S  in a descending 
order, and select the first extreme point to check if it is 
on the inducible region IR . If yes, the current extreme 
point is the optimal solution. Otherwise, the next one 
will be selected and checked. 

More specifically, let ),,,,( 11
1

1
Kyyx K ,K ,( Nx ,1

Ny  

), N
KyK  denote the N  ordered extreme points to the 

linear BLMF decision problem 

}),,,(:min{ 1
1

Syyxydcx K

K

s
ss ∈+ ∑

=
K             (9) 

such that: 

,
1

11

1
∑∑
=

++

=
+≤+

K

s

j
ss

j
K

s

j
ss

j ydcxydcx .1,,2,1 −= Nj K  

Let )~,,~,~( 21 Kyyy K  denote the optimal solution to 
the following problem 

),(:),,,(min{ 1
j

iiK
j

i xSyyyxf ∈K },,2,1 Ki K=   (10) 
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We only need to find the smallest £j Nj ,,2,1 K=  

under which i
j

i yy ~= , .,,2,1 Ki K=  
Let us write (10) as follows: 

),,,(min 1 Ki yyxf K  
subject to )(xSyi ∈  

jxx =  

where .,,2,1 Ki K=  
We only need to find the smallest j  under which 

i
j

i yy ~= , .,,2,1 Ki K=  
From Definition 1(b), we rewrite (10) as follows: 

∑
=

+=
K

s
sisiKi yexcyyxf

1
1 ),,,(min K                  (11a) 

subject to byBAx
K

s
ss ≤+ ∑

=1
                             (11b) 

l

K

s
slsl byCxA ≤+ ∑

=1
, Kl ,,2,1 K=     (11c) 

jxx =                                               (11d) 
0,,0,0 21 ≥≥≥ Kyyy K ,                 (11e) 

where .,,2,1 Ki K=  
Solving this problem is equivalent to select one 

ordered extreme point ),,,( 1
j
K

jj yyx K and then solve 
(11) to obtain the optimal solution iy~ . If for all i we 
have ,~

i
j

i yy =  then ),,,( 1
j
K

jj yyx K  is the global 
optimum to (1a)-(1d). Otherwise, check next extreme 
point.  

Based on the results obtained from above procedure, 
an extended kth-best approach which can solve a 
referential-uncooperative BLMF decision problem is 
described as follows. 
Step 1  Put 1←j . Solve (9) with the simplex method 

to obtain an optimal solution ),,,( 11
1

1
Kyyx K . 

Let ),,,( 11
1

1
KyyxW K=  and T = ∅ . Go to 

Step 2. 
Step 2 Solve (11) with the bounded simplex method. 

Let iy~  denote the optimal solution to (11). If 
i

j
i yy ~=  for all ,i Ki ,,1 K= , ,,( 1

jj yx ,K  
)j

Ky  is the global optimum to (1a)-(1d). 
Otherwise, go to Step 3. 

Step 3 Let W[j] denote the set of adjacent extreme 
points of ),,,( 1

j
K

jj yyx K such that ,,,( 1 Kyx  

][) jK Wy ∈ implies +≤+ ∑
=

j
K

s
ss cxydcx

1

∑
=

K

s

j
ss yd

1
.  Let )},,,{( 1

j
K

jj yyxTT K∪=  and 

TWWW i /)( ][∪= . Go to Step 4. 

Step 4 Set 1+← jj  and choose ),,,( 1
j
K

jj yyx K  so 

that =+ ∑
=

K

s

j
ss

j ydcx
1

:min{
1
∑
=

+
K

s
ss ydcx 1,( yx  

), KyK  }.W∈  Go back to Step 2. 
The extended kth-best approach is easy to be used to 

solve a linear referential-uncooperative BLMF decision 
problem. 

4. An Example of Logistics Management  

This section first presents a logistics planning problem 
modeled as a referential-uncooperative BLMF decision 
problem. It then shows how the proposed extended kth-
best approach is used for solving the problem. 

A logistics chain often involves a series of units 
such as supplier and distributor.  All the units involved 
in the chain are interrelated in a way that a decision 
made at one unit affects the performance of next unit(s). 
In the meantime, when one unit tries to optimize its 
objective, it may need to consider the objective of next 
unit, and its decision will be affected by the next unit’s 
reaction as well. Both supplier and distributor, two 
important units in a logistics chain, have their own 
objectives such as to maximize their benefits and 
minimize their costs; constraints such as time, locations 
and facilities; and variables such as prices. For each of 
possible decision made by the supplier, the distributor 
finds a way to optimize his/her objective value. The 
optimal solution of the distributor allows the supplier to 
compute his/her objective function’s value. As the main 
purpose of making a logistics plan is to optimize the 
supplier’s objective function’s value, the supplier is the 
leader, and the distributor is the follower in the case.  

We assume that there are two kinds of distributors A 
and B in this case. They have their own decision 
variables, objectives and constraints. But they have 
cross reference of information by considering other 
followers’ decision results in each of their own decision 
objective and constraint. For example, distributor A 
considers the price of transportation of distributor B. 
We therefore establish a referential-cooperative BLMF 
model for this problem. 

For nRXx ⊂∈  the supplier’s (leader’s) decision 
variable, mRYy ⊂∈  the distributor A’s (follower A’s) 
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decision variable, mRZz ⊂∈ the distributor B’s 
(follower B’s) decision variable, 1: RYXF →×  the 
supplier’s objective function, and 1

1 : RYXf →×  and 
1

2 : RYXf →×  the distributor A’s and distributor B’s 
objective functions respectively. In order to easily show 
the use for the proposed kth-best approach, the logistics 
planning problem is simplified into },0{ ≥= xX  

},0{ ≥= yY  }0{ ≥= zZ  with ,1Rx∈ ,1Ry∈ .1Rz∈  
The supplier’s objective is to minimize, over the set X, 
the total transportation cost of the system described by 
minF (x,y,z). The distributor A seeks to minimize his/her 
transportation time delay described by ),,(min 1 zyxf  
over the set Y, and the distributor B by ),,(min 2 zyxf  
over the set Z. Although the two kinds of distributors 
have different decision variables, decision objective and 
constraints, but each of them takes other’s decision 
variable into their objective and constraints as 
references. This is a typical referential-uncooperative 
BLMF decision problem. The problem’s model is 
presented as follows: 

zyxzyxF
Xx

32),,(min ++−=
∈

 

subject to 1≥x  
1≤z  

zyxzyxf
Yy

+−=
∈

),,(min 1  

subject to 1≥++ zyx  
1≤y  

zyxzyxf
Zz

−+=
∈

),,(min 2  

subject to 8≤++ zyx  
2≤x .  

According to the extended kth-best approach, this 
model can be rewritten in the format of (9) as follows: 

zyxzyxF 32),,(min ++−=  
subject to 1≥x  

1≤z  
1≥++ zyx  

1≤y  
8≤++ zyx  

2≤x  
0≥x  
0≥y  
0≥z .  

Now we go through this extended kth-best approach 
from Step 1 to Step 4. 

In Step 1, set 1=j , and solve above problem with 
the simplex method to obtain an optimal 
solution )0,0,2(),,( ]1[]1[]1[ =zyx . Let )}0,0,2{(=W  and 

φ=T .  Go to Step 2. 
In the Loop 1: 
Setting 1←i  and by (11), we have: 

zyxzyxf +−=),,(min 1  
subject to 1≥x  

1≤z  
1≥++ zyx  

1≤y  
8≤++ zyx  

2≤x  
2=x  
0≥y  
0≥z .  

Using the bounded simplex method, we have 1~ =jy . 

Because of ][
~

jj yy ≠ , we go to Step 3 and then have 

)},1,0,2(),0,1,2(),0,0,1{(][ =jW )}0,0,2{(=T and {=W  
),0,0,1( )}1,0,2(),0,1,2( . We then go to Step 4. Update 

2=j , and choose )0,0,1(),,( ][][][ =jjj zyx , go back 

to Step 2. 
In the Loop 2: 
Setting 1←i  and by (11), we have 

zyxzyxf +−=),,(min 1  
subject to 1≥x  

1≤z  
1≥++ zyx  

1≤y  
8≤++ zyx  

2≤x  
1=x  
0≥y  
0≥z . 

Same as loop1, by using the bounded simplex 
method, we have 1~ =jy . Because of ][

~
jj yy ≠ , we go to 

Step 3, and obtain: 

)}1,0,1(),0,1,1(),0,0,2{(][ =jW  

)}0,0,1(),0,0,2{(=T  
)}1,0,1(),0,1,1(),1,0,2(),0,1,2{(=W  
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Then go to Step 4. Update 3=j , and choose 
)0,1,2(),,( ][][][ =jjj zyx , then go to Step 2 again. 

In the Loop3: 
Setting 1←i  and we have by (11): 

zyxzyxf +−=),,(min 1  
subject to 1≥x  

1≤z  
1≥++ zyx  

1≤y  
8≤++ zyx  

2≤x  
2=x  
0≥y  
0≥z . 

Through using the bounded simplex method, we 
obtain 1~ =jy  and ][

~
jj yy = . This is a different situation 

from last loop. We thus set 1+← ii  and have a new 
expression of distributor’s function f2 by (11): 

zyxzyxf −+=),,(min 2  
subject to 1≥x  

1≤z  
1≥++ zyx  

1≤y  
8≤++ zyx  

2≤x  
2=x  
0≥y  
0≥z . 

Same as before, by using the bounded simplex 
method again, we have 1~ =jz . Because ][

~
jj zz ≠ , we go 

to Step 3, and have: 

)}1,1,2(),0,1,1(),0,0,2{(][ =jW  
)}0,1,2(),0,0,1(),0,0,2{(=T   

)}1,1,2(),1,0,1(),0,1,1(),1,0,2{(=W .  

We then go to Step 4. Updating 4=j and choosing 
)1,0,2(),,( ][][][ =jjj zyx , then we go back to Step 2. 

In Loop 4: 
Setting 1←i  and we have by (11): 

zyxzyxf +−=),,(min 1  
subject to 1≥x  

1≤z  
1≥++ zyx  

1≤y  
8≤++ zyx  

2≤x  
2=x  
0≥y  
0≥z  

Through using the bounded simplex method, we 
obtain 1~ =jy  and ][

~
jj yy ≠ . We go to Step 3, have: 

)}1,1,2(),1,0,1(),0,0,2{(][ =jW  

)}1,0,2(),0,1,2(),0,0,1(),0,0,2{(=T   
)}1,1,2(),1,0,1(),0,1,1{(=W  

We then go to Step 4. Updating 5=j we get 
)0,1,1(),,( ][][][ =jjj zyx  

In Loop 5: 
Setting 1←i  and we have by (11): 

  zyxzyxf +−=),,(min 1  
subject to 1≥x  

1≤z  
1≥++ zyx  

1≤y  
8≤++ zyx  

2≤x   
1=x  

0≥y  
0≥z  

Through using the bounded simplex method, we 
obtain 1~ =jy  and ][

~
jj yy = . We set i = i + 1, have: 

zyxzyxf −+=),,(min 2  
subject to 1≥x  

1≤z  
1≥++ zyx  

1≤y  
8≤++ zyx  

2≤x  
1=x  
0≥y  
0≥z  

We have: 1~ =jz , ][
~

jj zz ≠ , go to Step 3, we have: 

)}0,1,2(),1,1,1(),0,0,1{(][ =jW  

}0,1,1(),1,0,2(),0,1,2(),0,0,1(),0,0,2{(=T  
)}1,1,1(),1,1,2(),1,0,1{(=W  
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We then go to Step 4. Updating 5=j we get 
)1,0,1(),,( ][][][ =jjj zyx . 

In Loop 6: 
Setting 1←i  and we have by (11): 

zyxzyxf +−=),,(min 1  
subject to 1≥x  

1≤z  
1≥++ zyx  

1≤y  
8≤++ zyx  

2≤x  
1=x  

0≥y  
0≥z  

Through using the bounded simplex method, we 
obtain 1~ =jy  and ][

~
jj yy ≠ . We go to Step 3, have: 

)}1,0,2(),1,1,1(),0,0,1{(][ =jW  

)}1,0,1(),0,1,1(),1,0,2(),0,1,2(),0,0,1(),0,0,2{(=T
)}1,1,1(),1,1,2{(=W  

We then go to Step 7. Updating 5=j we 
get )1,1,2(),,( ][][][ =jjj zyx  

In Loop 7: 
Setting 1←i  and we have by (11): 

zyxzyxf +−=),,(min 1  
subject to 1≥x  

1≤z  
1≥++ zyx  

1≤y  
8≤++ zyx  

2≤x   
2=x  

0≥y  
0≥z  

Through using the bounded simplex method, we 
obtain 1~ =jy  and ][

~
jj yy = . We set i = i + 1, have: 

zyxzyxf +−=),,(min 2  
subject to 1≥x  

1≤z  
1≥++ zyx  

1≤y  
8≤++ zyx  

2≤x  
2=x  

0≥y  
0≥z  

We have: 1~ =jz , ][
~

jj zz = . Go to Step 4, we have: 

).1,1,2(),,( ][][][ =jjj zyx  

It has been found that from loop 7 that the optimal 
solution of the referential-uncooperative BLMF 
problem occurs at the point )1,1,2(),,( *** =zyx  with the 

leader’s objective value 3* =F , and two followers’ 
objective values 2*

1 =f  and 2*
2 =f  respectively. 

5. Conclusions and Further Study 

A referential-uncooperative BLMF decision problem 
occurs commonly in management and planning of many 
organizations. For solving such a BLMF decision 
problem, this paper extended the kth-best approach from 
dealing with simple one-leader-and-one-follower 
situation to complex referential-uncooperative multiple 
followers’ situation. This paper further illustrated the 
details of the proposed approach by an example of 
logistic planning problems. Initial experiment results 
showed that this extended kth-best approach can 
effectively solve the proposed BLMF decision problem. 
Some practical use of this extended approach will be 
considered as our future research task for BLMF 
decision making. 
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