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Abstract

A list of twenty five integrable vectorial evolutionary equations of the third

order is presented. Each equation from the list possesses higher symmerties

and higher conservation laws.

1 Introduction

Vector integrable equations appear first as some specializations of Jordan triple sys-
tems introduced in [1]. The most known of them are two vector modified Korteweg-
de Vries equations [2], [3]:

ut = uxxx + (u,u)ux

ut = uxxx + (u,u)ux + (u,ux)u.
(1.1)

Here and below u(t, x) belongs to a N -dimensional vector space V with the scalar
product (· , ·).

The further example is the N -component higher analog of the Landau-Lifshitz
equation [4]:

ut =

(

uxx +
3

2
(ux,ux)u

)

x

+
3

2
〈u,u〉ux, u

2 = 1. (1.2)

Here 〈·, ·〉 is a second scalar product. In applications a second scalar product are
usually used for describing anisotropy of medium. There may be any realizations
of scale products. These realizations are not important for the symmetry analysis,
only bilinearity and differentiability are used therein.
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The following two series of scalar variables

u[0,0] = (u0,u0), u[0,1] = (u0,u1), . . . , u[i,k] = (ui,uk), i 6 k, (1.3)

ũ[0,0] = 〈u0,u0〉, ũ[0,1] = 〈u0,u1〉, . . . , ũ[i,k] = 〈ui,uk〉, i 6 k, (1.4)

where uk = ∂k
u/∂xk, are used. For arbitrary N these variables can be considered

as independent.
A componentless version of the symmetry approach has been developed in [5] for

vector evolutionary equations of the following type

ut = fnun + fn−1un−1 + · · ·+ f0u0, (1.5)

where fk are scalar smooth functions depending on variables (1.3) and (1.4).

Definition 1. If the coefficients fi of equation (1.5) depend on variables (1.3) only,
then equation (1.5) is said to be isotropic. If the coefficients fi of equation (1.5)
depend on both variables (1.3) and (1.4), then equation (1.5) is said to be anisotropic.

In recent years the following third order equation

ut = u3 + f2u2 + f1u1 + f0u0. (1.6)

has been studied. A complete classification of the isotropic integrable equations
(1.6) on a sphere has been obtained in [5]. A complete classification of the integrable
divergent equations (1.6) has been presented in [6]. A complete list of the isotropic
integrable equations (1.6) with f2 = 0 has been presented in [7]. The anisotropic
integrable equations (1.6) on a sphere have been completely classified in [8]. But
at present there is no complete classification of integrable equations (1.6) in general
form.

Definition 2. Denote as ord the order of variables: ordun = n, ord u[i,k] = k,
ord ũ[i,k] = k (because i 6 k). The order of a function F (ordF ) is the maximal
order of its arguments.

This paper is devoted to a symmetry classification of the isotropic equations
(1.6), where ord f2 6 2, ord f1 6 2 and ord f0 6 1. The latter condition has been set
because the problem with ord f0 6 2 is extremely cumbersome (see Appendix).

If a point transformation preserves a form of an equation, then we call this trans-
formation admissible for the equation under consideration.

It can be easily verified that equation (1.6) has three admissible point transfor-
mations:

x′ = αx+ βt, t′ = α3t, u
′ = γu, (1.7)

u
′ = u exp(ax+ bt), if fi(λu[i,k], λũ[i,k]) = fi(u[i,k], ũ[i,k]), ∀λ 6= 0, (1.8)

u
′ = uf(u[0,0]),

(

f 2(u[0,0])u[0,0]

)

′ 6= 0. (1.9)

Here α, β, γ, a and b are constant. The condition for fi in (1.8) expresses homo-
geneity of the equation and the condition in (1.9) guarantees invertibility of the
transformation.
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2 Integrability conditions

It is well known that any equation integrable by the inverse spectral transform
method possesses infinitely many conservation laws

Dt ρi = Dx θi, i = 0, 1, 2, . . . (2.1)

Here conserved densities ρi and fluxes θi are functions of field variables and their
spatial derivatives. Dx is the total differentiation operator with respect to x, Dt

is the evolutionary differentiation. The operators Dx and Dt are defined by the
following formulas:

Dxt = 0, Dxx = 1, Dxui = ui+1, Dxu[i,i] = 2u[i,i+1], Dxũ[i,i] = 2ũ[i,i+1],

Dx u[i,k] = u[i+1,k] + u[i,k+1], i < k, Dx ũ[i,k] = ũ[i+1,k] + ũ[i,k+1], i < k,

Dtt = 1, Dtx = 0, Dtun = Dn
xF , F = u3 + f2u2 + f1u1 + f0u0,

Dt u[i,k] =
(

ui, D
k
xF
)

+
(

uk, D
i
xF
)

, Dt ũ[i,k] =
〈

ui, D
k
xF
〉

+
〈

uk, D
i
xF
〉

.

Moreover, the usual rules for differentiations of sums, products and composite func-
tions are implied.

The symmetry method deals with the so-called canonical conserved densities.
These densities are usually obtained by using an asymptotic expansion of the loga-
rithmic derivative of the Lax eigenfunction (see [9], Chapter 1, for example). Canon-
ical conserved densities can be also obtained from a temporal Lax equation.

Equation (1.6) can be written in the form (−∂t +D3
x + f2D

2
x + f1Dx + f0)u = 0.

The main idea of the componentless version of the symmetry approach is to use the
equation (−∂t + D3

x + f2D
2
x + f1Dx + f0)ψ = 0 as a temporal Lax equation. Then

one ought to set

ψ = exp

(
∫

Rdx

)

,

to obtain a Riccaty-type equation:

(Dx +R)2R+ f2(Dx +R)R+ f1R+ f0 = F, F =

∫

Rt dx. (2.2)

This equation has a formal solution in the following form

R = λ−1 +
∞
∑

n=0

ρnλ
n, F = λ−3 +

∞
∑

n=0

θnλ
n (2.3)
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Equations (2.2) and (2.3) imply the following recursion relation:

ρn+2 =
1

3

[

θn − f0 δn,0 − 2 f2 ρn+1 − f2Dxρn − f1 ρn

]

− 1

3

[

f2

n
∑

s=0

ρs ρn−s +
∑

06s+k6n

ρs ρk ρn−s−k + 3

n+1
∑

s=0

ρs ρn−s+1

]

−Dx

[

ρn+1 +
1

2

n
∑

s=0

ρs ρn−s +
1

3
Dxρn

]

, n > 0.

Here δi,j is the Kronecker symbol, ρ0 and ρ1 are given by the formulas:

ρ0 = −1

3
f2, ρ1 =

1

9
f 2

2 − 1

3
f1 +

1

3
Dx f2. (2.4)

The second equation (2.2) may be rewritten as a conservation lawRt = Fx. Using the
expansions (2.3) one has an infinite set of conservation laws (2.1). The evolutionary
differentiation Dt appears in these equations because the functions ρn, n = 0, 1, . . .
depend on a solution u of equation (1.6).

To use the recursion formula one ought to find functions θi from (2.1). Expressions
for the further densities ρi contain the fluxes θj , j 6 i− 2. For example,

ρ2 = −1

3
f0 +

1

3
θ0 −

2

81
f 3

2 +
1

9
f1 f2 −Dx

(

1

9
f 2

2 +
2

9
Dx f2 −

1

3
f1

)

,

and so on.
It is shown in [5] that even canonical densities are trivial, i. e. ρ2n = Dxχn,

n = 0, 1, . . . . Therefore, the necessary integrability conditions of equation (1.6) may
be presented in the following form:

δ

δu
Dtρ2n+1 = 0,

δ

δu
ρ2n = 0, n = 0, 1, . . . , (2.5)

where δ/δu is the Euler operator.

3 List of integrable equations

Theorem. Isotropic equation (1.6) satisfying six integrability conditions (2.5) can
be reduced by a suitable point transformation (1.7)–(1.9) to one of equations from
the following list:

ut = u3 +
3

2
cu[0,0] u1, (3.1)

ut = u3 + 3c(u[0,0] u1 + u[0,1] u), (3.2)
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ut = u3 +
3

2

( c2 u[1,2]
2

1 + c u[1,1]

− c u[2,2]

)

u1, (3.3)

ut = u3 − 3
u[1,2]

u[1,1]
u2 +

3

2

u[2,2]

u[1,1]
u1, (3.4)

ut = u3 − 3
u[1,2]

u[1,1]
u2 +

3

2

(

u[2,2]

u[1,1]
+

u[1,2]
2

u[1,1]
2(1 + au[1,1])

)

u1, (3.5)

ut = u3 −
3

2
(p+ 1)

u[1,2]

p u[1,1]

u2 +
3

2
(p+ 1)

(

u[2,2]

u[1,1]

− a u[1,2]
2

p2 u[1,1]

)

u1, (3.6)

p =
√

1 + a u[1,1],

ut = u3 − 3
u[1,2]

u[1,1]

u2 + 3
u[2,2]

u[1,1]

u1, (3.7)

ut = u3 − 3
u[1,2]

u[1,1]

u2 +
3

2

(

u[2,2]

u[1,1]

+
u[1,2]

2

u[1,1]
2

+
c u[0,1]

2

u[1,1]

)

u1, (3.8)

ut = u3 − 3
u[1,2]

u[1,1]

u2 +
3

2

(

u[2,2]

u[1,1]

+
u[1,2]

2

u[1,1]
2

+ 4a
u[0,1]

2

u[1,1]

−
(

u[1,2] + q′ u[0,1]

)2

u[1,1]

(

u[1,1] + q
)

)

u1,

(3.9)

q = a u[0,0]
2 + b u[0,0] + c, q′ = 2a u[0,0] + b,

ut = u3 − 3
u[1,2]

u[1,1]
u2+

+
3

2

(

u[2,2]

u[1,1]
+
u[1,2]

2

u[1,1]
2
− 4 u[0,1]u[1,2]
(

u[0,0] + a
)

u[1,1]

+ 4
u[0,1]

2
(

u[1,1] + b
)

(

u[0,0] + a
)2
u[1,1]

)

u1

(3.10)

ut = u3 − 3
u[1,2]

u[1,1]

u2 + 3

(

u[2,2]

u[1,1]

+ 2
u[0,2]u[1,1] − 2 u[0,1]u[1,2] + u2

[1,1]

(u[0,0] + a)u[1,1]

)

u1 (3.11)
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ut = u3 − 3
u[0,1]

u[0,0] + a
u2 + 3

(

2 u[0,1]
2

(u[0,0] + a)2
− u[0,2]

u[0,0] + a

)

u1, (3.12)

ut = u3 − 3
u[0,1]

u[0,0] + a
u2 +

3

2

(

5 u[0,1]
2

(u[0,0] + a)2
+
b− u[1,1] − 2 u[0,2]

u[0,0] + a

)

u1, (3.13)

ut = u3 −
3

2

(

au[2,2] −
(

au[1,2](1 + bu[0,0]) + bu[0,1](1 − au[0,2])
)2

ζ(1 + bu[0,0])

−b(1 − au[0,2])
2

a(1 + bu[0,0])

)

u1,

(3.14)

ζ = (1 + au[1,1])(1 + bu[0,0]) − abu2
[0,1],

ut = u3 −
3

2

(

au[2,2] −
(

au[0,0]u[1,2] + u[0,1](1 − au[0,2])
)2

ξ u[0,0]

−(1 − au[0,2])
2

au[0,0]

)

u1,

(3.15)

ξ = u[0,0](1 + au[1,1]) − au2
[0,1],

ut = u3 − 3
u[0,1]

u[0,0] + a
u2 − 3

(

u[1,1]

u[0,0] + a
− u[0,1]

2

(

u[0,0] + a
)2

)

u1+

+ 3b
(

u[0,0] + a
) (

u[0,1]u + u[0,0]u1

)

,

(3.16)

ut = u3 − 3
u[0,1]

u[0,0] + a
u2

− 3

2(u[0,0] + a)

(

b u[2,2] −
u[0,1]

2

u[0,0] + a
−
(

b u[1,2] + u[0,1]

)2

b u[1,1] + u[0,0] + a
+ u[1,1]

)

u1,
(3.17)

ut = u3 − 3
u[0,1]

u[0,0] + a
u2 −

3

2

(

u[1,1]

u[0,0] + a
− 2 u[0,1]

2

(

u[0,0] + a
)2 + b u[0,0]

)

u1, (3.18)
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ut = u3 − 3
u[0,1]

u[0,0] + a
u2 +

3

2

(

u[2,2]

b
(

u[0,0] + a
) − (u[0,2] + b+ b u[0,0])

2

b(u[0,0] + c)(u[0,0] + a)

+
(u[0,2] u[0,1] − u[1,2](u[0,0] + c) + (2 u[0,0] + c+ a)b u[0,1])

2

b η (u[0,0] + c)(u[0,0] + a)
+

+

(

η
(

u[0,0] + a
)

+ u[0,1]
2(c− a)

)

(

u[0,0] + c
) (

u[0,0] + a
)2

)

u1,

(3.19)

η = u[0,1]
2 +

(

b
(

u[0,0] + a
)

− u[1,1]

) (

u[0,0] + c
)

,

ut = u3 + 3

(

u[0,1]u[0,2] − u[0,0]u[1,2]

ξ
+
u[0,1]

u[0,0]

)

u2 + c0

√

ξ + q
√

u[0,0]

u

+
3

2







(

q(u[1,2]u[0,0] − u[0,2]u[0,1]) − u[0,1]ξ (c+ 2 a u[0,0] + 3 b
√

u[0,0] )
)2

q ξ2(ξ + q)

+
u[2,2]u[0,0]

ξ
−
(

u[0,2]u[0,0] + ξ
)2

ξu2
[0,0]

+
u[0,1]

2u[0,0] (a c− b2)

q ξ

)

u1, (3.20)

ξ = u[1,1]u[0,0] − u[0,1]
2, q = u[0,0]

(

a u[0,0] + 2b
√

u[0,0] + c
)

,

ut = u3 + 3

(

u[0,1]u[0,2] − u[0,0]u[1,2]

ξ
+
u[0,1]

u[0,0]

)

u2 + c0
(

1 + a
√

u[0,0]

)

u

+
3

2

(

u[2,2]u[0,0]

ξ
−
(

u[0,2]u[0,0] + ξ
)2

ξ u[0,0]
2

+

(

u[0,0]u[1,2] − u[0,1]u[0,2] + qu[0,1]ξ
)2

ξ2
+

c1u[0,1]
2

ξ
(

1 + a
√

u[0,0]

)2

)

u1,

q = − 2 a
√

u[0,0] + 1
(

a
√

u[0,0] + 1
)

u[0,0]

, ξ = u[1,1]u[0,0] − u[0,1]
2,

(3.21)
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ut = u3 + 3

(

u[0,1]u[0,2] − u[0,0]u[1,2]

ξ
+
u[0,1]

u[0,0]

)

u2 + c0
√

u[0,0] u+

+
3

2

(

u[0,0]u[2,2]

ξ
− (u[0,0]u[0,2] + ξ)2

ξ u[0,0]
2

+
(u[0,0]

2u[1,2] − u[0,0]u[0,1]u[0,2] − 2 ξ u[0,1])
2

ξ2 u[0,0]
2

+
c1 u[0,1]

2

ξ u[0,0]

)

u1,

ξ = u[1,1]u[0,0] − u[0,1]
2,

(3.22)

ut = u3 + 3

(

u[0,1] u[0,2] − u[0,0] u[1,2]

ξ
+
u[0,1]

u[0,0]

)

u2 + c0
(

1 + a
√

u[0,0]

)

u

+ 3

(

u[2,2]u[0,0]

ξ
−
(

2 u[0,2]u[0,0] + ξ qu[0,0] + 2 ξ
)2

4 ξ u[0,0]
2

+
1

4
ξ q2

+2
qu[0,1]

(

u[1,2]u[0,0] − u[0,1]u[0,2]

)

ξ
− 2

u[0,1]
2q

u[0,0]

)

u1,

(3.23)

ξ = u[1,1]u[0,0] − u[0,1]
2, q = − a

(

1 + a
√

u[0,0]

)√

u[0,0]

,

ut = u3 + 3

(

u[0,2]u[0,1]

ξ
− u[1,2]u[0,0]

ξ
+
u[0,1]

u[0,0]

)

u2 + c0
√

u[0,0] u

+ 3

(

u[0,0]u[2,2]

ξ
− u[0,2]

2

ξ
− 2

u[0,1]

(

u[1,2]u[0,0] − u[0,2]u[0,1]

)

ξ u[0,0]

−

−u[0,2]

u[0,0]

+ 2
u[0,1]

2

u[0,0]
2

)

u1, ξ = u[1,1]u[0,0] − u[0,1]
2.

(3.24)
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ut =u3 +
3

2

(

b u[0,1]u[0,2] − b u[1,2] (u[0,0] + a)

p (p− 1)
(

u[0,0] + a
)2 +

2 u[0,1]

p
(

u[0,0] + a
)

)

u2

+
3

2

(

b u[2,2]

(p− 1)
(

u[0,0] + a
) − b2

(

u[1,2]

(

u[0,0] + a
)

− u[0,2] u[0,1]

)2

p2 (p− 1)
(

u[0,0] + a
)4

− b u[0,2]
2

(

u[0,0] + a
)2

(p− 1)
− 2 u[0,2]

u[0,0] + a
+

4 u[0,1]
2

p2
(

u[0,0] + a
)2

+
2 b u[0,1] (p− 2)

(

u[1,2]

(

u[0,0] + a
)

− u[0,2] u[0,1]

)

(

u[0,0] + a
)3

(p− 1) p2

)

u1,

(3.25)

p =

√

√

√

√1 + b
u[1,1]

(

u[0,0] + a
)

− u[0,1]
2

(

u[0,0] + a
)2 .

Everywhere in formulas (3.1)–(3.25) a, b, c, ci are arbitrary constants.
Comment. It follows from the zeroth condition of integrability (2.5) that f2 is

the total derivative of another function:

f2 =
3

2
Dx lnh, (3.26)

where ordh 6 1 because ord f2 6 2. This implies

ρ0 = −1

2
Dx lnh, θ0 = −1

2
Dt lnh. (3.27)

The direct computation provides that any second order conserved density ρ is the
second power polynomial of u2:

ρ = c1h u[2,2] + h1u
2
[1,2] + h2u

2
[0,2] + h3u[1,2]u[0,2] + p u[1,2] + q u[0,2] + r, (3.28)

where c1 is a constant, hi, p, q and r are some fuctions of the first order. Using (3.26)
and (2.4) one can find that

ρ1 =
1

4
(Dx lnh)2 − 1

3
f1 +

1

3
Dxf2.

Comparing ρ1 and (3.28) one concludes that f1 takes the following form:

f1 = c1 h u[2,2] + f4 u
2
[1,2] + f5 u[1,2] u[0,2] + f6 u

2
[0,2] + f7 u[1,2] + f8 u[0,2] + f9. (3.29)

Further integrability conditions have proved to be very cumbersome and investiga-
tion of them have been performed by a computer. That is why we can not present
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this analysis in the paper. Note that the case ord f0 = 2 is extremely difficult
for analysis and we have not been able to perform it. (Example of a system with
ord f0 = 2 is given in Appendix).

Remark 1. Equations (3.1) and (3.2) differ from (1.1) by a dilatation of u;
equations (3.3) – (3.7) have been presented in [6]. Equations (3.14) and (3.15)
have been presented in [7] in a different form.

Remark 2. Equation (3.8) with c = 0 coincides with (3.5) if a = 0 in it.
Remark 3. Equation (3.9) is reduced to (3.5) when a = b = 0 and it is reduced

to (3.4) when a = b = c = 0.
Remark 4. Some equations can be obtained as limit cases of other equations:

(a) equation (3.5) is reduced to (3.4) when a→ ∞;
(b) equation (3.11) is reduced to (3.7) when a→ ∞;
(c) equation (3.10) with b = ca2/4 is reduced to (3.8) when a→ ∞;
(d) equation (3.14) is reduced to (3.15) when b→ ∞;
(e) equation (3.17) with b = ca is reduced to (3.3) when a→ ∞;
(f) equation (3.21) with c1 = c′1a

2, c0 = c′0/a is reduced to (3.22) when a→ ∞;
(g) equation (3.23) is reduced to (3.24) when a→ ∞;
(h) equation (3.25) is reduced to (3.12) when b→ 0, p→ −1;
(i) equation (3.25) with a = 0 can be reduced to (3.24) when b→ 0, p→ 1;
(j) equation (3.25) with a 6= 0 and b → 0, p → 1 can be reduced to (3.11) by the
following point transformation u = 2v

√
−a/(1 + v[0,0]).

Remark 5. If one sets c1 = 0 in (3.22), then, for new functions v = u/|u|, r = |u|,
a triangular system is obtained where v satisfies the independent equation (11) from
[5] with a = 0.

Remark 6. If one sets a = 0 in (3.25), then, for new functions v = u/|u|, r = |u|,
a triangular system is obtained where v satisfies equation (14) from [5].

4 Differential substitutions and Bäcklund

transformations

To prove the integrability of a new equation one ought to find a Lax representation
or a zero curvature representation. Also, there are two other ways of proving it,
namely (i) to find a Miura-type transformation between the new equation and an
equation known to be integrable and (ii) to find an auto-Backlund transformation
for the new equation.

A first order differential substitution

u = h1v1 + h0v. (4.1)

generalizes to the Miura transformation. Here smooth functions h0 and h1 depend
on v[0,0], v[0,1] and v[1,1]. The function u is supposed to be a solution of some equation
from the list, and v is supposed to be a solution of an equation of the type (1.6)

vt = v3 +Dx(g2)v2 + g1v1 + g0v (4.2)
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with unknown smooth functions gi(v[j,k]), where ord g1 6 2 and ord g0 6 1. The
form of the coefficient Dx(g2) with ord g2 6 1 is necessary for integrability.

It is possible that higher order differential substitutions also exist. But com-
putations of the higher order differential substitutions are extremely cumbersome,
therefore only the first order differential substitutions have been computed.

Consider a general case of equation (1.6). By differentiating equation (4.1) with
respect to t one obtains the equation

u3 + f2u2 + f1u1 + f0u0 = Dt(h1v1 + h0v), (4.3)

where the right-hand side is differentiated according to (4.2). Hence, the right-hand
side of (4.3) depends on vk and v[i,j] only. The left-hand side of (4.3) depends on
uk and u[i,j]. Using the differential consequences of (4.1)

u = h1v1 + h0v, u1 = Dx(h1v1 + h0v), u2 = D2
x(h1v1 + h0v), . . .

one can evaluate their scalar products by pairs and express all variables u[i,j] in terms
of v[k,l]. Thus, one can exclude the variables uk and u[i,j] from (4.3). Then, it ought
to split the obtained equation with respect to vk, k = 0, 1, . . . and then additional
splitting is possible with respect to v[i,j]. In this way one obtains an overdetermined
partial differential system for hi and gk. If a solution of this system exists it provides
a diffrential substitution and a corresponding equation (4.2).

The first order auto-Bäcklund transformation takes the following form

u1 = h1v1 + h2v + h3u, (4.4)

where both u and v satisfy (1.6), smooth functions hi depend on u[0,0], v[i,j], 0 6

i 6 j 6 1 and wi = (u,vi), i > 0. An algorithm for computation the auto-Bäcklund
transformations is the same as for the diffrential substitutions. There is only one
important difference between Bäcklund transformations and diffrential substitutions.
A Bäcklund transformation must depend on a “spectral” parameter.

Differential substitutions. If u satisfies (3.2) with c = −1 and v satisfies (3.16),
then

u =
v1√

v[0,0] + a
+
√
−b
√

v[0,0] + av. (4.5)

If u satisfies (3.1) with c = −1 and v satisfies (3.18) then

u =
v1√

v[0,0] + a
+
√
bv. (4.6)

If u satisfies (3.13) with a = −k, b = −c1 k and v satisfies (3.21), then

u =
√
k

(

a v[0,0] +
√
v[0,0]

v[0,1]

v1 − av

)

. (4.7)
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where a is the parameter from (3.21).
If u satisfies (3.12) with a = −k and v satisfies (3.23),then

u =
√
k

(

a v[0,0] +
√
v[0,0]

v[0,1]

v1 − av

)

, (4.8)

where a is the parameter from (3.23).

Bäcklund transformations. In all formulas below, µ is an arbitrary parameter.
Equation (3.1) has the following auto-Bäcklund transformation:

ux + vx =
1

2
(u − v)

√

µ− c(u + v)2. (4.9)

The auto-Bäcklund transformation for equation (3.2) is:

ux+vx = µ(u−v)−µ +
√

µ2 − (c/2)(u + v)2

(u + v)2

(

(u[0,0]+w0)u−(v[0,0]+w0)v
)

. (4.10)

Equation (3.8) has the following auto-Bäcklund transformation:

ux =

(

g
√
v[1,1]

− 1

)

(

vx − 2
(u + v,vx)

(u + v)2
(u + v)

)

, (4.11)

where

g =
1

2

√

µ (u + v)2 − c (u[0,0] − v[0,0])2.

The auto-Bäcklund transformation for equation (3.9) takes the following form:

u1 = −p (f 2 + 2fη + 1)

q (f 2 − 1)

(

v1 −
2(u + v,v1)

(u + v)2
(u + v)

)

, (4.12)

where

η2 = 1 + q2/v[1,1], p
2 = au2

[0,0] + bu[0,0] + c, q2 = av2
[0,0] + bv[0,0] + c,

f 2 =
a(u[0,0] − v[0,0])

2 − (p+ q)2 − µ (u + v)2

a(u[0,0] − v[0,0])2 − (p− q)2 − µ (u + v)2
.

The auto-Bäcklund transformation for equation (3.10) may be written in the
following form:

u1 = −
(p2

q2
− p η

q
√
v[1,1]

)

(

v1 −
2(u + v,v1)

(u + v)2
(u + v)

)

, (4.13)
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where p2 = u[0,0] + a, q2 = v[0,0] + a, η2 = µ(u + v)2 − b(u[0,0] − v[0,0])
2.

Equation (3.11) has the auto-Bäcklund transformation of the following form:

u1 =

(

p

q
+

µ η

qv[1,1]

)(

2
(u + v,v1)

(u + v)2
(u + v) − v1

)

, (4.14)

where p = u[0,0] + a, q = v[0,0] + a, η = 2v[0,1](w0 − a) + v[0,1]p− w1q.
The auto-Bäcklund transformation for equation (3.12) is written:

u1 =
p

q
v1 + p

µ(w1q − v[0,1]p) − aq(a− pq + w0)

µ q2(a− p q + w0)
(u − v) , (4.15)

where p2 = u[0,0] + a, q2 = v[0,0] + a.
The auto-Bäcklund transformation for equation (3.13) takes the following form:

u1 =
p

q
v1 + p

q w1 − p v[0,1] + q η

(w0 − p q + a)q2
(u − v) , (4.16)

where p2 = u[0,0] + a, q2 = v[0,0] + a, η2 = µ p q(w0 − p q + a) − b (q − p)2.
Equation (3.17) has the auto-Bäcklund transformation of the following form

u1 =
p

q
v1 + p

b µ(w1 − v[0,1]) + η

q (w0 − p q + a)
(v − u) , (4.17)

where η2 = µ
(

b v[1,1] + q2
)(

b µ(u[0,0] + v[0,0] − 2w0) − 2(w0 − p q + a)
)

, p2 = u[0,0] +
a, q2 = v[0,0] + a.

The auto-Bäcklund transformation for equation (3.14) takes the following form

u1 − v1 =

(

fη

1 + bv[0,0]

− v[0,1]
b+ µ(bw0 − 1)

1 + bv[0,0]

+ µw1

)

(u + v), (4.18)

where

f 2 = bµ2(u[0,0]v[0,0] − w2
0) − b(1 + 2µw0) + 2µ+ µ2(u + v)2,

a η2 = (1 + av[1,1])(1 + bv[0,0]) − abv2
[0,1].

The auto-Bäcklund transformation for equation (3.15) can be written as

u1 − v1 =

(

fη

v[0,0]

− v[0,1]
1 + µw0

v[0,0]

+ µw1

)

(u + v), (4.19)

where

f 2 = µ2(u[0,0]v[0,0] − w2
0) − 1 − 2µw0, a η2 = (1 + av[1,1])v[0,0] − av2

[0,1].

Remark 7. The auto-Bäcklund transformations (4.9), (4.10), (4.18) and (4.19)
have been found in [7]. The auto-Bäcklund transformations for equations (3.3)–
(3.7) have been found in [6].
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Remark 8. It can be verified that auto-Bäcklund transformation (4.14) is reduced
to auto-Bäcklund transformation (54) from [6] in accordance with Remark 4b.

Remark 9. It is obvious that the auto-Bäcklund transformation (4.18) is reduced
to (4.19) when b→ ∞ in accordance with Remark 4d.

Corollaries.

1. It is clear from Remark 1 that integrability of equations (3.1)–(3.7) has been
proved in the papers referred to above.
2. It follows from BTs (4.11)–(4.19) that equations (3.8), (3.9), (3.10), (3.11), (3.12),
(3.13), (3.14), (3.15), and (3.17) are integrable.
3. It follows from differential substitutions (4.5)–(4.8) that equations (3.16), (3.18),
(3.21) and (3.23) are connected with the integrable equations listed in the previous
points 1,2, hence equations (3.16), (3.18), (3.21) and (3.23) are integrable too.

Thus, integrability of the five equations (3.19), (3.20), (3.22), (3.24) and (3.25)
is not proved. These equations are cumbersome and their auto-Bäcklund trans-
formations are even more cumbersome. Moreover, the benefit of these equations
for applications is unclear, that is why we have not computed these five Bäcklund
transformations.

Conclusion

For each equation from the list, eight integrability conditions have been verified. It
was found that each equation possesses at least five higher order conserved densities.
This is a weighty argument for exact integrability of all equations.

The obtained equations may be useful in future investigations of vectorial inte-
grable equations, such as, for example, the hyperbolic equations.
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Appendix. An example of an equation with ord f0 = 2

The following equation satisfies six conditions of integrability:

ut = u3 +
3

2
(ln f)xu2 + 3

(

u[0,1]f
2
x

fg2
− ϕfx

fg
−

4(b+ 1)u3
[0,1]

3bg2u[0,0]

+
4u3

[0,1]h
2

3b2g4u3
[0,0]

−

− u[0,1]h

bu2
[0,0]fg

2

[

ϕ− u[0,1](3g + 4)fx

2g
−

(bg2 + 1)fu2
[0,1]

3bg2u[0,0]

]

+ c

)

u+

+
3

2a

(

u[2,2]f − ϕ2

u[0,0]f
−

(bu[0,0]g(ffxu[0,0]u[0,1] − ϕg) + u2
[0,1]fh)

2

b3u3
[0,0]fg

6

)

u1.
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Here g = u[0,0]f − 1, h = b(u2
[0,0]f

2 − 1)− 1, ϕ = u[0,2]f + a, a, b and c are arbitrary
constants. Besides, f is a root of the following cubic equation:

(

(u2
[0,1] − u[0,0]u[1,1])f + a u[0,0]

)

(u[0,0]f − 1)2 + u2
[0,1]b

−1f = 0.

This equation contains the second order function f0 (because ordϕ = 2). There are
other such terribly cumbersome examples. That is why the complete classification
of integrable equations (1.6) has not been obtained until now.
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