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Probability density estimation (PDF) is a task of primary importance in many contexts, including Bayesian learning 
and novelty detection.  Despite the wide variety of methods at disposal to estimate PDF, only a few of them are 
widely used in practice by data analysts.  Among the most used methods are the histograms, Parzen windows, 
vector quantization based Parzen, and finite Gaussian mixtures.  This paper compares these estimations methods 
from a practical point of view, i.e. when the user is faced to various requirements from the applications.  In 
particular it addresses the question of which method to use when the learning sample is large or small, and of the 
computational complexity resulting from the choice (by cross-validation methods) of external parameters such as 
the number of kernels and their widths in kernel mixture models, the robustness to initial conditions, etc. Expected 
behaviour of the estimation algorithms is drawn from an algorithmic perspective; numerical experiments are used to 
illustrate these results. 
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1. Introduction 

Numerical data are found in many applications of data 
analysis. Most numerical data come from measurements 
and experiments, thus resulting from the sampling of a 
random variable, the mathematical concept that 
characterizes the numerical results of experiments. To 
analyse data, one may choose to handle directly the 
results of the experiments. For example, simple data 
analysis methods like the linear PCA (Principal 
Component Analysis), the non-linear MLP (Multi-Layer 
Perceptron), and many others, work directly on the 
numerical values of samples. While this way of working 
may reveal adequate in many situations, other ones 

require working with the underlying random variable 
instead of the numerical sample.  

A random variable is completely characterized by its 
Probability Density Functions (PDF), i.e. a function that 
represents the probability of an event to occur when the 
random variable is equal to (or contained in an interval 
around) a specific value. Two examples may be used to 
illustrate this necessity. 

In the Bayesian framework, for example in Bayesian 
classification, decisions are taken according to Bayes' 
rule, which directly involves the evaluation of the PDF. 
In a two-class problem for example, the decision to 
choose one class or another is taken according to the 
largest PDF evaluated on the data to classify, after 
multiplication by some prior. As the PDFs are unknown 
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in practical situations (only the samples are known), 
working in such framework necessitates to estimate the 
PDF of the random variables. 

Another example is novelty detection. Let us 
imagine a sensor giving, in normal conditions, output 
values distributed according to some PDF. If the sensor 
characteristics are modified, for example by aging, the 
PDF of the measurements will vary, even though the 
conditions have not changed. Assessing the difference 
between PDFs is thus a way to detect aging, i.e. to 
assess some novelty in the measurement process. 

Estimating PDFs based on a sample is thus of 
primary importance in many contexts. There exist a lot 
of methods aimed to estimate PDFs (see for example 
Ref. 1 for an overview); while all of them are applicable 
in the univariate case, some of them may also be applied 
to the multivariate one. However, and despite the vast 
literature on the topic, even in the univariate case there 
is no consensus about which method to use, nor about 
the pros and cons of these methods.  In this paper, we 
will restrict the study to univariate PDF estimation. 

The aim of this paper is to give some insights into 
the methods that are traditionally used by data analysts. 
Both a priori pros and cons and experimental 
comparisons will be provided. All questions regarding 
the use of the methods for estimating PDF will not be 
answered, nor will all methods be covered.  
Nevertheless, this paper gives guidelines to the user 
having to choose between standard PDF estimation 
methods, when he is faced to various requirements 
concerning performances, speed and robustness levels.  
Guidelines should be understood here in a broad sense.  
It is not the purpose of this study to provide strict rules, 
nor even to try to generalize numerical results found on 
illustrating examples to real situations.  We simply 
believe that this is impossible, as the wide variety of 
situations encountered with various PDF may obviously 
lead to various conclusions.  This paper takes another 
point of view. By looking to the models and estimation 
algorithms, it is possible to have insights about their 
expected behavior, for example what concerns the 
quality of the estimation, the robustness to small and 
large samples, the difficulties encountered due to 
parameters that have to be adjusted, the robustness to 
these parameters, etc.  Most of these expected 
characteristics are not described in an independent and 
objective way in the existing literature, in particular 
when they might be considered as drawbacks rather than 

as advantages.  The originality of this paper is thus to 
compare widely used PDF estimation models from the 
point of view of their expected characteristics, rather 
than from numerical results that would inevitably be 
obtained on specific examples without convincing 
generalization power.  Nonetheless, in order to validate 
the assertions, the latter are illustrated on a PDF 
example chosen for its variety of characteristics; this 
experimental part of the paper should not be taken as a 
proof but rather as an illustration of the assertions that 
form the core of this paper. 

After an introduction, Section 2 will describe the 
most popular methods used to estimate PDF, without 
aiming at being exhaustive: histograms, Parzen 
windows, vector quantization based estimators, and 
Finite Gaussian Mixtures (FGM). Section 3 will 
comment these methods according to criteria and 
constraints given by practical applications: expected 
estimation error, variance of this error, computational 
effort and memory requirements, number of necessary 
data for the estimation, number of parameters in the 
model, etc. The expected model characteristics 
described in this section form the core of this paper.  
Next, Section 4 will present the adopted experimental 
procedure. In Section 5 some selected experiments 
illustrate the assertions described in Section 3: the 
expected performances of the methods are compared to 
the results of the experiments. Finally, Section 6 will 
conclude the paper by some guidelines for the use of 
PDF estimation methods. 

2. PDF Estimation 

Probability density function (PDF) estimation is a 
fundamental step in statistics as a PDF characterizes 
completely the “behavior” of a random variable. It 
provides a natural way to investigate the properties of a 
given data set, i.e. a realization of this random variable, 
and to carry out efficient data mining. 

When we perform density estimation three 
alternatives can be considered. The first approach, 
known as parametric density estimation, assumes the 
data is drawn from a specific density model. The model 
parameters are then fitted to the data. Unfortunately, an 
a priori choice of the PDF model is in practice not 
suited since it might provide a false representation of 
the true PDF. 

An alternative is to build nonparametric PDF 
estimators2,3, as for example the histogram or the Parzen 
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window estimator, in order to “let the data speak for 
themselves”. A third approach consists in using semi-
parametric models4. As nonparametric techniques, they 
do not assume the a priori shape of the PDF to estimate. 
However, unlike the nonparametric methods, the 
complexity of the model is fixed in advance, in order to 
avoid a prohibitive increase of the number of parameters 
with the size of the data set, and to limit the risk of 
overfitting. Finite mixture models are commonly used to 
serve this purpose. 

In this section, we briefly recall the histogram and 
the Parzen window estimator, and show how the kernel 
width can be selected a priori in the case of Parzen. 
Next, we present a vector quantisation based version of 
Parzen, which allows us to reduce its model complexity. 
Finally, we present Finite Gaussian mixture models. 

2.1. Histograms 

In the following, we refer to X as a continuous random 
variable, pX(x) as its PDF and { }N

nnx 1=  as a sample of X.  
Nothing prevents the method to be applied, in theory, to 
multi-dimensional situations; in this case X is a random 
vector and xn are vectors.  However, we will see that 
several methods are limited to small dimensions in 
practical situations. 

Given N observations xn, we approximate the 
unknown PDF of X  by dividing the real line in M  
bins jB  of width σ2  and counting the number of 
samples falling into each bin. In order to keep the 
integral of the estimate equal to one, the latter is 
multiplied by a normalizing factor: 
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The histogram appears to be strongly dependent on 
the choice of σ , as it regulates the smoothness of the 
estimate. In addition, the choice of the locations of the 
bin origins may influence the quality of the estimate as 
well. One way to reduce this dependency is to use an 
averaged shifted histogram2. However, in this approach, 
one should choose additional parameters a priori, i.e. the 
number of shifts and the shift step. 

2.2. Parzen windows 

Like histograms, the Parzen window estimator5 does not 
assume any functional form of the unknown PDF, as it 
allows its shape to be entirely determined from the data 
without having to choose a location of the centers. The 
PDF is estimated by placing a well-defined kernel 
function centered on each data point and then 
determining a common width σ , also denoted as the 
smoothing parameter. In practice, Gaussian kernels are 
often used: 
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where c  and σ  are the kernel centre and width 
respectively. The estimated PDF is then defined as the 
sum of all the Gaussian kernels, multiplied by a scaling 
factor: 
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Next, we present a non-exhaustive list of techniques 
used for selecting the kernel width, mainly based on the 
integrated squared error. 

2.1.1  Silverman’s plug-in 

Choosing a priori the kernel width σ is definitely not 
the best way to use Parzen windows, as the optimal 
value (i.e. the value that minimises the measure of 
dissimilarity between the true PDF and its estimation) 
strongly depends on the type of data we are dealing 
with, their number and the amount of noise they are 
corrupted by. 

Let us first define the integrated square error (ISE): 

 { } dxxpxp XX∫ −= 2)()(ˆISE . (5) 

Parzen showed in Ref. 5 that, given a specific 
standard kernel )(tK , the kernel width σ  that 
minimizes the expected ISE should satisfy the following 
condition (in the univariate PDF estimation case): 
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Unfortunately, this expression depends on the 
unknown density itself. Therefore, Silverman proposed 
in Ref. 3 to plug a Gaussian distribution to approximate 
pX(x), leading to the following rule of thumb: 
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In Eq. (7) s  is the empirical standard deviation of 
the data and R is the sample interquartile range. The 
motivation behind the introduction of the interquartile 
range R is to reduce the sensitivity of σSIL to outliers, as 
R calculates the sample interquartile range from the 
75% quantile to the 25% one.  

In theory, the application of the σopt formula would 
lead to overfitting, as the optimal value would be 
computed on the data themselves.  In practice however, 
using the σSIL estimator instead of σopt tends to 
overestimate the optimal kernel width, as already 
mentioned by Silverman3; this is true when dealing with 
most cases of non-Gaussian distributions, in particular 
with multimodal populations.  Overfitting thus not 
occurs in this case.  However, as it will be discussed in 
Sections 3 and 4, the overestimation was only found 
true for relatively large datasets. 

2.2.2  Exhaustive search 

Consider a well-defined error criterion E and suppose 
we can evaluate it. By letting the kernel width σ  vary 
over a certain range, one can easily determine the 
optimal kernel width σopt by selecting σ that minimizes 
E.  Note however that care should be taken to avoid 
overfitting when evaluating the model performance: part 
of the data, the learning set, should be used for 
constructing the Parzen estimate, while a validation set 
should be kept aside for evaluating its generalization 
performance and selecting σopt. Indeed, contrarily to 
Silverman’s plug-in solution, no smoothing estimator 
enters into the selection of the optimal width in this 
case.  Moreover, resampling techniques should be used 
in practice, such as for example leave-one-out, K-fold 
cross-validation, Monte Carlo cross-validation or 
Bootstrap to obtain reliable estimates. For a detailed 
overview of these methods, we refer to Ref. 6. 

Whereas this approach is expected to outperform 
Silverman’s rule of thumb, the price to pay is its 
computational complexity. Besides, as we do not know 
the true PDF in practice, this approach is useless for 

most error criterions. Yet, this method is very 
convenient in two particular cases: 
• when considering toy problems (thus knowing the 

density to approximate) in order to assess 
objectively the quality of the models or to have a 
reference to compare to; 

• when minimizing ISE, because its dependency in 
the unknown PDF can be eliminated as discussed 
below. 

Consider again the ISE. This error criterion can be 
rewritten as follows: 

 { } dxxpxpdxxp XXX ∫∫ +−= )()(ˆE2)(ˆISE 22 . (8) 

The last term can be ignored as far as ISE 
minimization is concerned, as it does not depend on σ. 
Only the second term depends both on σ and on the 
unknown density pX(x). In the second term this 
unknown density can be approximated by its leave-one-
out estimator2 )(ˆ , nnX xp − ; we may then define the 
following error criterion: 
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Substituting the Parzen estimate of pX(x) in this 
expression, we obtain the leave-one-out cross-validation 
criterion7: 
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Interestingly, this criterion does not require the 
evaluation of an integral anymore. Finally, by scanning 
a certain range of σ  the optimal width can be selected: 

 
)(minargLOO σσ

σ
LOOE=

. (12) 

More recently, elaborate techniques, such as the 
Sheather-Jones plug-in or the smoothed bootstrap, were 
proposed for selecting σ automatically. For a 
comprehensive review we refer to Ref. 8 and the 
references therein. However, these methods are usually 
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not used by the practitioner due to their technical 
complexity, while showing little effective improvement 
in real applications. We therefore excluded these 
techniques from our discussion. 

2.3. Vector quantization based Parzen 

Whereas the computational complexity of Parzen is 
relatively small, its model complexity is proportional to 
the number of data samples. This can rapidly lead to 
memory storage problems. Furthermore, as the kernel 
width is common to all kernels, it can be locally 
mismatched. This in turn can lead to oscillations in the 
distribution tails or in low-density regions of the input 
space. 

A straightforward way to circumvent these problems 
is to perform vector quantisation (VQ) beforehand. 
Once the number of prototypes K is chosen, the VQ 
algorithm computes their locations in the input space by 
minimizing a quantization error and associates to each 
prototype a region of influence, called Voronoi region. 

One of the most popular VQ techniques is the 
Competitive Learning (CL)9-10. In the remainder we will 
restrict ourselves to CL as it is sufficiently flexible, 
while limiting the number of parameters. Other 
widespread approaches are K-means, Neural Gas11 or 
Self-Organizing Maps12.  The latter usually results in a 
better quantization of the data, at the price of a slightly 
increased complexity.  When vector quantization 
performances are the objective to be pursued, such 
advanced VQ methods are certainly to be preferred to 
CL.  However, in our case, VQ is only used as 
preprocessing to reduce the number of data and roughly 
place the centroids at appropriate locations in the data 
space.  Using one VQ method or another does not result 
in significant differences in the PDF approximation 
quality; moreover, variations due to the VQ 
initialization are certainly as large as those due to the 
choice of the VQ algorithm.  The influence of the VQ 
initialization is discussed in the experimental part of this 
paper. 

CL can be summarized as follows: 
(i) Initialise all prototypes Kkck ≤≤1 ,  

(ii) For each data xn from the database: 
Select the winner: 

 
2minarg kn

c
win cxc

k

−= . (13) 

Update the winner: 

 )( winnwinwin cxcc −⋅+= α . (14) 

(iii) Repeat (ii) until convergence. 
In Eqs (13) and (14), α  is the learning rate. Usually, 

α  decreases exponentially during the iterations of the 
algorithm. 

By placing a Gaussian kernel on each prototype ck, 
the unknown PDF can be approximated in a Parzen-like 
manner. Besides, to each kernel k, we can associate a 
local kernel width σk, corresponding to the experimental 
standard deviation of the corresponding Voronoi region. 
This allows taking into account the variations of the 
PDF, by setting different kernel widths to different parts 
of the X space or range.  Finally, in order to force a 
certain amount of overlapping between kernels and 
thereby increase the generalization performance, a 
common width-scaling factor h is introduced.  A similar 
idea was introduced in Ref. 13 for supervised kernels (in 
Radial-Basis Function Networks); the width-scaling 
factor allows controlling the amount of regularization, 
which will be adjusted to a Leave-One-Out criterion.  
This leads to the following density estimate: 
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Similarly to Parzen, where the common kernel width 
must be optimised, in VQ-based Parzen the width-
scaling factor h  should be optimised as well. Again, for 
comparison purposes, h can be selected by exhaustive 
search by minimizing a well-defined error criterion E.  
In practice the leave-one-out cross-validation criterion 
could be used too.  Indeed, following the same 
derivation as the one used for Parzen windows, we may 
rewrite ELOO using the VQ-based density estimate.  The 
optimal h is then selected by the following rule: 
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2.4. Finite Gaussian Mixtures (FGM) 

Finite mixture distributions can approximate any 
continuous PDF, provided the model has a sufficient 
number of components and provided the parameters of 
the model are chosen correctly14. The true PDF is 
approximated by a linear combination of K component 
densities: 
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In Eq. (17) )( kxp  is the probability of x given the 
component distribution k and P(k) are the mixture 
proportions or priors. The priors are non-negative and 
must sum to one. In practice, Gaussian kernels are often 
used: 

 ( )kkcxNkxp σ,)( = . (18) 

A popular technique for approximating iteratively 
the maximum likelihood estimates of the model 
parameters )(kP , kc  and kσ  is the expectation-
maximization (EM) algorithm15.  Let us define the 
likelihood function: 

 ∏
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Maximizing the likelihood function is equivalent to 
finding the most probable PDF estimate provided the 
data set { }N

nnx 1= . 
The EM operates in two stages. First, in the E-step, 

the expected value of some “unobserved” data is 
computed, using the current parameter estimates and the 
observed data. Here the “unobserved” data are the data 
labels of the samples. They correspond to the 
identification number of the different mixture 
components and specify which one generated each data. 
Subsequently, during the M-step, the expected values 
computed in the E-step are used to update the model 
parameters accordingly. Each iteration step i can be 
summarized as follows4: 

E-step: 
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M-step: 
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Note that the value )()(
n

i xkP  computed in the E-
step corresponds to the posterior probability that a 
known data sample xn was generated by component k. 

It can be mentioned that FGM could be viewed as 
specific Support Vector Machines in the context of 
kernel methods16.  However, in this case, and contrarily 
to FGM, the kernel widths are fixed in advance and the 
kernel centres are restricted to the data points.  Even if a 
sparse solution can be obtained, such restrictions on the 
kernels widths and centres lead to inefficient covering 
of the effective distribution, contrarily to FGM where 
kernel centres and widths are optimized. 

3. Expected Pros and Cons of PDF Estimation 
Methods 

Not all PDF estimation methods are expected to behave 
similarly in all situations. There are certainly pros and 
cons to all methods, making all of them suitable for 
some kind of applications. The following of this section 
aims at giving some insights about the expected 
performances of each method, with respect to several 
criteria and constraints imposed by the applications. 
More precisely, the a priori expected performances of 
the methods are investigated (together with the variance 
of the estimates). As PDF estimation methods 
sometimes have computational requirements that are not 
compatible with the application constraints, 
computational effort and memory requirements will be 
discussed too. Finally, all these performances will be 
related to the number N of data that are necessary to 
obtain an "adequate" approximation of the underlying 
PDF, and to the complexity of the models. 

Based on the characteristics of the models, the 
following comments can be made about the methods 
described in Section 2. 
• Histograms suffer from several drawbacks. First, 

they are not continuous by definition. Using non-
continuous PDF estimates might reveal problematic 
in some contexts, for example in binary Bayesian 
classification, when the intersection between the 
PDF of the two classes must be found. Moreover, 
the choice of the bins (widths and centres) may be 
too difficult especially in the case of non smooth 
PDF or of PDF with unbounded support. Except 
their computational simplicity, histograms have no 
advantage compared to Parzen estimators, while 
they have supplementary drawbacks; Parzen 
estimators may be viewed as a continuous (and 
derivable) extension to histograms. Finally, let us 
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note that histograms are not easily extended to 
multivariate cases, as bins rapidly tend to be empty 
in average. For all these reasons, histograms will 
not be considered in the experimental part of this 
paper. 

• Parzen estimators require a correct choice of the 
smoothing parameter σ. A small σ will result in 
overfitting: the estimate will show peaks around 
each data.  On the other hand a large σ will result in 
an excess of regularization: the estimate will be 
smoother than the true PDF.  Often, Silvermann's 
rule-of-thumb is applied. According to the 
literature2-3, this rule overestimates σ for large 
values of the number N of data, and estimates it 
more or less correctly when N is small (at least for 
unimodal distributions).  The overestimation 
mainly results from the non-Gaussian character of 
the PDF. 

• As σ acts as smoothing parameter in Parzen's 
estimator, σ should be naturally large for small N 
and small for large N. 

• Except if using the Leave-One-Out approximation 
detailed in Section 2.3, a cross-validation estimate 
of an optimal σ value is computationally expensive 
if N is large. Furthermore, such cross-validation is 
not needed if N is low, as rules-of -thumb provide 
adequate values. 

• Vector Quantisation-based methods do not perform 
well. They tend to overestimate the tails of the 
distributions. Indeed in the tails, the number of data 
available is reduced, leading to poor vector 
quantisation properties. Furthermore, most vector 
quantisation methods lead to the so-called 
"magnification factor" effect17, which consists in 
the fact that a PDF after VQ reflects the original 
PDF elevated to a power lower than one (in other 
words, the vector quantisation itself, before any 
PDF estimation, overestimates the tails and 
underestimates the peaks of a distribution). 

• The standard deviation of the estimations is an 
important concern too. Indeed most methods 
require some initialisation, leading to different 
estimates for different initial values of some 
parameters. Having large variations between the 
estimates is of course not a good property of the 
estimation method. Mean and standard deviation 
are respectively useful in order to assess the real 
performance of a method and its robustness 
regarding the initialisation randomness. Parzen 
estimators do not suffer from this drawback, as 
there is no initialisation. FGM are based on a 
powerful optimisation algorithm (EM), therefore 

usually offer a low standard deviation of the 
estimate. The standard deviation could increase 
though: when a large number K of Gaussian 
components is used, EM may produce different 
acceptable solutions corresponding to different 
stable configurations of the component mixtures.  
Multiple initializations may however be used to 
reduce the variance, if a higher computational cost 
is accepted; multiple initializations could be used in 
the vector quantization based estimator too for the 
same purpose. 

• More dramatically, the FGM optimisation (EM 
algorithm) may collapse if the number K of 
Gaussian functions is large, or equivalently, if the 
number N of data is small18. While recent 
techniques such as maximum penalized FGM19 or 
variational FGM20 can be used to avoid this 
problem, collapsing quite naturally occurs when 
one tries to incorporate too much structure into the 
density model compared to the number of available 
data. In this situation, Parzen estimate is an 
interesting alternative. It also has the feature of 
having a single parameter to optimise (compared to 
several parameters for each Gaussian function in a 
FGM), which reveals an advantage when the 
number N of data available is small (the 
minimization of the likelihood is trapped in 
different local minima). 

• If this problem regarding a low number N of data 
available is not encountered, FGM are thus 
expected to perform well, probably better than 
other methods. If N is large, one has more 
knowledge about the underlying PDF; increasing 
the number K of components in FGM is thus 
expected to increase the performances of the 
estimator. 
Finally, about memory requirements, histograms 

and Parzen estimators have the advantage that they do 
not require any learning. However, if N is large, both 
the memory requirements and the evaluation of the 
estimate for any value of x may exceed any reasonable 
level imposed by the application context. The 
complexity of the evaluation is a direct consequence of 
the Parzen formula (it is a sum over all N samples). This 
is another argument in favour of FGM. 

4. Methodology for the Experimental 
Illustration of Expected Behavior 

Section 3 detailed properties and expected behaviour of 
the PDF estimations methods that directly result from 
the algorithms.  In the remaining of this paper, we will 
mainly show experimental results that do confirm the 
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expected behaviour. We will also detail other properties 
that result from simulation experiments. The latter can 
be considered valid only for the used PDF and are not 
expected to draw general properties. 

The size N of the sample used to estimate a PDF 
will be investigated.  Indeed, as introduced in Section 3, 
it is expected that some methods will not perform 
equally when N is low and when N is large; assessing 
which method to use in which situation is one of the 
goals of this study. 

Experiments are performed with an artificially 
generated PDF.  Hence it is possible to compare the 
estimation to the real PDF.  The comparison has to rely 
on a distance (between PDFs) measure that has to be 
chosen properly too. 

4.1. Reference PDF and sampling 

The reference PDF illustrated in Figure 1 has been 
chosen for the simulations.   

It has been built to include a wide variety of 
behaviours that influence the performances of the 
algorithms: flat regions and slopes, sharp and smooth 
peaks, skewness, and a smooth right-tail and climbing 
left side.  By constructions, it is obviously 
differentiable. 

More precisely, the reference PDF (Figure 1) is a 
mixture of four Gaussian PDFs, i.e. N1(x|3.5,1.6), 
N2(x|7.5,2), N3(x|12,2), N4(x|16.5,1.5), and of one 
Gamma PDF with parameters equal to 8 and 0.2.  
Samples with N realizations have been drawn from the 
reference PDF according to a Monte-Carlo drawing 
scheme. 

 
Fig. 1.  Reference PDF.  Grey lines: PDF components (four 
Gaussian and one Gamma functions).  Black line: reference 
PDF (sum of components). 

4.2. Distance measures 

Many distance measures could be used to compare PDF, 
at least in the one-dimensional case21.  Three widely 
known ones are mentioned here.  Let us define two PDF 
pX(x) and pY(x), both taking a null value outside the 
[a, b] interval.  The Mean Square Error is defined as 

 
( ) ( )( ) ( ) ( )( )∫ −

−
=

b

a
YXYX dxxpxp

ab
xpxp 21,MSE

,  
  (24) 

the Hellinger distance is defined as 

( ) ( )( ) ( ) ( )( )∫ −=
b

a
YXYX dxxpxpxpxpH

22 ,
, 

  (25) 

and the Kullback divergence is defined as 

( ) ( )( ) ( ) ( )( ) ( )
( )∫ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

b

a Y

X
YXYX dx

xp
xp

xpxpxpxpJ log, . (26) 

Note that the 1/(b-a) factor in the MSE definition is 
nothing else than a normalisation constant that could be 
added to the two other measures too.   

All distances have been used in experimental 
conditions.  On a qualitative point of view, they all lead 
to similar conclusions about the use of the PDF 
estimation methods.  For this reason, the Hellinger 
distance only is used in the following of this paper; the 
Hellinger distance is symmetric (unlike the Kullback 
divergence) and not too sensitive to large differences 
between PDF limited to small regions of the space 
(unlike the Mean Square Error).  It must be insisted on 
the fact that the Hellinger distance has been chosen for 
its appropriateness to the goal of this paper 
(experimental qualitative comparison between PDF 
estimation methods); other distance measures could 
however reveal more appropriate in real contexts or 
more specific situations; for example, if high peaks over 
a limited range in the difference between the PDF has to 
be avoided, one would prefer the MSE criterion, 
because of the larger exponent on the PDF. 

5. Experimental Illustration of the Expected 
Behavior 

Parzen windows, vector quantization based Parzen 
windows, and finite Gaussian mixtures have been used 
to estimate the reference PDF detailed in Section 4. For 

International Journal of Computational Intelligence Systems, Vol.1, No. 2 (May, 2008), 188–201

Published by Atlantis Press 195



 A comparative study of various probability density estimation methods 
 

9

the reasons discussed in Section 3, we will not take into 
account histograms in the experimental results.  The last 
two models used for the experiments include user-
defined parameters (number of kernels) that may have 
influence on the quality of the results.  Moreover, the 
size N of the sample largely influences the performances 
too.  The following experiments show the quality of the 
estimation methods with regards to the parameters and 
the size of the sample: the experiments are intended to 
illustrate the analysis of Section 3.  Unless otherwise 
mentioned, the experiments have been carried out with a 
size N of the sample varying according to Table 1. 

Table 1.  Number N of data (size of sample) drawn randomly 
from the reference PDF for all experiments. 

 

5.1. Parzen windows 

Parzen windows are a deterministic method once the 
kernel width σ is fixed: the performances are 
deterministic too, and no standard deviation of the 
results can be computed.  For each number N of data 
(size of the sample) as detailed above, σ was varied 
from 0.15 to 2 by steps of 0.1.  Figure 2 shows the 
results in terms of Hellinger distance between the true 
PDF and its estimation, with respect to σ and with N as 
parameter. 
 

 
Fig. 2.  Distance between the true PDF and its Parzen 
windows estimation with varying kernel width s.  The number 
of data is a parameter. 

As expected, the optimal kernel width σ is small for 
large values of N and large for small values.  Indeed the 
number of kernels used in Parzen windows is equal to 
the number of data; therefore the kernel variance should 
increase for small N in order to build a smooth PDF 
estimate. 

Other conclusions can be drawn from Figure 2.  
First, it is seen that whatever is the number N of data, 
the error curve has a minimum.  Figure 2 confirms that 
overfitting occurs for too small σ, and oversmoothing 
for too large σ. 

Another conclusion from Figure 2 is that, for a fixed 
number N of data, the resulting approximation error (at 
optimal σ) is always lower than the error resulting from 
a lower N.  This means that increasing the number of 
kernels is always beneficial, at least when σ is 
approximately optimized.  However, the same is not 
true for a fixed σ: in the center and right parts of Figure 
2, it may be seen that increasing the number of kernels 
at fixed σ might increase the approximation error. 

What is more surprising is the amount of 
dependence observed when varying σ, for a fixed 
number N of data.  Taking into account the logarithmic 
scale of Figure 2, one sees that with large N, a wrong 
choice of σ may lead to errors that are two orders of 
magnitude larger than the optimum.  Unexpectedly, the 
dependency to the kernel width σ is much larger for 
large samples than for small ones!  This result should be 
put in parallel with ad-hoc heuristics that usually select 
σ in a non-optimal way, like Silverman's plug-in: in 
many situations including non-difficult ones, only an 
exhaustive search (or the associated leave-one-out 
choice) can lead to an adequate choice of the kernel 
width σ 13. 
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Fig. 3.  Distance between the true PDF and its Parzen 
windows estimation with varying number of data.  The kernel 
width σ (s in the figure) is a parameter. 

In order to assess both Silverman's plug-in and the 
leave-one-out cross-validation procedures for choosing 
σ, Figure 3 shows the performances (again in terms of 
Hellinger distance) versus the number N of data with 
σ as parameter. The results of the Silvermann plug-in 
and the leave-one-out cross validation method are 
shown too. 

Figure 3 shows that Silverman’s plug-in is an 
efficient method to set σ only when a small number of 
data is considered. For larger samples, Silverman’s 
plug-in results are not acceptable.  The leave-one-out 
cross validation method gives better results almost 
everywhere; however, because of its higher 
computational load, it should be used only for large 
samples. 

5.2. Vector quantization based Parzen 

Contrarily to Parzen windows where only the kernel 
width σ must be optimized, the Vector quantization 
based Parzen method necessitates to optimize two 
parameters: the kernel width through the width scaling 
factor h and the number K of kernels.  Using a double 
exhaustive search method embedded in a cross-
validation procedure would lead to unaffordable 
computing times in most applications.  Therefore it is 
necessary to develop heuristic choices to set at least one 
of the two parameters.  In order to assess if the 
dependency to one of the two parameters is low enough 
to develop an efficient heuristics, experiments are made 
by varying the width scaling factor h  from 1 to 100 and 
the number K of kernels from 5 to 300.  As the method 
uses a random initialization of the kernel centres, each 
experiment is repeated 20 times and the mean and 
standard deviations are computed. 

Figure 4 shows the mean of the Hellinger distance 
between the true PDF and its approximation with 
respect to the width scaling factor h and number of 
kernels K.  A relative low dependency to the width 
scaling factor h is observed, but only for large number 
of kernels; the dependency is much higher for low 
numbers of kernels.  
 

 

Fig. 4.  Mean distance between the true PDF and its vector 
quantization based Parzen estimation with varying width 
scaling factor h and number K of kernels. 

If for each number K of kernels we consider the 
value of h that gives the minimum mean of Hellinger 
distance, we obtain the results shown in Figure 5.  The 
experimental standard deviation is shown too, together 
with the optimum value of h in each experiment. 

 

 
Fig. 5.  Mean and standard deviation of the distance between 
the true PDF and its vector quantization based Parzen 
estimation with varying number of kernels and optimized 
value of the width scaling factor h. 

Figures 4 and 5 show that improved results are 
obtained when increasing the number of kernels; the 
optimal width scaling factor h should increase in 
parallel. The best results are obtained with the largest 
number of kernels used in the experiments; this reflects 
the fact that, in general, going from the standard Parzen 
windows estimator to the Vector quantization based 
Parzen one decreases the quality of the approximation.  
Furthermore, using a large number of kernels in the 
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latter method leads to instability, as confirmed by the 
large observed standard deviation.   

Figure 6 shows a detail of the experiments 
performed with a fixed number of kernels: K = 300.  It 
is observed that the standard deviation is always large 
compared to the improvement that could be obtained by 
optimizing the width scaling factor h.  On one side this 
is good news for an expected heuristics to set the value 
of h, but on the other side this result shows that the 
stochastic nature of the vector-quantization based 
method leads to a lack of robustness. 

 

 

Fig. 6.  Mean and standard deviation of the distance between 
the true PDF and its vector quantization based Parzen 
estimation with a fixed number of kernels (K = 300) and 
varying width scaling factor h. 

In figure 7 the estimated PDF with the best 
parameters resulting from the experiments (K = 300 and 
h = 15) is shown. 

The instability (large standard deviation), the poor 
results compared to Parzen windows, and the excessive 
computation time needed to find an optimum value of 
the two parameters (in a cross-validation scheme) are 
arguments to use the standard Parzen windows 
estimator rather than the vector quantization based one, 
except maybe in situation where the number N of data is 
so large that using them all without preliminary 
quantization would be unpractical. 

 

Fig. 7.  Reference PDF (solid line) and estimated one (dotted 
line) through vector quantization based Parzen with K = 300 
and h = 15. 

5.3. Finite Gaussian Mixtures 

Like vector quantization based Parzen, Finite Gaussian 
Mixtures (FGM) rely on two parameters: the number K 
of kernels and the number of iterations.  All other 
parameters, including the kernel widths, are fixed by 
learning through the EM algorithm.  However, as the 
latter has no defined stopping criterion, the number of 
iterations of the E and M steps is usually fixed in 
advance, therefore constituting a supplementary 
parameter. 

Experiments with 15000 data were performed by 
varying the number of iterations and the number of 
kernels. Figure 8 shows the mean value of the Hellinger 
distance between the true PDF and its approximation, 
versus these two parameters. 

It is not surprising to observe that, in most cases, a 
larger number of iterations leads to improved results; 
this is however obtained at the price of an increased 
computation cost.   
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Fig. 8.  Mean distance between the true PDF and FGM 
estimation with varying number of kernels.  The number of 
iterations is a parameter. 

 
In the following experiment, the number of 

iterations is fixed to 200 in order to observe the 
dependency to other parameters without interference 
from the number of iterations.  Depending on the 
number of data and the number of kernels, convergence 
problems were observed during the run of the EM 
algorithm.  These problems are due to the collapsing of 
some kernels, as mentioned in the literature18.  Indeed if 
the number of data is low compared to the number of 
kernels, it may happen that only one data is associated 
to a kernel; the standard deviation of the latter, 
estimated in the M step of the EM algorithm, then 
becomes zero, leading to obvious numerical problems. 
Table 2 shows the configurations (i.e. number of data 
and number of kernels) where the EM algorithm 
converges always to a solution, where it never does and 
where sometimes converges, among the 20 runs made in 
each configuration. 

Table 2. Configurations of the FGM where collapsing of the 
EM algorithm is observed. 

 
 

Table 2 clearly shows a problem-free run of the EM 
algorithm when the number of data is large or 
equivalently when the number of kernels is low, a lack 
of convergence in the opposite case, and an intermediate 
situation for average numbers of kernels and data. 

Figure 9 shows the Hellinger distance between the 
true PDF and its approximation with respect to the 
number of data, the number of kernels being a 
parameter. 

 

Fig. 9.  Mean and standard deviation of the distance between 
the true PDF and its FGM estimation with varying number of 
data.  The number of kernels is a parameter. 

It is interesting to observe the low standard 
deviation obtained with the EM algorithm, in the 
situations where it converges.  Though the standard 
deviation could increase in specific situations, this 
results usually from a particular configuration of the 
number of data and of kernels, somewhere in the 
intermediate region of Table 2 where the standard 
deviation can be computed but includes results with 
numerical instability. 

6. Comments on the Experimental Results 

Comparing the methods emphasizes their 
complementarities.  First, as already mentioned in the 
previous section, vector quantization based Parzen does 
not bring advantages compared to standard Parzen 
windows; they require the estimation of a 
supplementary parameter (leading to increased 
computation times in a cross-validation scheme), their 
performance is lower, and finally their stochastic nature 
(because of the vector quantization  initialization) leads 
to a strong lack of robustness.  Compared to standard 
Parzen windows, vector quantization based Parzen is to 
recommend only when a very large number of data is 
available; the vector quantization may then be seen as a 
pre-processing aimed to reduce the size of the sample, 
for computational cost reasons.  If the sample size is 
really large, then the vector quantization step will be 
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harmless regarding the information contained in the 
data, and beneficial on the computational cost level. 

Except in this situation, two methods share the 
leadership: Finite Gaussian Mixtures (FGM) and Parzen 
windows.  For a low number of data, FGM experience 
numerical difficulties because of kernel collapsing; 
Parzen windows are thus preferred.  The kernel width 
should be fixed adequately: despite the sensitivity of the 
results to the kernel width is lower with a small sample 
than with a larger one, it remains that the observed 
results vary by one order of magnitude if the kernel 
width is chosen adequately.  Silverman's rule of thumb 
may be used in this case, since it provides acceptable 
results with a low number of samples.  For more 
security, the leave-one-out cross-validation procedure 
should be used; it provides at least results of the same 
quality, and largely surpasses Silverman's rule-of-thumb 
when the number of data is larger. 

For large datasets, FGM do not suffer from 
collapsing problems anymore.  They are not too 
sensitive to the choice of their parameters (number of 
iterations and number of kernels).  Furthermore, in this 
case Parzen windows would have to be embedded in a 
leave-one-out cross-validation scheme to set their kernel 
width parameter; FGM thus offer a good alternative, 
with a lower computational complexity.  This 
advantage, coupled to a low variance of the results and 
comparable performances to the Parzen windows, 
makes FGM more suitable when a large sample is 
available.  These results are summarized in Figure 10. 

 

 

Figure 10. Comparison between the PDF estimation methods 
with varying number of data. 

7. Conclusion 

This paper compares widely used PDF estimation 
models from the point of view of their expected 
characteristics, rather than from numerical results that 
would inevitably be obtained on specific examples 
without convincing generalization power.  Nonetheless, 
in order to validate the assertions, the latter are 
illustrated on a PDF example chosen for its variety of 
characteristics. Other simulations performed on other 
PDFs show similar qualitative results. 

It is shown that Parzen windows is the best 
estimator when the number of data available is low; low 
means around 100-200 data in the one-dimensional 
example shown in this paper, but this number of course 
varies for different PDF, and increases for higher-
dimensional problems.  The kernel width parameter in 
Parzen windows may be set by Silverman's rule-of-
thumb if the number of data is definitely low; however 
the leave-one-out cross-validation procedure should be 
used when one does not know if the sample is small 
enough, despite the computational cost increase. 

For larger datasets, FGM offer an interesting 
alternative: their computational complexity becomes 
smaller than the one of Parzen embedded in a cross-
validation scheme, and they show comparable 
performances and low variance. 

Finally, vector quantization based Parzen does not 
add any advantage, except when the sample is really 
large and Parzen windows are preferred despite the 
above conclusion; in this case, the vector quantization 
may be considered as a pre-processing aiming to reduce 
the size of the sample, without reducing the contained 
information. 
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