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Abstract

We use a method inspired by the Jacobi last multiplier [M.C. Nucci, Jacobi last
multiplier and Lie symmetries: a novel application of an old relationship, J. Nonlinear

Math. Phys. 12, 284-304 (2005)] in order to find Lie symmetries of a Painlevé-type
equation without Lie point symmetries.

1 Introduction

Lie group analysis is the most powerful tool to find the general solution of ordinary dif-
ferential equations (ODEs). However it is useless when applied to systems of n first-order
equations because they admit an infinite number of symmetries, and there is no systematic
way to find even a one-dimensional Lie symmetry algebra, apart from trivial groups like
translations in time admitted by autonomous systems. One may try to derive an admit-
ted n-dimensional solvable Lie symmetry algebra by making an ansatz on the form of its
generators but when successful (rarely) it is just a lucky guess. However, in [23] we have
remarked that any system of n first-order equations could be transformed into an equiv-
alent system where at least one of the equations is of second-order. Then the admitted
Lie symmetry algebra is no longer infinite-dimensional, and nontrivial symmetries of the
original system could be retrieved [23]. This idea has been successfully applied in several
instances ([23], [30], [24], [25], [15], [26], [4], [7], [8]). Also in [18] we have shown that first
integrals can be obtained by Lie group analysis even if the system under study does not
come from a variational problem, i.e., without making use of Noether’s theorem [21]. If
we consider a system of first-order equations and, by eliminating one of the dependent
variables, derive an equivalent system which has one equation of second-order, then Lie
group analysis applied to that equivalent system yields the first integral(s) of the origi-
nal system which do(es) not contain the eliminated dependent variable. Of course this
requires that such first integrals exist. The procedure should be repeated as many times
as there are dependent variables in order to find all such first integrals. The first inte-
grals correspond to the characteristic curves of determining equations of parabolic type
which are constructed by the method of Lie group analysis. We have used this method
for finding first integrals in [25] and [15]. Unfortunately the reduction method is not the
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ultimate method for finding symmetries. Therefore in [27] we devised another method
which employs the Jacobi last multiplier ([10], [11], [12], [13], [16], [17], [1], [31]) in order
to transform any system of n first-order equations into an equivalent system of n equations
where one of the equations is of second order, namely the order of the system is raised by
one. In [27], among other examples, the method was successfully applied to the following
second-order equation [14][Ch. 6, 542ff]:

y′′ =
y′2

y
+ f ′(x)yp+1 + pf(x)y′yp, (1.1)

where p 6= 0 is a real constant and f 6= 0 is an arbitrary function of the independent
variable x. This equation does not possess Lie point symmetries for general f(x) and
yet is trivially integrable [6]. Our method led to an equivalent system of two equations,
one of first order and the other of second order, which admits enough Lie symmetries in
order to integrate it by quadrature. Indeed this method finds Lie symmetries of system of
first-order equations without any guesswork.
In [19] and [20] Muriel and Romero introduced the so-called λ-symmetries which were
included into telescopic symmetries by Pucci and Saccomandi [29]. Again as in the case
of Lie point symmetries of first-order equations the real problem is how to find solutions
of the determining equations. This has been clearly stated by Pucci and Saccomandi
themselves on page 6154 “This, obviously, does not mean that we are always able to solve
the determining equations of telescopic vector fields for which an ordinary differential
equation is a relative invariant, but this situation occurs also for classical Lie symmetries
of differential equations (for example, the simple case of first-order ordinary differential
equations).”
In [3] and [5] Cicogna, Gaeta and Morando provided a geometrical characterization of
λ-symmetries for both ordinary and partial differential equations. They did not address
the problem of solving the determining equation in either paper. In a recent paper [2]
Ferraioli showed that λ-symmetries correspond to a special type of nonlocal symmetries
and in a final remark observed that also telescopic symmetries can be recovered by nonlocal
symmetries. Yet there is a lot of guesswork involved in order to find nonlocal symmetries,
and on page 5485, Remark 2, he wrote “However, we note that the problem of determining
the general solution of (11)1, should be at least as difficult as solving the given ODE.
Therefore in practice it could not be so easy to determine such correspondence (see example
3)”.
In this paper we give another exemplification of our method as described in [27] by applying
it to example 3 in [2]. It is a second-order Painlevé-type equation [28], which do not
admit any Lie point symmetries and is a particular case of Painlevé XIV equation [9].
Our method transforms this equation into a system of three equations, two of first order
and one of second order. This system admits a three-dimensional solvable Lie symmetry
algebra and therefore can be reduced to one first-order equation which happens to be a
Riccati equation and can be easily integrated in terms of Airy functions. Thus we recover
through Lie symmetry a first integral admitted by the original equation, although it is not
the same known first integral.

1It is a linear first-order partial differential equation.
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2 A Painlevé-type equation

Let us consider the following Painlevé-type second-order ordinary differential equation
[28], [9], [2]:

w′′ =
w′2

w
+

(

w +
t

w

)

w′ − 1, (2.1)

which is a particular case2 of the Painlevé XIV equation [9]:

w′′ =
w′2

w
+

(

Q(t)w +
S(t)

w

)

w′ + Q′(t)w2 − S′(t), (2.2)

which it is known to possess a first integral of the Riccati type, i.e.:

w′ = Q(t)w2 + kw − S(t), (2.3)

where k is an arbitrary constant. Equation (2.1) does not possess any Lie point symme-
tries3. We can trivially put equation (2.1) into the form of an autonomous system of three
first-order ODEs, i.e.:

w′

1 = w2 ≡ W1,

w′

2 =
w2

2

w1

+

(

w1 +
w3

w1

)

w2 − 1 ≡ W2,

w′

3 = 1 ≡ W3,

(2.4)

where w1 = w,w2 = w′, w3 = t. If we use the method introduced in [23] to raise the order
of at least one of the equations of this system, no nontrivial Lie symmetry can be found.
We then consider the equation for the Jacobi last multiplier [11, 12, 13, 31], i.e.:

d

dt
(log M) +

3
∑

i=1

∂(Wi)

∂wi

= 0, (2.5)

and raise the order accordingly4, namely by introducing a new dependent variable r3 =
r3(t) such that

a
d

dt
(log r3) +

2w2

w1

+

(

w1 +
w3

w1

)

= 0, (2.6)

with a an arbitrary constant. This yields the substitution:

w3 = −a
r′3
r3

w1 − w2
1 − 2w2, (2.7)

and system (2.4) is transformed into the following system of two first-order ODEs and one
second-order ODE:

w′

1 = w2

2It corresponds to assume Q(t) = 1 and S(t) = t.
3Neither equation (2.2) does for arbitrary Q(t), S(t).
4This is precisely the method introduced in [27].
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w′

2 = −
aw2r

′

3

r3

− 1 −
w2

2

w1

r′′3 =
r′23
r3

+
w2r

′

3

w1

−
2r3w2

a
+

r3

aw1

+
2r3w

2
2

aw2
1

. (2.8)

When Lie group analysis of this system is performed5, a linear partial differential equation
of parabolic structure is obtained, as expected [18]. Its characteristic curve is given by
w2r

a
3 . Consequently we introduce a new dependent variable r2 = r2(t) such that w2 =

r2/r
a
3 . Then system (2.8) is transformed into the following system6:

w′

1 = r2
3r2,

r′2 = −
r4
3r

2
2 + w1

r2
3
w1

,

r′′3 =
−2r6

3r
2
2 + 2r4

3r2w
2
1 + 2r3

3r
′

3r2w1 − r2
3w1 + 2r′23 w2

1

2r3w
2
1

, (2.9)

which admits a three-dimensional solvable Lie point symmetry algebra L3 generated by
the following operators:

Γ1 = ∂t, Γ2 =
1

2w1

(r3∂r3
− 2r2∂r2

+ 2w1∂w1
) , Γ3 = −

1

2
r3∂r3

+ r2∂r2
. (2.10)

This implies that we can reduce system (2.9) to a single first-order ODE. Indeed the
differential invariants of order ≤ 1 of the algebra L3, i.e.7:

ũ = −
−2r′3w1 + r3

3r2

2r3w1

, ỹ = r2r
2
3 (2.11)

yield the following equation of first order:

dũ

dỹ
=

ỹ

2ỹũ − 1
(2.12)

which can be easily integrated in terms of Airy functions8, i.e.:

ũAiryAi(ũ2 − ỹ) + AiryAi(1, ũ2 − ỹ)

ũAiryBi(ũ2 − ỹ) + AiryBi(1, ũ2 − ỹ)
= a1, (2.13)

with a1 an arbitrary constant. We notice that this equation suggests the change of inde-
pendent variable Ỹ = ũ2 − ỹ into equation (2.12) which thus transforms into the following
Riccati equation:

dũ

dỸ
= ũ2 − Ỹ , (2.14)

5Here and throughout this paper, we use our own interactive REDUCE program [22].
6At this stage, we have posed a = −2, but our choice is absolutely arbitrary [27], and, of course, does

not affect the Lie symmetries admitted by the system.
7In the original variables wi, (i = 1, 2, 3):

ũ =
w2

1 + w2 + w3

2w1

, ỹ = w2

8We use MAPLE 9.
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the general solution of which is indeed given by

ũ = −
a1AiryAi(1, Ỹ ) + AiryBi(1, Ỹ )

a1AiryAi(Ỹ ) + AiryBi(Ỹ )
. (2.15)

It is remarkable that the Riccati equation (2.14) is quite similar to the known first integral
of Riccati type (2.3), i.e.

w′ = w2 + kw − t, (2.16)

although the dependent and independent variables are not the same.
Finally, in the original variables wi, (i = 1, 2, 3), formula (2.13) becomes:

(w2
1 + w2 + w3)AiryAi (ξ) + 2w1AiryAi (1, ξ)

(w2
1

+ w2 + w3)AiryBi (ξ) + 2w1AiryBi (1, ξ)
= a1, (2.17)

where

ξ =
w4

1 + 2(w3 − w2)w
2
1 + (w3 + w2)

2

4w2
1

, (2.18)

namely:

(w2 + w′ + t)AiryAi (ξ) + 2wAiryAi (1, ξ)

(w2 + w′ + t)AiryBi (ξ) + 2wAiryBi (1, ξ)
= a1, (2.19)

where

ξ =
w4 + 2(t − w′)w2 + (t + w′)2

4w2
. (2.20)

3 Final remarks

There are many equations which apparently do not possess any Lie point symmetry. Yet
they can be solved in terms of known functions, or a first integral is known. Equations (1.1)
and (2.1) are such equations. One could write them as systems of first-order equations,
which are known to possess an infinite number of elusive Lie point symmetries. The Jacobi
last multiplier suggests a transformation which transforms a system of first-order equations
into another system with at least one equation of second order. Thus, the admitted Lie
symmetry algebra is finite, and hopefully, nontrivial.
The successful application of our method to equation (2.1) does not imply that we have
found the ultimate method. Indeed more work shall be dedicated to this subject and we
welcome any method which can shed light on the apparent ”lack” of symmetries in so
many equations of relevance in Physics.
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