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Abstract

We classify the Noether point symmetries of the generalized Lane-Emden equation y′′+
ny′/x + f(y) = 0 with respect to the standard Lagrangian L = xny′2/2− xn

∫

f(y)dy
for various functions f(y). We obtain first integrals of the various cases which admit
Noether point symmetry and find reduction to quadratures for these cases. Three new
cases are found for the function f(y). One of them is f(y) = αyr, where r 6= 0, 1. The
case r = 5 was considered previously and only a one-parameter family of solutions was
presented. Here we provide a complete integration not only for r = 5 but for other r
values. We also give the Lie point symmetries for each case. In two of the new cases,
the single Noether symmetry is also the only Lie point symmetry.

1 Introduction

The Lane-Emden-type equation

d2y

dx2
+

2

x

dy

dx
+ f(y) = 0, (1.1)

for various forms of f(y), has been used to model several phenomena in mathematical
physics and astrophysics. The most popular form of f(y) is when f(y) = yr, where r is a
constant. In this case eqn (1.1) takes the form

d2y

dx2
+

2

x

dy

dx
+ yr = 0. (1.2)
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This equation was used to model the thermal behaviour of a spherical cloud of gas acting
under the mutual attraction of its molecules and subject to the classical laws of thermo-
dynamics. Eqn (1.2) was first proposed by Lane (see Thompson [39]). It was studied in
more detail by Emden [13] and Fowler [16]. Numerical and perturbation approaches to
solve eqn (1.2) have been considered in Horedt [20, 21], Bender [5] and Lema [29]. Other
methods have also been invoked for the solution of eqn (1.2) (see Roxbough and Stocken
[36], Adomian et al [2], Shawagfeh [38], Burt [8], Wazwaz [41] and Liao [27]).

It is known that for r = 0, 1 and 5, eqn (1.2) has exact solutions (Chandrasekhar [9],
Davis [11], Datta [10] and Wrubel [43]). In fact for r = 5, a one-parameter solution of eqn
(1.2) is normally given.

The Lane-Emden equation (1.2) appears not only in the study of stellar structures but
in other applications as well. The interested reader is refereed to the works of Meerson et
al [31], Gnutzmann and Ritschel [17], and Bahcall [3, 4].

A more general form of (1.2), in which the coefficient of y′ is considered an arbitrary
function of x, was investigated for first integrals by Leach [26]. Moreover, transformation
properties of a more general Emden-Fowler equation were considered in the works [15, 32].
The reader is also referred to the review paper by Wong [42] which mentions more than
140 references on the topic.

Another form of f(y) is given by

f(y) = (y2 − C)3/2. (1.3)

Inserting (1.3) into eqn (1.1) gives us the ”white-dwarf” equation introduced by Chan-
drasekhar [9] in his study of the gravitational potential of degenerate white-dwarf stars.
In fact, when C = 0 this equation reduces to Lane-Emden equation with index r = 3.

Another nonlinear form of f(y) is the exponential function

f(y) = ey. (1.4)

Substituting (1.4) into eqn (1.1) results in a model that describes isothermal gas spheres
where the temperature remains constant.

Eqn (1.1) with
f(y) = e−y

gives a model that appears in the theory of thermionic currents when one seeks to deter-
mine the density and electric force of an electron gas in the neighbourhood of a hot body
in thermal equilibrium was thoroughly investigated by Richardson [35].

Furthermore, the eqn (1.1) appears in eight additional cases for the function f(y). The
interested reader is referred to Davis [11] for more detail.

The equation

d2y

dx2
+

2

x

dy

dx
+ eβy = 0, (1.5)

where β is a constant, has also been studied by Emden [13].
The so-called generalized Lane-Emden equation of the first kind

x
d2y

dx2
+ α

dy

dx
+ βxνyn = 0, (1.6)
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where α, β, ν and n are real, has been recently looked at in Goenner and Havas [18] and
Goenner [19]. In Goenner [19], the author uncovered symmetries of eqn (1.6) to explain
integrability of (1.6) for certain values of the parameters considered in Goenner and Havas
[18]. The reader is also referred to the works ([23], [24], [6], [7]) for symmetries and
solutions of Emden-type equations.

In this paper we investigate the Noether point symmetries of the generalized Lane-
Emden equation

d2y

dx2
+

n

x

dy

dx
+ f(y) = 0, (1.7)

where n is a real constant and f(y) as yet arbitrary. It should be pointed out that
equation (1.7) for a power function f(y) = yr is linked to the Emden-Fowler equation
y′′ + p(X)yr = 0 by means of the change of independent variables X = x1−n, n 6= 1 and
X = ln x for n = 1. The transformation properties in these instances are known (see
[15, 32, 40]).

For n = 2, Wazwaz [41] considered eqn (1.7) for some particular functions f(y) using
an algorithm based on the Adomian decomposition method. Our approach is completely
different and provides a complete Noether point symmetry classification of eqn (1.7) for
different forms of f(y). We also give the Lie point symmetries for the relevant cases.
Moreover, we give reductions of eqn (1.7) in terms of quadratures for seven forms of the
function f(y). Among these are three new cases given in Section 3.

The outline of the paper is as follows. In the next section we present the preliminaries of
the Noether point symmetry approach and in Section 3 we provide the Noether symmetry
classification of eqn (1.7) for various functions f(y) which is done here for the first time.
Then in the same Section 3 we determine the double reductions of eqn (1.7) for the
functions for which eqn (1.7) has Noether point symmetries, including three new Cases
4.2, 5.1 and 5.2. Concluding remarks are mentioned in Section 4.

2 Preliminaries on Noether symmetry classification and re-

duction

We first collect some relevant definitions and theorems from the literature which we utilize
in what follows. Two of the theorems are not well-known. They are given here due to
their importance for the calculations of the next section.

Consider the point type vector field

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
(2.1)

which has first prolongation

X [1] = X + (ηx + ηyy
′ − ξxy′ − ξyy

′2)
∂

∂y′
. (2.2)

Now we focus attention on an arbitrary second-order ODE

y′′ = E(x, y, y′) (2.3)
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that has Lagrangian L(x, y, y′). That is, (2.3) is equivalent to the Euler-Lagrange equation

d

dx

(

∂L

∂y′

)

−
∂L

∂y
= 0. (2.4)

Definition 1
The operator X is called a Noether point symmetry generator corresponding to a La-
grangian L(x, y, y′) of eqn (2.3) if there exists a gauge function B(x, y) such that

X [1](L) + D(ξ)L = D(B), (2.5)

where

D =
∂

∂x
+ y′

∂

∂y
+ y′′

∂

∂y′
+ · · · . (2.6)

The utility of an available Noether point symmetry generator lies in the following three
theorems.

Theorem 1 (Noether [33])
Suppose that X is a Noether point symmetry generator corresponding to a Lagrangian
L(x, y, y′) of eqn (2.3). Then

I = ξL + (η − y′ξ)
∂L

∂y′
− B (2.7)

is a first integral of eqn (2.3) associated with the operator X.

Proof. See, e.g., [34, 22].

Theorem 2
The first integral I, associated with the Noether point symmetry X, satisfies

X [1]I = 0, (2.8)

i.e., X is a point symmetry generator of the first integral I of eqn (2.3).

Proof. See [37, 25]. References [22, 25] contain more general proofs in more general
settings.

Theorem 3
Suppose that for a Lagrangian L(x, y, y′) of eqn (2.3) there corresponds a Noether point
symmetry generator. Then eqn (2.3) has solution in terms of quadratures.

Proof. See [25]. One can deduce this by invoking Theorems 1 and 2.

The approach pursued here was also utilized in [40] to deduce new solutions.

3 Integration of eqn (1.7) for different fs

We consider eqn (1.7). Its standard Lagrangian is

L =
1

2
xny′2 − xn

∫

f(y)dy. (3.1)
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The substitution of the Lagrangian (3.1) into the determining eqn (2.5) and separation
with respect to the powers of y′ yields the linear overdetermined system of four PDEs

ξy = 0,

ηy =
1

2
(ξx − nx−1ξ),

xnηx = By,

−nxn−1ξ

∫

f(y)dy − xnηf(y) − xnξx

∫

f(y)dy = Bx. (3.2)

After straightforward manipulations, the system (3.2) results in

ξ = a(x),

η =
1

2
[a′ − nx−1a]y + b(x),

B =
1

4
xn[a′′ − n

(

a

x

)′

]y2 + b′xny + c(x), (3.3)

[−nxn−1a − a′xn]

∫

f(y)dy + [−
1

2
xna′y

+
1

2
nxn−1ay − xnb]f(y)

=
1

4
a′′′xny2 +

1

2
nxn−2a′y2 −

1

2
nxn−3ay2

−
1

4
n2xn−1

(

a

x

)′

y2 + b′′xny + b′nxn−1y + c′ (3.4)

The analysis of eqn (3.4) prompts the following eight cases.

Case 1. n 6= 0, f(y) arbitrary but not of the form contained in cases 3, 4, 5 and 6.
We find that ξ = 0, η = 0, and B = k, constant. Hence, there is no Noether point
symmetry for this case.

Noether point symmetries exist in the following cases.

Case 2. n = 0, f(y) arbitrary but not linear as in case 3.
We obtain ξ = 1, η = 0 and B = k, k a constant.

Therefore we have a single Lie and Noether symmetry generator X =
∂

∂x
.

The integration for this case is trivial even without a Noether symmetry. The use of
the Noether integral (2.7) results in

I =
1

2
y′2 +

∫

f(y)dy

from which, setting I = C, one easily gets quadrature. Note that this case includes the
autonomous Ermakov equation [14] (f(y) = αy−3 + βy) which has sl(2,ℜ) symmetry
algebra. It turns out that sl(2,ℜ) is also the Noether symmetry algebra.

Case 3. f(y) is linear in y
This case is well-known and the corresponding eqn (1.7) has sl(3,ℜ) symmetry algebra and
five Noether point symmetries associated with the standard Lagrangian of the differential
equation (1.7) (see [28, 30]).
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Case 4. f(y) = αy2 + βy + γ, where α, β and γ are constants, with α 6= 0.
There are three subcases. They are

4.1. n = 5, β = 0 and γ = 0. We obtain ξ = x, η = −2y and B = k, constant. This is
contained in Case 5.1 below.

4.2. n = 5, β2 = 4αγ. We get ξ = x, η = −(2y + β/α) and B =
βγ

6α
x6.

We have a single Noether and Lie point symmetry generator

X = x
∂

∂x
−

(

2y +
β

α

)

∂

∂y
.

The application of Theorem 1, due to Noether, results in

I = −
1

2
x6y′2 −

1

3
αx6y3 −

1

2
βx6y2 − γx6y − 2x5yy′ −

β

α
x5y′ −

1

6

βγ

α
x6.

Thus, the reduced equation is

1

2
x6y′2 +

1

3
αx6y3 +

1

2
βx6y2 + γx6y + 2x5yy′ +

β

α
x5y′ +

1

6

βγ

α
x6 = C, (3.5)

where C is an arbitrary constant. By Theorem 2, X is also a symmetry generator of I
as well as the reduced eqn (3.5). Invoking Theorem 3, we can solve eqn (3.5). In order
to solve the first-order ODE (3.5), we use an invariant of X (see [1]) as the dependent
variable. This invariant is obtained by solving the characteristic equation associated with
X, viz.,

dx

x
=

dy

−(2y + β/α)
.

The solution of this ODE gives the invariant

u = x2y +
β

2α
x2.

Eqn (3.5) in terms of u, after some calculations, is

C = 2u2 −
1

2
x2u′2 −

α

3
u3.

This last first-order ODE is variables separable as

du

±
√

4y2 − (2/3)αu3 − 2C
=

dx

x
.

Hence we have quadrature or double reduction of our equation for the given f .

4.3. n = 5/3, β = 0 and γ = 0. We find ξ = x1/3, η = −
2

3
x−2/3y and B =

2

9
y2 + k, k

is constant. This is subsumed in Case 5.2 below.
Case 5. f(y) = αyr, α and r are constants with α 6= 0 and r 6= −3, 0, 1.

Here we have two subcases.

5.1. n =
r + 3

r − 1
. We obtain ξ = x, η =

2

1 − r
y and B = k, constant. This is also the

single Lie point generator.
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By the use of Theorems 1, 2 and 3, we find that the solution of eqn (1.7) for the above
n and f is

y = u
2

r−1 x
2

1−r , (3.6)

where u is given by
∫

du

±
√

4(1 − r)−2u2 − 2α(1 + r)−1u1+r − C1

= ln xC2, (3.7)

in which C1 and C2 are arbitrary constants of integration. Note that for r = 5, one
gets n = 2 and we have the general solution given in eqn (3.7). Only a one-parameter
family of solutions is known in the literature (see, e.g., [12]). Here we have determined
the two-parameter family of solutions.

5.2. n =
r + 3

r + 1
, with r 6= −1. We have ξ = x

r−1

r+1 , η = −
2

r + 1
x− 2

r+1y and B =

2

(r + 1)2
y2 + k, k is constant. Here we obtain a second Lie point generator corresponding

to ξ = x, η =
2

1 − r
y. One can utilize double reduction method of Lie. We choose to use

the Noether invariant approach.
Again we invoke Theorems 1, 2 and 3. In this subcase we deduce that the solution of

eqn (1.7) is

y = ux− 2

r+1 , (3.8)

where u is defined by
∫

du

±
√

−2α(r + 1)−1ur+1 + C1

=
r + 1

2
x

2

r+1 + C2, (3.9)

in which C1 and C2 are arbitrary constants.
Case 6. f(y) = α exp(βy) + γy + δ, α, β, γ and δ are constants with α, β 6= 0.
If n = 1, γ = 0 and δ = 0, we deduce ξ = x, η = −2/β and B = k, k a constant.

The second Lie point symmetry generator is Y = x ln x
∂

∂x
−

2

β
(1 + ln x)

∂

∂y
. One can use

double reduction method of Lie here. However, we use the Noether integral approach.
The invocation of Theorems 1, 2 and 3, upon using the Noether symmetry, gives rise

to the solution of eqn (1.7) for this case to be

y =
2

β
ln

(

u

x

)

, (3.10)

where u is given by
∫

du

±u
√

1 − (1/2)αβu2 + C1

= ln xC2, (3.11)

in which C1 and C2 are integration constants.
Case 7. f(y) = α ln y + γy + δ, where α, γ and δ are constants with α 6= 0.

If n = 0 and δ = 0, we obtain ξ = 1, η = 0 and B = k, k a constant. This reduces to Case
2.

Case 8. f(y) = αy ln y + γy + δ, where α, γ and δ are constants with α 6= 0.
If n = 0, we obtain ξ = 1, η = 0 and B = k, k a constant. This reduces to Case 2.
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4 Concluding remarks

We have completely classified the Noether point symmetries of the generalized Lane-
Emden equation (1.7) with respect to the standard Lagrangian (3.1). This has been done
for the first time here. Eight cases arose out of which seven cases resulted in Noether point
symmetries. For each of these we presented the Lie point symmetries and obtained the
first integral and also reduction to quadrature of the corresponding Lane-Emden equation
(1.7). Three new cases were found. These correspond to Cases 4.2, 5.1 and 5.2 of Section
3. It is interesting to mention that we have obtained a two-parameter family of solutions
in Case 5.1 for n = 2 and r = 5 for which only a one-parameter family of solutions is
known in the literature.
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