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We present a framework for decision-making in relation to disaster management with a focus
on situation assessment during disaster management monitoring. The use of causality reasoning
based on the temporal evolution of a scenario provides a natural way to chain meaningful events
and possible states of the system. There are usually different ways to analyse a problem and
different strategies to follow as a solution and it is also often the case that information originat-
ing in different sources can be inconsistent or unreliable. Therefore we allow the specification of
possibly conflicting situations as they are typical elements in disaster management. A decision
procedure to decide on those conflicting situations is presented which not only provides a frame-
work for the assistance of one decision-maker but also how to handle opinions from a hierarchy
of decision-makers.

1. Introduction

Disaster management, which encompasses mon-
itoring, predicting, preventing, preparing for, re-
sponding to, mitigating and recovering from dis-
asters, aims to deal with any potential and ac-
tual disaster by effective and efficient organiza-
tion, communication, interaction and utilization
of counter-disaster resources.

Decisions taken in relation to a disaster
can alter its development and its consequences
dramatically. Usually decisions are made by
humans but more and more computer-based
decision-making support-systems have been de-
veloped and deployed.

Although human decision-makers (DMs) are
usually better than machines to judge complex
situations and make thoughtful decisions, com-
puters can provide a stress-free view of the sit-
uation, make efficient use of a broad range of
important knowledge, calculated decisions.

Our intelligent mixed-initiative system has
the overall architecture portrayed in Figure 1.

 

Detect a situation Plan to react 

 

Fig. 1. General mixed-initiative architecture.

The architecture is general enough to be ap-
plicable to different types of environments. The
overall approach is consistent with the concept
of Ambient Intelligence 1,2. Potential applica-
tions of this architecture include:
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Making the Right Decisions for Disaster Prevention

• Hospitals

• Airports / tube-train-bus stations

• Smart homes for elderly and disabled

• Roads and traffic related hazards

• Nuclear plants

• Stadium (e.g. for Olympic games 2010)

Examples of danger: terrorist threat to a
public building (e.g. airport), health problem
in a house or hospital.

Examples of resources: fire-brigade, police,
doctors, ambulances, areas of restricted access,
areas with specialized equipment, exits to build-
ings.

Examples of priorities: evacuate an area as
soon as possible, do not move people and nego-
tiate with criminals, approaching a house where
there is a criminal without the criminal notic-
ing the move, bringing ambulances through busy
traffic.

Decision-making problem: how to react to
unexpected/undesirable situations? How to
make a decision when there are strongly conflict-
ing aims (e.g. allowing the criminals to escape
versus trying to capture them without harming
the public).

We assume there is a main coordinating DM
at the core of the DSS, which will have a “board
of advisers” specializing on how to identify dif-
ferent dangers (e.g., fire, bomb threat, nuclear
waste leakage) and proposing how to handle
such dangers. The high-level view of the op-
erational procedure is as follows:

1. situation detection

2. safety assessment (level of threat and ob-
jects involved)

3. define course of action (similar to a plan
but may be at a more general level)

4. check with the DM and interact until there
is consensus or there is no more need to
look for a plan (maybe the threat disap-
pears or all possible suggestions are bad).

5. If there is a plan agreed, give the steps
to achieve the goal and monitor develop-
ment. According to how things progress
there may be a need to re-plan.

In this paper we focus on the first step of
this process. We use a temporal logic lan-
guage to represent causal relations of the world,
which also assimilates dynamic and heteroge-
neous information. Decision-making support
is performed by evaluating alternative explana-
tions that can be used as predictions of potential
future states of a world. A theory on prefer-
ences and associated algorithms are developed
for arbitration of different explanations and of
different advisers, which gives rise to the opti-
mal decision for the situation.

Here we describe a theoretical framework to
capture some key aspects of a decision support
system. We focus in this paper on the logi-
cal core of it, which uses a simple representa-
tion of causal relationships (see Section 2) to
build explanations for possible diagnosis of sit-
uations (see Section 3). These notions are illus-
trated by way of a scenario (Section 4) which is
later used to explain how decision making can
be supported by our system. Different prefer-
ence criteria can be encoded to order explana-
tions based on particular evidence. In the clas-
sical preference structures, the decision-maker is
supposed to be able to totally compare the ex-
planations. But certain situations, such as lack
of information, uncertainty, ambiguity, and con-
flicting preferences, can lead to partial orders
3 between explanations. This problem is con-
sidered in Section 5 where we define a frame-
work through which different preferences can be
merged to make a preference criteria and select
in between alternative explanations. This pro-
cess is generalized in Section 6 for the case where
a DM have to take decisions based on the advise
of other subordinates.

2. Causal Representation of the System

An essential part of the decision making pro-
cess deals with connecting current states of the
system with potential scenarios for the DM to
assess the situation and make appropriate judg-

International Journal of Computational Intelligence Systems, Vol.1, No. 3 (August, 2008), 237 - 247

Published by Atlantis Press 
Copyright: the authors

238



Making the Right Decisions for Disaster Prevention

ments. We represent basic key features of the
system and their inter-relation from a causal
perspective.

States are partitioned into two classes: de-
pendent (SD) and independent (SI). S is the
opposite of S. An independent state does not
depend causally on other states holding at the
same time, whereas a dependent state can do
so. An independent state can only be initiated
by the occurrence of initiating or terminating
events. A state S will be co-independent if S is
independent. Events will represent external in-
fluences to the system being modelled and will
drive its internal change.

A specification of a system will be interpreted
over a sequence of states, starting with the ini-
tial state S0: S0, S1, S2, . . . indexed by time.
When the clock ticks at time t the system leaves
St and the system is at state St+1. This new
state is computed from St by first applying any
event Ei such that occurs(Ei, t : t + 1) (see Fig-
ure 2) and then applying the causal rules. An
example of this will be given later when we in-
troduce a practical scenario.

The following technical language, based on
that of 4, is used to represent our scenarios.
We restrict ourselves to a propositional lan-
guage where cause-effect relationships can be
expressed directly in a simple way.

 

n                                  n+1                               n+2                               n+3 

Event n+1                     Event n+2                    Event n+3     …new event occurring… 

State n State n+1 State n+2 State n+3 

 

Fig. 2. Dynamic evolution of the system.

Definition 1 (4 page 3): There are two kinds
of causal rule,

Same-time rules:s1 u s2 u · · · u sn  s

Next-time rules:s1 u s2 u · · · u sn  ©s

where each Si is an atomic state and S ∈ SD.

The intuitive interpretation is based on a set S
of global states S0, S1, S2, . . . and a time t, t be-
long to the Natural numbers. By St we mean
the formulas which are true in the system at
the state it is at time t, then −s is the logi-
cal negation of a primitive state, s1 u s2 is the
conjunction of two primitive states. Same-time
rules are such that if the antecedent is true at
a time t then the consequent is the effect of the
causes given in the antecedent and that effect
happens at the same time as the causes. In a
Next-time rule the effect materializes at the next
time (t + 1).

Same-time rules are required to be stratified.
This is explained as follows 4:

1. A Stage 1 rule is a rule S1 u S2 u · · · u
Sn  S, where S1, . . . , Sn are all inde-
pendent. In this case S is said to be 1-
dependent. (The independent states are
called 0-dependent.)

2. A Stage k rule is a rule S1uS2u· · ·uSn  
S, where each of S1, . . . , Sn is at most
(k−1)-dependent, and at least one of them
is (k− 1)-dependent. Then S is said to be
k-dependent. In this case we also say that
S is co-k-dependent.

3. A set of same-time rules is stratified so
long as for every rule in the set there is
a number k such that the rule is a Stage k
rule.

We provide an example of stratification at
the end of Section 5.

Causal rules are applied to transition the sys-
tem from state St to the next state St+1 in order
of k-dependency, i.e., first 1-dependent, then 2-
dependent and so on. See more details on this
at 4.

The language presented above can be ex-
tended by covering different alternatives (e.g.,
nonlinear, continuous time, delays, etc). We
keep it simple enough to easily allow specifica-
tion of dynamic systems and a tractable combi-
nation with other features of our system to be
introduced later.
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3. Alternative and Conflicting Explana-
tions

Decision-making is about evaluating alterna-
tives, following a particular sequence of events
the decision-maker is presented with a query and
it is her/his task to assess the possible options
to follow and make a decision. In this section
we focus on the process of gathering the expla-
nations available. At a later section we consider
how to assess them.

Whenever a query about a particular state
S of the system is passed to the DM our sys-
tem will assist the analysis by considering the
causal structure leading to that particular state
at a particular point in time. The assistance
provided comes in the form of an explanation,
i.e., it provides details on what events e1, e2, . . .
are meaningful for that state to be reached and
what causal laws r1, r2, . . . governing the system
are being exercised when events in the system
can cause a state S to hold. We will call that
a causal explanation. There may be more than
one possible explanation for how the modeled
system can reach S. These explanations can be
consistent with each other in which case there
is no conflict. But it may also be, due to the
ambiguity or lack of information characteristic
in real-time applications, that some of the ex-
planations are contradictory or somehow antag-
onistic. Analyzing the quality of the explana-
tions and why some of these are contradicting
to each other is a difficult and time consuming
task, to be avoided when a DM has to react to
an imminent hazard. This part of our system
is strongly related to previous developments in
theory of temporal argumentation (5,6,7,8).

We consider possible competing causal expla-
nations 〈c1, s1〉 and 〈c2, s2〉 at time t, where c1

is a causal structure (containing causal rules ri)
explaining why the system may reach state s1

at time t and c2 an alternative causal structure
(based on a set of causal rules rj , disjoint with
ri) explaining why the system may reach state s2

at time t. These causal explanations can be such
that s1 contradicts s2 or contradicts the possibil-
ity that c2 may exist. In this paper we focus on
the way these possible causal explanations can
be found and also on the potential scenarios that

can cause two possible explanations to be mutu-
ally contradictory or undermining (similarly to
rebuttal or undercutting arguments 9).

4. Airport Security

Hazards can arise in many contexts and for
many reasons. The following scenario describes
situations involving hazards and possible expla-
nations for them, each explanation suggesting
different courses of action. Suppose an airport
gathers information that a bomb may have been
placed there. To react to this specific event and
avoid potential disaster, the airport security sys-
tem contacts national intelligence departments
(NIDs) to collect the latest information on air-
port related terrorist threats. It also checks all
surveillance information within the airport, such
as video footage, and any reported suspected in-
cidents. Lets assume no feedback has indicated
attacks either being planned or underway. Fac-
ing with the bomb threat the airport authority
has to make a hard decision on what to do next.
While keeping the airport operating normally is
critical, protecting human life from a bomb at-
tack is certainly of paramount importance.

Lets assume the following simplified descrip-
tion of the decision making process. States
are: bombAlert (a bomb alert has been is-
sued), assesmRisk (assessment of real risk is
needed), nidReq (NID is requested informa-
tion on current threats), checkSRR (check cur-
rent security related reports at the airport),
nidRepOK (NID reports everything is normal),
localInfoOK (security related information from
the airport is normal), source1 (one source
of information), source2 (another source of
information), emergency (state of emergency
is declared), suspectArrived (suspect is within
the airport), passedC (suspect passed secu-
rity checks), resultALowR (report indicates low
risk), resultAHiMeR (report indicates medium
or high risk).

Independent states are: bombAlert,
resultALowR, resultAHiMeR, -resultALowR,
and -resultAHiMeR. nidRepOK and localInfoOK
are known to be true initially and all the rest
false. For notation of states and events here
we follow 10 so ingr(S) denotes the event of
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and ingression to state S occurring. The follow-
ing events occur during the development of ac-
tivities: occurs(ingr(bombAlert) at instant 1:2,
occurs(ingr(source1) and occurs(ingr(-source2)
at instant 3:4, occurs(ingr(suspectArrived) at
instant 5:6, occurs(ingr(passedC) at instant
6:7, and finally occurs(ingr(resultALowR) and
occurs(ingr(- resultAHiMeR) at instant 8:9.
Lets assume we want to be able to investigate if
an emergency should be declared, for example,
at time 10.

The following causal rules captures the basics
of the scenario:

bombAlert assesmRisk
bombAlert nidReq
bombAlert checkSRR

suspectArrived −localInfoOK
suspectArrived u passedC  localInfoOK

nidReq u resultALowR nidRepOK
nidReq u resultAHiMeR −nidRepOK

−nidRepOK  ©emergency
−localInfoOK  ©emergency
nidRepOK u localInfoOK u reliableSource 

©emergency

nidRepOK u localInfoOK u unrelSource 
©− emergency

This KB is stratified as follows: the first five
rules are at 0-level (only dependent on external
events). The next two rules are at level 1 (de-
pendent on the outcome of the previous level, 0).
The remaining rules are at level 2 (dependent on
the outcome of the previous level, 1).

Based on the above rules, our Prolog-based
prototype can extract the two possible compet-
ing explanations (A1 and A2) in relation to the
declaration of emergencies:

[{nidRepOKulocalInfoOKureliableSource 
©emergency}, emergency]

[{nidRepOK u localInfoOK u unrelSource 
©− emergency},−emergency]

5. Dynamic POSet Generation for Expla-
nation Preference Handling

Each time two or more explanations differ in
the conclusion they have to be analyzed to de-
cide which of them, if any, can be considered
the most credible explanation(s). This section
gives a more precise description on the process
to compare and select competing explanations.

Typically the competing explanations can be
arranged in a partial order and our approach
will take that as the departing point aiming to
generate a POSet out of the set of explanations
being considered. In occasions it will be pos-
sible to order the options into a total order if
there are a few options. Notice that we cannot
ensure the POSet will be a lattice 3 as we leave
open the type of order relationships that can be
used (provided the user gives an algorithm on
how to use them) and therefore we cannot en-
sure the POSet will have a greatest lower bound
or a lowest upper bound.

The process can be generically depicted as in
Figure 3. The possible explanations are given to
a specific module of the system which evaluates
them based on domain specific and also general
criteria to assess which is their relative strength.

 

 

Preference Handling 

E1    E2     …    En 

POSet 

Domain 
Specific 
Knowledge 

Criteria 
Hierarchy 

 

Fig. 3. Preference POSet generation.

A structure to evaluate the preference POSet
of explanations can be syntactically constructed
as follows.
Definition 2 a POSet evaluation structure is a
6-tuple 〈A,B, C, D, Z, L〉 where:

A is a set of alternative explanations;

B ∈ Z is a validity benchmark (what is the
minimum value for an explanation to be
valid/useful?);
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C a criteria to compare explanations and build
a POSet. Here C is triplet 〈C1, C2, C3〉
where:

C1 is a set of criteria {CR1, . . . , CRm},
C2 is a set of order meta-relationships

defined over different criteria
{M1,M2, . . . ,Mn}, and

C3 is a meta-criterion defined over ele-
ments of C1 using C2. ∗

D is the domain specific information;

Z is a range of possible values used to rank the
strength of the explanations; and

L may be either a pair (1, 0) or L = ∅, depend-
ing on whether the POSet is a lattice or
not. If the POSet is of type lattice then
L = (1, 0) and symbol “1” represents the
top element and “0” represents the bottom
element, {“1”, “0”} ⊆ Z.

To illustrate the different elements of
the structure defined above lets assume we
have a structure 〈A,B, C, D, Z, (1, 0)〉 defined
over two possible explanations a1 and a2:
〈{a1, a2},“acceptable”,〈{S, T, EP}, { C },{S C
T C EP}〉, {“excellent”, “verygood”, “good”,
“acceptable”, “bad”},(“excellent”,“bad”)〉. Lets
assume S stands for Specificity (12, 8), T for
Trust and EP for Event Probability. “C” is the
meta-relation ‘precedence’ which in the case of
S C T C EP indicates that our procedure will
first apply S and if that is not enough to decide
then will apply T and if that is not enough it
will apply EP . This meta-relationship defines a
total order of preference amongst the compari-
son criteria that can be applied to compare ar-
guments. If after applying S, T , and EP in the
order established by C no explanation(s) is (are)
established as the most preferred one(s) then all
the explanations evaluated have equal strength.
It may also be that one or both explanations ai

and aj cannot be judged using any of these crite-
ria so ai and aj will be said ‘incomparable’. For
the purpose of evaluating and comparing differ-
ent explanations we will use a function V (ai, D)

such that V : A×D → Z which will measure the
strength value of an explanation ai ∈ A, possi-
bly using information from the domain D, into
a value of Z.

Airport scenario revisited: when a bomb
alert is triggered several reassuring mechanisms
are started as a consequence. Gathering infor-
mation from different sources to confirm or dis-
card the threat is essential. Information is gath-
ered locally and also from specialized units (e.g.,
NID).

For the case of local information gath-
ered we have two competing explanations:
〈S1,−localInfoOK〉 and 〈S2, localInfoOK〉
where:

S1 = [suspectArrived −localInfoOK]

S2 = [suspectArrivedupassedC  localInfoOK]

Given they share the independent states which
characterize these two possible developments
they also share the list of interesting times to
be investigated. As the set of causes related to
explanation S1 is entirely contained in S2 and
furthermore S2 extends S1 (is a “richer” expla-
nation) then S2 should be preferred to S1. So
the conclusion of the system will be that the
alarm is off at 10 and the explanation is S2. This
conflict was decided purely on syntactical basis,
i.e., the structure of the explanation allows us
to take a decision based on the structure of the
competing explanations. S2 takes into account
all that S1 has to offer and also brings extra in-
formation on what happens after the presence
of a suspect is detected. It states not only that
the suspect has been detected but later on all
the controls carried out over the individual has
been negative in terms of identifying a cause of
concern. Given that S2 is preferable to S1 by
being more specific (i.e., according to criteria S:
S2 >S S1) the preference order is in this par-
ticular case a total order (left to right meaning
going from up to down): [V (S2, D), V (S1, D)]
where D=“airport”.

NID information is gathered as a risk estima-
tion. For this particular problem it only matters
if it is low enough for the threat to be considered.

∗This is similar to Prakken’s idea 11 but use it to generate a POSet out of the preference criteria.
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If it is high or even medium then preventive mea-
sures have to be taken which is highlighted by
the rules describing the scenario. We have two
competing explanations: 〈N1, nidRepOK〉 and
〈N2,−nidRepOK〉 where:

N1 = [nidReq u resultALowR nidRepOK]

N2 = [nidRequresultAHiMeR −nidRepOK]

N1 and N2 are equally specific and the sources
of evidence are equally strong (the same offi-
cial organism) so according to the meta-criteria
we consider next criteria EP which (again this
is domain dependent information) is based on
the statistical information pointing out to the
risk of attack being more likely the case N2

by the criteria EP and the resulting preference
order is in this particular case a total order:
[V (N1, D), V (N2, D)].

Although confirmation from NIDs officials
and ‘in situ’ evidence of danger suggest to ig-
nore the call and even when the intuition of
the DM tells everything is safe, information ar-
rives that the source of the bomb alert can be
trusted. If the DM is trying to collate all the
supporting evidence from the system in terms
of labelling a the situation as an emergency or
not the system will consider the two possible
contending explanations A1 and A2 for declar-
ing an emergency or ignoring the threat. But at
time 9 there is evidence for both, however the
system will prefer explanations based on more
reliable sources of information and hence A1 will
be preferred. Suppose in this context we have
two competing explanations: 〈A1, emergency〉
and 〈A2,−emergency〉 where:

A1 = [nidRepOKulocalInfoOKureliableSource

 ©emergency]

A2 = [nidRepOKulocalInfoOKuunrelSource

 ©−emergency]

A1 and A2 are equally specific but the domain
information in D says the source of information
informing about the possible threat is a reliable
source of evidence. So according to the meta-
criteria we consider next criteria T and A1 is

preferable to A2 by the criteria T and the result-
ing preference order is in this particular case a
total order: [V (A1, D), V (A2, D)].

Notice the examples above only considered
two alternative explanations in each scenario
but nothing forbids the existence of many possi-
ble explanations for both a thesis and its nega-
tion. The examples only involved total orders,
see Figure 4, between arguments due to the
short example used to illustrate the concepts as
simply as possible:

 
V(S2, D) V(N1, D) V(A1, D) 

V(S1, D) V(N2, D) V(A2, D) 
 

Fig. 4. Total order amongst arguments.

However any of those could have easily led
to a non total order. Lets assume for the sake
of illustration that another alternative to infer
whether there is or not an emergency is that
the Security Related Report is negative, mean-
ing there is no suspicion that :

negativeSRR ©− emergency

then we have another contending explana-
tion being activated and worth considering to-
gether with A1 and A2. Lets call it A3,
therefore: [A3,−emergency]. Lets also as-
sume the conditions where the Security Re-
lated Report was conducted are not trustable
(e.g., little time to gather serious feedback)
and therefore it ranks low according to our
comparison criteria. The final evaluation is
[V (A1, D), {V (A2, D), V (A3, D)}] were A2 and
A3 are equally ranked (both are considered unre-
liable inferences although for different reasons).
Their POSets are shown in Figure 5.

 
V(S2, D) V(N1, D) V(A1, D) 

V(S1, D) V(N2, D) V(A2, D) V(A3, D)

 

Fig. 5. Partial order amongst arguments.
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It should also be noticed that when we illus-
trated Definition 2 we considered a criterion to
compare explanations based on a set of compar-
ison criteria for arguments C1 = {S C T C EP}
which were ordered in a hierarchy of relevance
C2 = { C }. Then subsequent examples as-
sumed the same elements C1 and C2. The meta-
relationship C is a total order but it does not
have to be that way. We could have defined
C2 = { C } and C1 = {S C (T w EP )}
meaning that S has more relevance (has to be
applied first) than both T and EP . T and EP
have equal relevance among themselves (any of
them can be non-deterministically decided to be
used first).

Figure 6 gives a basic description of the al-
gorithm that is used to implement the dynamic
POSet generation in the preference handling
kernel of our system.

Input: < A,B,C,D,Z, L > and
V : A×D → Z as defined in
Section 2

Output: S ⊆ A such that it ranks the
highest according to C

repeat1

Evaluate all elements of A applying2

the first criteria as specified in C3

Make P the current POSet and S the3

set of elements with highest z ∈ Z
associated such that for all a ∈ S, if
V (a) is its strength then V (a) > B

until (S is a singleton) or (all criteria on4

C3 have been exhausted) ;
case of5

S = {}: there is no acceptable6

explanation7

S is a singleton, S = {a}: “a” is the8

best explanation9

S = {a1, . . . , an}: elements of S are10

equally strong explanations11

end case12

Fig. 6. Weigthing explanations with a hybrid
criteria.

The process above only considers what the
outcome of only one DM. There can be occa-

sions where more than one DM produces a de-
cision and then another DM above them in the
hierarchy will decide which advice is better. For
example, DM1 takes: < A,B, C1, D, Z, (1, 0) >
to produce a POSet P1 and DM2 uses:
< A,B,C2, D, Z, (1, 0) > (with C1 6= C2) pro-
ducing a POSet P2. One important problem to
consider then is to sensibly merge P1 and P2 into
a final P . This problem is addressed in the next
section.

6. Combination of Preferences

The decision making process involving multiple
decision makers (MDM) can be formulated as
follows. We have a set of decision makers (vot-
ers) V = {v1, v2, v3, · · · , vn}, a set of alterna-
tive explanations A = {a1, a2, a3, · · · , am}, and
a set I of (individual) preferences where each
α ∈ I is a partial order over a subset of A.
For example, a preference may be a2a1a3, a4, or
a5a4a3a2a1. A preference may be obtained by
a decision maker using a subset of criteria, or
it may also be an overall decision by a separate
decision maker.

The task of MDM is to find a total order
that agrees maximally with all preferences in I.
The preference relation considered here is qual-
itative, therefore we cannot use the standard
Borda score based solution 13,14. We present a
probabilistic approach instead.

We treat a preference as a sequence, and con-
sider the probability that one alternative is be-
fore another, based on individual preferences.
We then apply the well known OrderByPref-
erence algorithm 15 which takes as input such
probabilities and generate an approximately op-
timal total order (i.e., approximately maximally
agrees with the preferences). Interested readers
are invited to consult 15 for more details on this
algorithm. In the next section we focus on how
to obtain such probabilities from given prefer-
ences.

6.1. Contextual probability

Let Ω be a set, F be a σ-field over Ω. For exam-
ple, F = 2Ω. The elements of F are called
neighborhoods, and we can embed Ω in F so
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Ω ⊆ F . If there is a probability function P over
F we have a probability space < Ω,F ,P >. The
contextual probability 16 is G : F → [0, 1] such
that, for X ∈ F

G(X) =
∑
E∈F

P(E)f(X ∩ E)/K

where K =
∑

E∈F P(E)f(E) is normalization
factor and f(X) is a non-negative measure of
X satisfying f(X1 ∪ X2) = f(X1) + f(X2) if
X1 ∩ X2 = ∅, e.g., f(X) = |X|. For t ∈ Ω and
h ∈ F , if t ∈ h we say t is covered by h. Let I
be a finite sample of Ω, where N = |I|. It has
been shown that G can be estimated based on I
as follows:
Lemma 1 (16) For t ∈ Ω,

Ĝ(t) =
1

N ×K

∑
x∈I

cov(t, x)

where cov(t, x) = |{E ∈ F : t ∈ E, x ∈ E}| is
the number of all neighborhoods that cover both
t and x.

6.2. Calculating cover for sequences

Let A be a finite set of symbols (explanations).
A sequence α is {si}n

0 = {s0, s1, · · · , sn}, or sim-
ply, s0s1 · · · sn. We consider a data space, Ω, of
all sequences without repetition. Obviously Ω is
finite.

Consider a sequence α and a, b ∈ α. If a
comes before b (from left to right) then a ≤α b.
Consider two sequences α and β. If α can be ob-
tained by removing some symbols from β, α is a
subsequence of β, written by α � β. A neighbor-
hood is a set of all sequences that share a single
subsequence γ. We then say it is a neighborhood
with respect to γ. Thus a neighborhood corre-
sponds to a sequence. We write F for the set of
all neighborhoods, or sequences. We can show
that F is a σ-field. Incidentally the data space
and the σ-field are the same.

A neighborhood of sequence α is a neigh-
borhood with respect to a subsequence γ of
α. Therefore the set of all neighborhoods of
α is the set of all subsequences of α, written
by N(α) = {γ : γ is a subsequence of α.}. Fur-
thermore we write N(α, β) for the set of neigh-
borhoods covering both α and β, which is in fact

the set of all common subsequences of α and β.
The algorithm in Figure 7 is designed to find all
common subsequences.

Input: Sequence α and β
Output: A list, N(α, β), of all common

subsequences of α and β.
Init: Seq = {ε}, ind(Seq) = 0, L = {{ε}};1

for (i = 0; i < |α|; i + +) do2

x = α[i]3

if β[j] = x then4

Seq′ = ∅5

for every Z ∈ L do6

if j ≥ ind(Z) then7

Seq′ = Seq′ ∪ Z
end8

Seq = {yx : ∀y ∈ Seq′}9

ind(Seq) = j10

L = L ∪ {Seq}11

end12

end13

N(α, β) = ∪x∈Lx.14

Fig. 7. Finding all common subsequences.

6.3. The Probability that One Explanation is

Before Another

For any two explanations a, b ∈ A we consider a
sequence ab. a and b can be regarded as single-
ton sequences.

According to Lemma 1 we have

Ĝ(ab) =
1

NK

∑
x∈I

cov(ab, x)

Recall that K is a normalization factor indepen-
dent of ab, N is the number of sequences in I,
and cov(ab, x) is the number of common subse-
quences of ab and x. Similarly

Ĝ(b) =
1

NK

∑
x∈I

cov(b, x)

The probability that a is before b is then
modeled by

Ĝ(a|b) =
Ĝ(ab)
Ĝ(b)
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6.4. An Example: Airport Scenario Revisited

Suppose there are three independent advisers
(ADVs): adv1, adv2, adv3, involved in the air-
port scenario to assist the decision maker and
there are five alternative explanations a, b, c, d, e.
The preferences by individual ADVs are adv1 :
abcde, adv2 : ab, aced, and adv3 : bc, aed. As-
suming equal weighting of the ADVs we have a
preference set I = {abcde, ab, aced, bc, aed}.

Consider a query sequence q = ac. To cal-
culate G(q) we need to calculate cov(q, x) for
every x ∈ I, which is the number of all common
subsequences of q and x.

Consider x = abcde. The set of all subse-
quences of x is {∅, a, b, c, d, e, ab, ac, ad, ae, bc,
bd, be, cd, ce, de, abc, abd, abe, acd, ace, ade, bcd,
bce, bde, cde, abcd, abce, abde, acde, bcde, abcde}.
The set of all subsequences of ac is {∅, a, c, ac}.
Therefore cov(ac, abcde) = 4. Similarly
we have cov(ac, ab) = 2, cov(ac, aced) = 4,
cov(ac, bc) = 2, and cov(ac, aed) = 2. Therefore
G(ac) = 1

NK (4 + 2 + 4 + 2 + 2) = 14
NK .

We can similarly compute G(ab), G(ad), G(ae),
G(bc), G(bd), G(be), G(cd), G(ce), and G(de).
Feeding this G values to the OrderbyPrefer-
ence algorithm will produce a total order over
the alternative explanations, which is guaran-
teed to be approximately optimal. This total
order can be used to make a consensuated deci-
sion.

7. Related Work

Some related systems like 8 and 7 focused al-
ready on temporal argumentation systems but
both are based on one DM and one fixed prefer-
ence criteria. The former uses specificity whilst
the second only counts the number of arguments
in favour and opposed to a claim. We believe dif-
ferent contexts and different DMs will impose
different criteria and therefore for a system to
be of practical use that component of the sys-
tem has to allow more flexibility.

Research and endeavor towards disaster
management have been undertaken and exer-
cised in various initiatives under different ban-
ners. For example, the United Nation started
the International Decade for Natural Disaster

Reduction (IDNDR) programme in late 1980s
and the follow-up International Strategy for
Disaster Reduction (ISDR) programme in late
1990s 17. The application of information tech-
nologies to enhance disaster management 18 has
been a constant centre of research, which ex-
plores the critical and evolving role of IT and
its infrastructure, in particular, the communi-
cation and information sharing. Recently using
agent technologies for disaster management has
got momentum with a number of agent-based
disaster management simulation systems being
developed 19,20. These systems provide disaster
management experience for DMs through train-
ing and experiments; and technically they con-
centrate on the co-ordination of agents.

Instead we focus here on real-time support
for DMs. Our framework assist DMs to eval-
uate situations and make decisions as a threat
is unfolding. The system can be used to detect
particular events and warn on possible threats
as well as to predict a possible outcome and give
an explanation associated with the conclusion.

The system can work in two modalities, by
channeling all knowledge and outcome to one
Decision Maker(s) which will make a final de-
cision or by combining several partial decisions
from teams of decision makers. The advice to
the Decision Maker(s) is based on decision cri-
teria which can be adapted to different domains.

8. Conclusions

We present a framework that combines impor-
tant features to the decision-making process.
The use of causality reasoning based on the tem-
poral evolution of a scenario provides a natu-
ral way to chain meaningful events and possible
states of the system. Allowing the specification
of possibly conflicting situations also brings a
very typical element in these domains as there
are usually different ways to analyze a problem,
different possibly competing strategies to follow
and it is often the case that information origi-
nating in different sources can be inconsistent.
A decision procedure to decide on those conflict-
ing situations has been explained which serves
as a decision making framework suitable to one
DM or to a hierarchy of DMs.
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