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Abstract

We classify quadratic Poisson structures on so∗(4) and e∗(3), which have the same fo-
liations by symplectic leaves as canonical Lie-Poisson tensors. The separated variables
for some of the corresponding bi-integrable systems are constructed.

1 Introduction

Let M be a Poisson manifold endowed with a bivector P0 fulfilling the Jacobi condition

[P0, P0] = 0

with respect to the Schouten bracket [., .] [15].
A bi-Hamiltonian manifold M is a smooth (or complex) manifold endowed with two

compatible bivectors P0, P1 such that

[P0, P0] = [P0, P1] = [P1, P1] = 0. (1.1)

Classification of compatible Poisson bivectors and the corresponding bi-integrable systems
with integrals of motion

{Hi,Hj}0 = {Hi,Hj}1 = 0, i, j = 1, . . . , n,

is nowadays a subject of intense research [3, 13, 14]. Of course, direct solution of the
equations (1.1) is generally quite difficult. We can try to lighten this work by using
properties of the given Poisson manifold (M,P0).

Bivectors P1 fulfilling the compatibility condition [P0, P1] = 0 are called 2-cocycles in
the Poisson-Lichnerowicz cohomology defined by P0 on M [7]. The Lie derivative of P0

along any vector field X on M

P1 = LX(P0) (1.2)

is 2-coboundary, more precisely it is 2-cocycle associated with the Liouville vector field X.
For such bivectors P1 the system of equations (1.1) is reduced to the single equation

[LX(P0),LX(P0)] = 0, ⇔ [L2
X(P0), P0] = 0. (1.3)
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The second Poisson-Lichnerowicz cohomology group H2
P0

(M) of M is precisely the set
of bivectors P1 solving [P0, P1] = 0 modulo the solutions of the form P1 = LX(P0). We
can interpret H2

P0
(M) as the space of infinitesimal deformations of the Poisson structure

modulo trivial deformations. For regular Poisson manifolds this cohomology reflects the
topology of the leaf space and the variation in the symplectic structure as one passes from
one leaf to another [15].

The aim of this paper is to show some particular solutions of the equation (1.3) and to
discuss separation of variables for the corresponding bi-integrable system on so∗(4).

2 The Lie-Poisson bivectors on so
∗(4).

Let us consider the semisimple Lie algebra so(4). The dual space M = so∗(4) is a Poisson
manifold [15]. Since M = so∗(4) = so∗(3) ⊕ so∗(3), we can introduce the following
coordinates z = (s, t) on M , where s = (s1, s2, s3) and t = (t1, t2, t3) are two vectors in
R

3. As usual we identify ( R
3,∧) and (so(3), [., .]) by using the well known isomorphism

of the Lie algebras

z = (z1, z2, z3) → zM =

(
0 z3 −z2

−z3 0 z1

z2 −z1 0

)
, (2.1)

where ∧ is the cross product in R3 and [., .] is the matrix commutator in so(3). In these
coordinates the canonical Poisson bivector on so∗(4) is equal to

P0 =

(
sM 0
0 tM

)
. (2.2)

The generic symplectic leaves are the level sets of two globally defined Casimir functions

C1 = 〈s, s〉 ≡ |s|2 ≡
3∑

i=1

s2
i , C2 = 〈t, t〉, P0dC1,2 = 0. (2.3)

In the paper [11] the overdetermined system of equations (1.1) on so∗(4) has been
directly solved in the class of the linear Lie-Poisson bivectors P1, i.e using the anzats
P

ij
1 =

∑
a

ij
mzm for the components of the second bivector.

According to [11] the Frahm-Schottky, Steklov and Poincaré systems are bi-integrable
systems and the corresponding second bivectors P1 = LX(P0) are generated by the Liou-
ville vector fields Xj =

∑
Xi

j∂i with the following components

X1 = (a1t1, a2t2, a3t3, a1s1, a2s2, a3s3),

X2 = (X1, aX2)

X3 = (0, 0, at3, 0, 0, −as3) ,

a, a1, a2, a3 ∈ C,

where

X1 = (a1t1 +
a1(a2

2
+a2

3
)

a2a3
s1, a2t2 +

a2(a2

1
+a2

3
)

a1a3
s2, a3t3 +

a3(a2

1
+a2

2
)

a1a2
s3),

X2 = (−a2a3s1 −
a2

2
+a2

3

2 t1, −a1a3s2 −
a2

1
+a2

3

2 t2, −a1a2s3 −
a2

1
+a2

2

2 t3),
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The remaining four solutions of the system (1.1) are associated with the following vector
fields

X4 = ((a3 + a2)s1, (a3 + a1)s2, (a1 + a2)s3, (b2 + b3)t1, (b1 + b3)t2, (b1 + b2)t3)

X5 = (−a
2s1 + b1t1,−

a
2s2 + b2t2, b3t3, b1s1 −

a
2 t1, b2s2 −

a
2 t2, (b3 − a)s3 − at3)

X6 = (a2s1, a1s2, (a1 + a2)s3 − bt3, ct1, ct2, 0)

X7 = (as1, as2, 0, c1s3 + bt1, c2s3 + bt2, 0),

where b1 = ±b2 for the vector field X5. The corresponding bi-integrable systems with
quadratic integrals of motion have been completely described in [11].

We have to keep in the mind that the vector fields Xk and the corresponding bivectors
P1 = LXk

P0 are defined up to canonical transformations of the vectors s and t, which
preserve the form of the canonical bivector P0 (2.2) [6].

3 Quadratic Poisson bivectors on so
∗(4) and e

∗(3)

After the linear Poisson structures, it is natural to look at quadratic structures. Substitut-
ing the following anzats for the components of the Liouville vector fields Xm =

∑6
i≥j a

ij
mzizj

into (1.3) one gets a highly overdetermined system of quadratic equations on the 126 com-
plex coefficients a

ij
m. Unfortunately, we cannot get and classify all the solutions of this

system even by using modern computers and modern software.
So, in this section we will suppose that

P1dC1,2 = 0. (3.1)

It means that symplectic leaf of P1 are contained in those of P0. In general, the bivector
P1 could have some more Casimirs, so that their symplectic leaf could be smaller. For
example, if X = 0, then equation (3.1) is true, but the symplectic foliations of P0 and P1

are different. However in this case P1 = 0 is not a linear or a quadratic bivector on so∗(4).

Proposition 1. For all the quadratic bivectors P1 = LX(P0) on so∗(4) the restriction
(3.1) leads to quadratic Poisson structures having the same foliation by symplectic leaves
as P0.

Below we will prove this Proposition by using so-called Darboux-Nijenhuis variables on
so∗(4).

The additional restriction on P1 = LX(P0) is a linear equation with respect to X, which
allows us to get solutions of the following system of equations

LX(P0)dC1,2 = −P0dX(C1,2) = 0 and [LX(P0),LX(P0)] = 0 (3.2)

Any solution X of this system (3.2) gives rise to a Poisson bivector P1 = LX(P0) fulfilling
equations (1.1) and (3.1).

We solved equations (3.2) in the class of quadratic vector fields X =
∑

Xm∂m with
the components Xm =

∑
i≥j a

ij
mzizj by using one of the modern computer algebra system

and got the following three solutions.
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Proposition 2. Let a and b are numerical vectors and α, β are arbitrary parameters. The
vector field X = (X1,X2) with components

X1 = α
(
s ∧ (a ∧ s)

)
+ β〈b, t〉(s ∧ a), X2 = α

(
t ∧ (b ∧ t)

)

generates a first bivector fulfilling equations (1.1) and (3.1)

P
(1)
1 =

(
2α〈a, s〉sM β

[
(a ∧ s) ⊗ (b ∧ t)

]

−β
[
(a ∧ s) ⊗ (b ∧ t)

]T
2α〈b, t〉tM

)
. (3.3)

Using orthogonal transformations of the vectors

s → s′ = U1s, and t → t′ = U2t (3.4)

where U1,2 are orthogonal matrices, we can always put

a = (0, 0, a3), b = (0, 0, b3).

Using scaling transformation

P
(1)
1 → λP

(1)
1 , λ ∈ R , (3.5)

we can put α = 1 or β = 1.

Proposition 3. Let a and b are two complex vectors, such that

〈a, b〉 = 〈b, b〉 = 0,

where 〈x, y〉 =
∑3

i=1 xiyi is the inner product of two vectors. The vector field X = (X1,X2)
with components

X1 = 1
2 s ∧ (a ∧ s),

X2 = −1
2 t ∧ (a ∧ t) + i|a|−1〈a, s〉(a ∧ t) − i〈b, s〉(b ∧ t),

generates a second bivector fulfilling equations (1.1) and (3.1)

P
(2)
1 =

(
〈a,s〉sM −i

[
|a|−1(a∧s)⊗(a∧t)−(b∧s)⊗(b∧t)

]

i
[
|a|−1(a∧s)⊗(a∧t)−(b∧s)⊗(b∧t)

]T

−〈a,t〉tM

)
, (3.6)

here |a| =
√

a2
1 + a2

2 + a2
3 and (x ⊗ y)ij = xiyj.

Using orthogonal transformations (3.4) and scaling (3.5) we can always put

a = (0, 0, 1), b = (b1, ib1, 0) .

Proposition 4. Let a, b and c are three complex vectors, such that

〈a, b〉 = 〈a, c〉 = 〈b, b〉 = 〈c, c〉 = 0, b ∧ c 6= 0.
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The vector field X = (X1,X2) with components

X1 = 1
2 s ∧ (a ∧ s),

X2 = 1
2 t ∧ (a ∧ t) − i|a|−1〈a, s〉(a ∧ t) − i〈b, s〉(c ∧ t),

generates a third bivector fulfilling equations (1.1) and (3.1)

P
(3)
1 =

(
〈a,s〉sM i

[
|a|−1(a∧s)⊗(a∧t)+(b∧s)⊗(c∧t)

]

−i
[
|a|−1(a∧s)⊗(a∧t)+(b∧s)⊗(c∧t)

]T

〈a,t〉tM

)
. (3.7)

Using orthogonal transformations (3.4) and scaling (3.5) we can always put

a = (0, 0, 1), b = (b1, ib1, 0), c = (c1,−ic1, 0) .

Let us consider the canonical bivector on M = e∗(3)

P0 =

(
0 xM

xM JM

)
(3.8)

and the corresponding Casimir functions

C1 = |x|2 = x2
1 + x2

2 + x2
3, C2 = 〈x, J〉 = x1J1 + x2J2 + x3J3.

On M = e∗(3) the system of equations (3.2) has only one nontrivial solution in the class
of quadratic vector fields X =

∑
Xm∂m with the components Xm =

∑
i≥j a

ij
mzizj , where

z = (x1, x2, x3, J1, J2, J3).

Proposition 5. If a and b are two vectors, such that |a| = 0, and α is arbitrary parameter,
then the following bivector on M = e∗(3)

P
(4)
1 =




〈a,x〉, (x∧J)⊗a+〈a,J〉xM + 1

2
( 1

α
+α〈a,b〉)

(
x⊗x−|x|2

)
+α(b∧x)⊗(a∧x)

∗, 〈a,J〉JM +〈b,x〉xM+ 1

2
( 1

α
+α〈a,b〉)(x∧J)M−α

(
(a∧x)∧(b∧J)

)
M


 (3.9)

satisfies equations (1.1) and (3.1).

This bivector P
(4)
1 is a Lie derivative of P0. For the brevity we omit the explicit

expression for the corresponding Liouville vector field X.

In the next Section we prove that the Poisson bivectors P
(m)
1 have a common symplectic

foliation with P0 and that the Poisson bivectors P
(2)
1 and P

(3)
1 are equivalent.

4 The Darboux-Nijenhuis variables

Let us consider a bi-hamiltonian manifold M with the non degenerate Poisson bivectors
P0 and P1. By definition a set of local coordinates (qi, pi) on M is called a set of Darboux-
Nijenhuis coordinates if they are canonical with respect to the symplectic form

ω = P−1
0 =

n∑

i=1

dpi ∧ dqi
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and put the recursion operator N = P1P
−1
0 in diagonal form,

N =

n∑

i=1

qi

(
∂

∂qi
⊗ dqi +

∂

∂pi
⊗ dpi

)
. (4.1)

This means that the only nonzero Poisson brackets are

{qi, pj}0 = δij , {qi, pj}1 = qiδij . (4.2)

According to (4.1) coordinates qi are eigenvalues of N , i.e they are roots of the minimal

polynomial A(λ) =
(
det(N − λI)

)1/2
of N .

In order to get momenta p1,2 we can directly solve equations (4.2) with respect to the
functions p1,2(s, t). The standard computation problem is that variables p1,2 are defined
up to canonical transformation pi → pi + fi(qi), where fi are arbitrary functions on qi.

In order to construct recursion operator N on the generic symplectic leaves of so∗(4)
we will use analog of the Andoyer variables [1, 2].

4.1 Analog of the Andoyer variables on so
∗(4)

Let us introduce the following analog of the Andoyer variables [1]

u1 = s3 + t3, v1 = −i ln

(
s2 + is1 + t2 + it1√

(t1 + s1)2 + (s2 + t2)2

)
(4.3)

and

u2 =
√

C1 + C2 + 2s1t1 + 2s2t2 + 2s3t3,

(4.4)

v2 = arccos

(
t3C1 − s3C2 + (t3 − s3)(s1t1 + s2t2 + s3t3)√

(t1 + s1)2 + (s2 + t2)2
√

C1C2 − (s1t1 + s2t2 + s3t3)2

)

The inverse transformation in coordinates

Ji = si + ti, xi = κ(si − ti), κ ∈ C , (4.5)

looks like

J1 =
√

u2
2 − u2

1 sin v1, J2 =
√

u2
2 − u2

1 cos v1, J3 = u1,

and

x1 =
C1

√
1−

u2
1

u2
2

+u1

√
C2−κ

2u2

2
−

C2
1

u2
2

cos v2

u2
sin v1 +

√
C2 − κ2u2

2 −
C2

1

u2

2

sin v2 cos v1 ,

x2 =
C1

√
1−

u2
1

u2
2

+u1

√
C2−κ

2u2

2
−

C2
1

u2
2

cos v2

u2
cos v1 +

√
C2 − κ2u2

2 −
C2

1

u2

2

sin v2 sin v1 ,

x3 = C1
u1

u2

2

−

√
1 −

u2

1

u2

2

√
C2 − κ2u2

2 −
C2

1

u2

2

cos v2



On bi-hamiltonian structure of some integrable systems 177

Here

C1 = x1J1 + x2J2 + x3J3 = κ(C1 − C2),

C2 = x2
1 + x2

2 + x2
2 + κ

2(J2
1 + J2

2 + J2
3 ) = 2κ

2(C1 + C2).

In (x, J)-variables (4.5) canonical bivector P0 (2.2) on so∗(4) reads as

P0 =

(
κ

2JM xM

xM JM

)
.

At κ → 0 this bivector is reduced to the canonical bivector P0 on e∗(3), which is the dual
space to the algebra e(3) of Euclidean group E(3). After contraction κ → 0 our variables
u, v (4.3-4.4) coincide with the Andoyer variables on e∗(3) [1].

The projection of the canonical bivector P0 on the generic symplectic leaves of M =
so∗(4) or M = e∗(3) in (u, v)-variables (4.3-4.4) looks like

P̂0 =




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0




Using this analog of the Andoyer variables we can easy obtain the projection P̂1 of any
bivector P1 fulfilling (3.1).

So, we can introduce symplectic form ω = P̂−1
0 , recursion operator N = P̂1P̂

−1
0 and

Darboux-Nijenhuis variables on the generic symplectic leaves of M = so∗(4) for all the

bivectors P
(m)
1 from the Section 3.

4.2 First bivector

Let us consider bivector P
(1)
1 (3.3) on M = so∗(4). Using orthogonal transformations (3.4)

we can always put

a = (0, 0, a3), b = (0, 0, b3).

In this case bivector P
(1)
1 gives rise to the following Darboux-Nijenhuis coordinates

q1 = 2αa3s3, q2 = 2αb3t3 , (4.6)

and momenta

p1 =
1

2α a3
arctan

(
s1

s2

)
−

βa3

4α2 b3
ln(a3s3 − b3t3),

p2 =
1

2α b3
arctan

(
t1

t2

)
+

β a3

4α2 b3
ln(a3s3 − b3t3),

(4.7)

which satisfy relations (4.2). It means that projections of P0 and P1 on the generic
symplectic leaves of P0 are equal to

P̂0 =




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


 , P̂

(1)
1 =




0 0 q1 0
0 0 0 q2

−q1 0 0 0
0 −q2 0 0


 (4.8)
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and, therefore, symplectic foliations of P0 and P1 coincide. On the other hand it means
that generic symplectic leaves are regular semisimple ωN manifolds [3].

4.3 Second bivector

Let us consider bivector P
(2)
1 (3.6) on M = so∗(4). Using orthogonal transformations (3.4)

and scaling (3.5) we can always put

a = (0, 0, 1), b = (b1, ib1, 0) . (4.9)

In this case the Darboux-Nijenhuis coordinates are roots of the minimal polynomial of the
recursion operator N (2)

A(λ) = (λ − q1)(λ − q2) = λ2 + (t3 − s3)λ + (t1 + it2)(s1 + is2)b
2
1 − s3t3 (4.10)

whereas the corresponding momenta are equal to

p1,2 = −i lnB(λ = q1,2), (4.11)

where

B(λ) =
(
s1 − is2 + b2

1(t1 + it2)
)
λ + t3(s1 − is2) + b2

1s3(t1 + it2) .

As above these variables satisfy relations (4.2) and, therefore, symplectic foliations of P0

and P
(2)
1 coincide.

According [5], we can easily derive relations (4.2) from the following relations

{A(λ),B(µ)}k =
i

λ − µ

(
λkB(λ)A(µ) − µkA(λ)B(µ)

)
,

(4.12)

{A(λ)A(µ)}k = {B(λ)B(µ)}k = 0, k = 0, 1.

4.4 Third bivector

Let us consider bivector P
(3)
1 (3.7) on M = so∗(4). Using orthogonal transformations (3.4)

and scaling (3.5) we can always put

a = (0, 0, 1), b = (b1, ib1, 0), c = (c1,−ic1, 0) . (4.13)

In this case the Darboux-Nijenhuis coordinates are roots of the minimal polynomial of the
corresponding recursion operators N (3)

A(λ) = (λ − q1)(λ − q2) = λ2 − (s3 + t3)λ + c1b1(t1 − it2)(s1 + is2) + s3t3 . (4.14)

The corresponding momenta are defined by

p1,2 = −i lnB(λ = q1,2), (4.15)

where

B(λ) =
(
(s1 − is2) + c1b1(t1 − it2)

)
λ + c1b1(t1 − it2)s3 − (s1 − is2)t3 .
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As above these variables satisfy relations (4.2) and, therefore, symplectic foliations of P0

and P
(3)
1 coincide.

It is easy to see that polynomial A(λ) (4.10) and polynomial A(λ) (4.14) coincide after
the following canonical transformation

t2 → −t2, t3 → −t3 , at b̂2
1 = c1b1. (4.16)

Here b̂1 is the entry of the vector b (4.9), whereas b1, c1 are the entries of the vectors b

and c (4.13). So, the corresponding Darboux-Nijenhuis variables and, therefore, bivectors

P
(2)
1 (3.6) and P

(3)
1 (3.7) are equivalent up to canonical transformations.

4.5 Fourth bivector

Let us consider bivector P
(4)
1 (3.9) on M = e∗(3). The Darboux-Nijenhuis coordinates are

roots of the following minimal polynomial of the recursion operator N

A(λ) = λ2 +
(
〈a, J〉 − 〈a ∧ b, x〉α

)
λ +

α2〈a, b〉

4

(
〈a, x〉〈b, x〉 − 〈a ∧ xv, b ∧ x〉

)

+
α

2
〈a, b〉〈a ∧ x, J〉 −

1

2α
〈a ∧ x, J〉 +

1

4α2
〈x, x〉 −

1

2
〈a, x〉〈b, x〉 (4.17)

Linear canonical transformations of e∗(3) consist of rotations

x → αUx , J → UJ , (4.18)

where α is an arbitrary parameter and U is an orthogonal matrix, and shifts

x → x , J → J + S x , (4.19)

where S is an arbitrary 3×3 skew-symmetric constant matrix [6]. Using these canonical
transformations of the vectors x and J we can always put

A(λ) = λ2 + J3λ +
1

2α
(x2J1 − x1J2) +

1

4α2
(x2

1 + x2
2 + x2

3).

However, in this case we could not directly solve equations (4.2) with respect to the
functions p1,2(x, J).

Nevertheless, projections of P0 and P
(4)
1 on the generic symplectic leaves of P0 are given

by (4.8) and, therefore, symplectic foliations of P0 and P
(4)
1 coincide.

4.6 Higher order Poisson bivectors

For all the considered above Poisson bivectors P
(m)
1 we can build the higher order Poisson

structures by using the corresponding Darboux-Nijenhuis variables. Namely, if we restrict

our bivectors P0 and P
(m)
1 on their common symplectic leaves and postulate the following

Poisson brackets between the Darboux-Nijenhuis variables

{qi, qj}k = {pi, pj}k = 0, {qi, pj} = qk
i δij ,

then after transformations (q, p) → (u, v) → (s, t) one gets k + 1 order Poisson bivectors
on so∗(4).
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As an example we present the cubic Poisson bivector

P
(3)
2 =

(
i
(
a−1〈a,s〉2−〈b,s〉〈c,t〉

)
sM , −〈a,s+t〉

[
a−1(a∧s)⊗(a∧t)+(b∧s)⊗(c∧t)

]

∗ i
(
a−1〈a,t〉2−〈b,s〉〈c,t〉

)
tM

)
, (4.20)

associated with the variables (4.14)- (4.15) and, therefore, compatible with the quadratic

tensor P
(3)
1 (3.7).

5 Bi-integrable systems

5.1 The Jacobi method

In order to get bi-integrable systems on M we can identify Darboux-Nijenhuis variables
with the separated variables and substitute all the pairs of variables qj, pj into the sepa-
rated equations

Φj(qj , pj , α1, α2) = 0, j = 1, 2, (5.1)

where Φj are functions on pj , qj and two parameters α1,2 only.
According to the Jacobi theorem if we solve the separated equations (5.1) with respect

to parameters α1,2 one gets a pair of independent integrals of motion

α1,2 = H1,2(p, q), (5.2)

as functions on the phase space M = so∗(4), which are in the bi-volution

{H1,H2}0 = {H1,H2}1 = 0 (5.3)

with respect to the Poisson brackets associated with bivectors P0 and P1 (see Propositions
1-3 in [12]).

For instance, substituting the Darboux-Nijenhuis variables pj, qj (4.6-4.7) associated

with the first bivector P
(1)
1 into the relations

Φ1 = 2q2
1 + 2V (p1) − H1 − H2, Φ2 = 2q2

2 − H1 + H2,

where V = e4iαa3p1 + e−4iαa3p1, then at β = −iα, b3 = a3 = 1 one gets

H1,2 = (q2
1 ± q2

2) + V = 4α2(s2
3 ± t23) + (t3 − s3)

s1 + is2

s1 − is2
+ (t3 − s3)

−1 s1 − is2

s1 + is2
.

Using other separated equations Φ1,2 = 0 we can get many other more complicated bi-
integrable systems on so∗(4).

5.2 Quadratic integrals of motion

In this Section we will substitute all the known pairs of integrals of motion H1,2 on so∗(4)
into the equations (5.3) and try to found bi-integrable systems associated with one of the
Poisson bivectors from Section 3. So, in this Section we will forget about the Darboux-
Nijenhuis coordinates and will start with integrals of motion listed in [2] and in [9], which
have different physical applications.

In order to describe these bi-integrable systems we prefer to use (x, J) coordinates (4.5)
as in [2, 9].
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Proposition 6. If A = −iκa, |a| = 1 and B is an arbitrary vector, then at

b ∧ c + 2ia = 0

the following integrals of motion

H1 = 〈A,B〉|J |2 − 2〈A, J〉〈B, J〉 + 〈B, J ∧ x〉,

H2 = 〈B, J〉
(
2〈A, J ∧ x〉 − κ

2〈J, J〉 + 〈x, x〉
) (5.4)

and

H̃1 = 〈A, J ∧ (B ∧ J)〉 + 〈B, J ∧ x〉

H̃2 = 〈J,B〉2
(
〈J ∧ A, J ∧ A〉 + 2〈A, J ∧ x〉 + 〈x, x〉

) (5.5)

are in bi-involution

{H1,H2}0 = {H1,H2}1 = {H̃1, H̃2}0 = {H̃1, H̃2}0 = 0 , (5.6)

with respect to the Poisson brackets associated with P0 (2.2) and P1 (3.7).

Integrable system with the cubic integrals of motion H2 (5.4) has been proposed in [4].
For this system we know the Lax matrices and the separated variables [4]. The second
integrable systems with fourth order integral of motion H̃2 (5.5) has been considered in
[8].

According to [3] the bi-involutivity of integrals of motion (5.6) is equivalent to the
existence of non-degenerate control matrices F and F̃ , such that

P1dHi = P0

2∑

j=1

Fij dHj, P1dH̃i = P0

2∑

j=1

F̃ij dH̃j , i = 1, 2. (5.7)

In our case they look like

F =




〈a, J〉
i

2κ

−iH2

2κ〈B, J〉
0


 , F̃ =




〈a, J〉

2

i

4κ〈B, J〉

−iH̃2

κ〈B, J〉

〈a, J〉

2




(5.8)

Entries of F are polynomials, whereas one of the entries of F̃ is a rational function on
so∗(4).

The eigenvalues of the matrices F and F̃ coincide to each other. They are roots of the
common characteristic polynomial

A(λ) = (λ − q1)(λ − q2) = λ2 − 〈a, J〉λ +
〈J, J〉

4
−

i〈a, x ∧ J〉

2κ
−

〈x, x〉

4κ2
. (5.9)

Of course, this polynomial coincides with the minimal polynomial A(3) of the recursion
operator N (3) after suitable canonical transformation.
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Using relations (4.12) we can reconstruct the conjugated momenta p1,2. Namely, if
numerical vector d satisfies conditions 〈a, d〉 = 〈d, d〉 = 0, the coordinates q1,2 (5.9) and
the momenta

p1,2 = −i lnB(λ = q1,2), B(λ) = {〈d, J〉,A(λ)}0 (5.10)

are the Darboux-Nijenhuis variables fulfilling equations (4.2). The variables p1,2 (5.10) are
defined up to canonical transformation pi → pi + fi(qi), where fi are arbitrary functions
on qi only.

Proposition 7. Coordinates q1,2 (5.9) and momenta p1,2 (5.10) are the separated variables

for the integrable systems with integrals of motion H1,2 (5.4) and H̃1,2 (5.5). If

b∗ = c, and d = c,

the corresponding separated equations are equal to

4κ
2〈a,B〉 q3

k + qkH1 − H2 = 2κ
2〈c, a ∧ B〉 (q2

k − C1)(q
2
k − C2) qk e−ipk

+ 2κ
2〈b, a ∧ B〉 qk eipk (5.11)

and

2κ〈a,B〉 q2
1,2 − H̃1 ∓

√
H̃2 = κ〈c, a ∧ B〉 (q2

1,2 − C1)(q
2
1,2 − C2) e−ip1,2

+ κ〈b, a ∧ B〉 eip1,2 (5.12)

The separated equations (5.11) and (5.12) are related with the parabolic and cartesian
Stäckel webs on a plane. The Stäckel matrices S and S̃ diagonalize the control matrices
F and F̃ :

F = S

(
q1 0
0 q2

)
S−1, S =

(
1 1

2iκq2 2iκq1

)
,

and

F̃ = S̃

(
q1 0
0 q2

)
S̃−1, S̃ =

(
1 1

2i

√
H̃2 −2i

√
H̃2

)
.

The right hand sides of the separated equations (5.11) and (5.12) are the generalized
Stäckel potentials.

For special values of A, B and κ the Hamiltonians (5.4) and (5.5) are real functions
[4, 8]. There is one integrable system with the complex Hamiltonians

Ĥ1 = αJ2
2 −

κ
2

α
J2

1 + x2J1 − x1J2, α = iκ ,

Ĥ2 = α(J1x2 − J2x1)(κ
2|J |2 − |x|2) + κ

2
(
(J1x2 − J2x1)

2 + (J3x1 − J1x3)
2
)

− α2
(
(J1x2 − J2x1)

2 + (J2x3 − J3x2)
2
)

which are in bi-involution with respect to the same Poisson brackets at a1 = a2 = 0 and
a3 = −1. At the arbitrary value of α the Lax matrices and the separated variables for this
system have been constructed in [10, 4].
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5.3 Inhomogeneous integrals of motion

There is only one nontrivial linear Poisson bivector, which is compatible with the canonical

bivector P0 and the quadratic bivector P
(3)
1 (3.7)

P
(0)
1 =

(
α1sM 0

0 α2tM

)
, α1,2 ∈ C.

The linear combination

P
g
1 = P

(3)
1 +

(
α1sM 0

0 α2tM

)
(5.13)

is an inhomogeneous Poisson bivector on so∗(4) compatible with P0 and such that P
g
1 dC1,2 =

0.
Let us consider the following inhomogeneous Hamiltonians [4, 9]

H
g
1 = H1 + 〈k, J〉 + α12〈B,x〉, (5.14)

H
g
2 = H2 + 2α12〈B, J〉〈, A, x〉 − 〈k,A〉J2 − 〈k, J ∧ x〉

− κ
2α2

12〈B, J〉 − α12〈k, x〉 ,

and

H̃
g
1 = H̃1 + 〈α3A + α4A ∧ B, J〉 + α12〈B,x〉, (5.15)

H̃
g
2 = H̃2 + 2〈B, J〉

[
α3

(
〈A, J〉2 + κ

2|J |2 − |x|2 − 2〈A, J ∧ x〉
)

+ α4

(
〈B ∧ A, J ∧ x〉 + 〈A, J〉〈A,B ∧ J〉

)
+ α12〈B, J〉〈A,x〉

]

+ α2
3

(
2|x|2 − 〈A, J〉2 + 2〈A, J ∧ x〉

)
+ 2α4α12

(
〈B, J〉〈A,B ∧ x〉

)

+ 2α2
4

(
〈B,B〉〈A, J〉2 − κ

2〈B, J〉2 − 2〈A,B〉〈A, J〉〈B, J〉
)

− 4α3α12〈B, J〉〈A,x〉 − α2
12κ

2〈B, J〉2

+ 2α3α12

(
〈A ∧ B, J ∧ x〉 − 〈A, J〉〈A,B ∧ J〉

)

+ 2α3α12

(
α3〈A,x〉 + α4〈A,B ∧ x〉 + α12κ

2〈B, J〉
)
,

where α12 = i(α1−α2), α1 . . . , α4 are arbitrary parameters and k is an arbitrary numerical
vector.

Proposition 8. The inhomogeneous integrals of motion (5.14) and (5.15) are in bi-
involution with respect to the canonical bracket,{., .}0 and the second Poisson bracket {., .}1

associated with the bivector P
g
1 (5.13)

The separated variables for these inhomogeneous bi-integrable systems are different,
but they remain the eigenvalues of the corresponding control matrices

F g = F +
1

2




α1 + α2 0

α1−α2

κ
〈k, x〉 − i

κ
〈k, J ∧ x〉 − 〈k,B〉|J |2 α1 + α2



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and

F̃ g =




〈a, J〉 + α1 + α2

2

i

4κ(〈B, J〉 − α3)

−
iH̃

g
2 (α3 = α4 = 0) (〈B, J〉) − α3

κ〈B, J〉2
〈a, J〉 + α1 + α2

2




.

For the inhomogeneous Hamiltonians we have to add to the left hand side of the separated
relations (5.11) and (5.12) terms proportional q2

k and qk respectively. Moreover, in the
right hand side we have to substitute ((qk − iα1)

2 − C1)((qk − iα2)
2 − C2) instead of

(q2
k − C1)(q

2
k − C2).

6 Conclusion

We classify quadratic Poisson bivectors having the given canonical foliation on M = so∗(4)
or M = e∗(3) as their symplectic leaf foliation. The corresponding Darboux-Nijenhuis
variables are constructed. A pair of known integrable systems on so∗(4) can be related
with one of such quadratic Poisson bivectors. We prove that the corresponding integrals
of motion admit separation of variables and the separated coordinates are eigenvalues of
the control matrices.

Another approach to the construction of the quadratic and cubic Poisson bivectors
P1 having common symplectic foliations with P0 has been proposed in [13, 14]. Among
the corresponding bi-integrable systems there are generalized periodic Toda lattices, the
XXX Heisenberg magnet, the XXX Heisenberg magnet with boundary conditions, the
Kowalevski top on so∗(4), the Goryachev-Chaplygin gyrostat on e∗(3), the Kowalevski-
Chaplygin-Goryachev gyrostat on e∗(3) and some other well known integrable systems.
Now we add to this list two other integrable systems on so∗(4).

The research was partially supported by the RFBR grant 06-01-00140 and grant NSc
5403.2006.1.
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