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Abstract

A necessary condition for the existence of conserved densities, ρ, and fluxes of a
differential-difference equation which depend on q shifts, for q sufficiently large, is
presented. This condition depends on the eigenvalues of the leading terms in the
differential-difference equation. It also gives, explicitly, the leading integrability con-
ditions on the density in terms of second derivatives of ρ.

1 Introduction

Consider a nonlinear (autonomous) differential-difference equation (DDE) of the form

ẇn = f(wn−l, wn−l+1, . . . , wn, . . . , wn+m−1, wn+m) (1.1)

where ẇn is the time derivative of wn,

∂f

∂wn−l

6= 0,
∂f

∂wn+m

6= 0

and n is an arbitrary integer. In general, f is a vector-valued function of a finite number
of dynamical variables and each wk is a vector-valued function of t.

The index n may lie in Z or the wk may be periodic, wk = wk+M . The integers l and
m measure the degree of non-locality in (1.1). If l = m = 0 then the equation is local and
reduces to a system of ordinary differential equations.

This class of equations arise in a number of areas including the modelling of many
physical interesting phenomena and in numerical simulation of nonlinear partial differential
equations. Their integrability properties are also of interest in their own right. See, for
example, [14, 15]. Of particular interest are conservation laws for (1.1) which depend on
arbitrarily many shifts of the dynamical varible, wq. The existence of such laws is an
indicator of the complete integrability of (1.1).

In this paper, we derive a necessary condition for the existence of conserved densities,
ρ, that depend on q shifts. This condition (3.12) involves the eigenvalues of

∂f

∂wn−l

,
∂f

∂wn+m
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and, moreover, will give, explicitly, the leading integrability conditions in terms of second
order derivatives of ρ.

We begin with establishing our notation and enumerating some basic facts about DDEs.
In this section we use the classic example of the completely integrable Toda lattice to
illustrate the concepts concretely. In the following two sections, we derive the leading
integrablity conditions. In section 3, the necessary condition itself is obtained. In the
penultimate section, this condition is applied to a number of examples from the literature.
Finally we discuss applications and of this result to the computation of conserved densities.

2 Differential-Difference Equations

The shift operator D is defined by Dwk = wk+1. Following [7], we use of the shift opera-
torto generate (1.1) from the single equation

ẇ0 = f(w−l, w−l+1, . . . , w0, . . . , wm−1, wm)

via

ẇn = Dnẇ0 = Dnf.

In the case where wk is vector-valued, notation can quickly become cumbersome. We
adopt the convention that w denotes the zero-shifted dependent variable. Shifts of w (wk

in the above discussion) will be denoted by Dkw and we will reserve wα to denote the
α component of w. Thus Dkwα will be the α component shifted k times. With these
conventions we have

ẇ = f(D−lw, D−l+1w, . . . , w, . . . , Dm−1w, Dmw). (2.1)

The case l = m will be called symmetric.
A classic example of a (vector-valued) DDE is provided by the completely integrable

Toda lattice [16].

u̇n = vn−1 − vn

v̇n = vn (un − un+1)

for n ∈ Z. The shift operator allows the system to be generated by

u̇0 = v−1 − v0

v̇0 = v0 (u0 − u1)

or, with the convention adopted above,

u̇ = D−1v − v
(2.2)

v̇ = v (u− Du).

This equation has the form of (2.1) with

w =

[

u

v

]

and f(D−1w, w, Dw) =

[

D−1w2 − w2

w2 (w1 − Dw1)

]

.



68 M S Hickman

The total time derivative Dt g of a function g = g(Dpw, Dp+1w, . . . , Dqw) is the time
derivative along solutions of (2.1); that is

Dt g =

q
∑

k=p

∂g

∂Dkw
Dkẇ =

q
∑

k=p

∂g

∂Dkw
Dkf

=

q
∑

k=p

(

Dk(f
∂

∂w
)

)

g =

q
∑

k=p

(DkF ) g

where

F ≡ f
∂

∂w
=
∑

α

fα
∂

∂wα

.

Note that

DkF g = Dk(F D−kg). (2.3)

The total time derivative commutes with the shift operator

Dt Dg =

q+1
∑

k=p+1

(DkF )Dg = D

q
∑

k=p

(DkF ) g = DDt g. (2.4)

Returning to the Toda lattice, the operator F is given by

F = u̇
∂

∂u
+ v̇

∂

∂v
= (D−1v − v)

∂

∂u
+ v (u− Du)

∂

∂v
.

The difference operator, ∆ = D− I, takes the role of a spatial derivative on the shifted
variables as many examples of DDEs arise from discretization of a PDE in (1+1) variables
[12].

A (scalar) function ρ = ρ(Dpw, Dp+1w, . . . , Dqw) is a (conserved) density if there
exists J , called the (associated) flux, such that

Dt ρ+ ∆ J = 0. (2.5)

Equation (2.5) is a local conservation law and, with appropriate boundary conditions, will
give conserved quantity. If

ρ = ∆ψ

then ρ is trivially a density. Also note that if ρ is a density then, by (2.4) Dkρ is also
density. Thus, without loss of generality, we may assume that a density that depends on
q shifts has canonical form ρ(w, Dw, . . . , Dqw).

For example,

ρ = 1
3 u

3 + u(D−1v + v)
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is a density for the Toda lattice since

Dt ρ = (D−1F + F ) ρ

= (D−1v − v) (u2 + D−1v + v) + uD−1(v(u− Du)) + uv(u− Du)

= u2 (D−1v − v) + (D−1v)2 − v2 + uD−1v (D−1u− u) + u2 v − uvDu

= (D−1v)2 − v2 + uD−1vD−1u− uvDu (2.6)

= − ∆
(

(D−1v)2
)

− ∆
(

uD−1vD−1u
)

and so the associated flux is

J = (D−1v)2 + uD−1vD−1u.

The canonical form of this density is

Dρ = 1
3 (Du)3 + Du(v + Dv)

with flux

DJ = v2 + uvDu.

A necessary and sufficient condition for a function g(Dpw, Dp+1w, . . . , Dqw) = ∆h,
a total difference, is [1, 7, 13]

E(g) = 0 (2.7)

where E is the discrete Euler operator (variational derivative)

E(g) =
∂

∂w





q
∑

k=p

D−k g



 ; (2.8)

that is

Eα(g) ≡
∂

∂wα





q
∑

k=p

D−k g



 = 0

for each α.

For the Toda lattice, the Euler operator has two components

E =

[

Eu

Ev

]

=







∂

∂u

∑

D−k

∂

∂v

∑

D−k






.
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Applying this operator to the above example (2.6), we find

Eu(Dt ρ) =
∂

∂u

(

D−1 + I + D
)

Dt ρ

=
∂

∂u

(

− D−1uD−1vu+ uD−1vD−1u− uvDu+ uvDu
)

= 0

Ev(Dt ρ) =
∂

∂v

(

D−1 + I + D
)

Dt ρ

=
∂

∂v

(

v2 − v2 + uvDu − uvDu
)

= 0.

The computation of the total time derivative and the action of the Euler operator are
tasks well suited for a computer algebra system such as Maple or Mathematica.

A necessary condition [7] for (2.7) is

∂2g

∂Dpw∂Dqw
= 0. (2.9)

Note that, in the system case, this equation is a “matrix” equation. If pα is the least shift
and qα is the greatest shift with which the component uα occurs in g, then this necessary
condition reads

∂2g

∂Dpαwα ∂Dqβwβ

= 0

for each α and β.

3 Necessary Conditions for a Density

In this section we will obtain the result:

Theorem 1. Consider the differential-difference equation

ẇ = f(D−lw, D−l+1w, . . . , w, . . . , Dm−1w, Dmw)

for a vector-valued variable w. Let L = max (l,m) and λi, µi be the eigenvalues of

∂f

∂D−Lw
and

∂f

∂DLw

respectively. A necessary condition for the differential-difference equation to have a con-

served density depending on q = pL+ r > L shifts is that

ζ Drµj = − λi D
Lζ

has a non-zero solution ζ for some λi and µj. In particular, if w is a scalar then such

densities can only occur when l = m.

Our method of attack is to first remove terms in our candidate density ρ that contribute
directly to the flux. Rather than applying the Euler operator on the remaining terms in ρ,
we use the necessary condition (2.9) to obtain a system of equations for the the terms that
depend on the maximal shift, Dqw, in ρ. This system is rewritten as a matrix equation.
Solutions (or lack of solutions) to this system will give us the above result.
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3.1 The Initial Split

Lemma 2. Consider the differential-difference equation

ẇ = f(D−lw, D−l+1w, . . . , w, . . . , Dm−1w, Dmw)

for a vector-valued variable w. ρ = ρ(w, Dw, . . . , Dqw) is a density for this differential-

difference equation if and only if

σ = Dl

(

f
∂

∂w

) l
∑

j=0

Djρ+

q
∑

j=l+1

Dj

(

f
∂

∂w

)

ρ

is a total difference.

Proof. We begin by splitting the identity operator

I = (D − I + I)D−1 = ∆ D−1 + D−1. (3.1)

This split is applied to terms in the candidate density ρ that do not depend on the lowest
order shifted variables, ρ∗ say. The first term ∆ D−1 ρ∗ contributes to the flux while the
second term D−1 ρ∗ has a strictly lower shift. Applying this split repeatly we obtain

I = (Dk − I + I)D−k = ∆
(

Dk−1 + Dk−2 + · · · + D + I
)

D−k + D−k (3.2)

where, again, the first term contributes to the flux and the second term has strictly lower
shift.

This decomposition is repeatedly applied to terms that do not involve the lowest order
shifted variables. Any terms that remain will involve the lowest order shifted variable.
These terms yield the constraints on the undetermined coefficients or unknown functions
in the density ρ.

In more detail, assume ρ = ρ(w, Dw, . . . , Dqw). If

∂2ρ

∂Dqw ∂w
= 0

then

ρ(w, . . . ,Dqw) = g1(w, . . . , Dq−1w) + g2(Dw, . . . , Dqw)

= ρ(1)(w, . . . , Dq−1w) + ∆ ρ(2)(w, . . . , Dq−1w)

with

ρ(1) = g1 + D−1g2

ρ(2) = D−1g2.

Thus ρ is, at most, a non-trivial density depending on q−1 shifts. Therefore, without loss
of generality, we may assume

∂2ρ

∂Dqw ∂w
6= 0. (3.3)
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In order to apply the split (3.1) to Dt ρ we must identify terms in Dt ρ that do not
depend on the lowest order shifted variable. Now

Dtρ =

q
∑

k=0

(DkF ) ρ

and the term with the lowest shift is F ρ which depends on D−lw. The other terms,
(DkF ) ρ, will depend on Dk−lw or w (if k > l) and higher shifted variables. Therefore,
applying (3.2) to each of these terms, we obtain

l
∑

k=1

(DkF ) ρ =

l
∑

k=1

(Dk − I + I)D−k((DkF ) ρ)

=

l
∑

k=1

(

∆
(

Dk−1 + Dk−2 + · · · + D + I
)

D−k + D−k
)

(DkF ) ρ

= F

l
∑

k=1

D−kρ+ ∆





l
∑

k=1

k−1
∑

j=0

(

DjF
)

Dj−kρ





= F

l
∑

j=1

D−jρ+ ∆





l
∑

j=1

l−j
∑

k=0

(

DkF
)

D−jρ





and

q
∑

k=l+1

(DkF ) ρ = (Dl − I + I)D−l

q
∑

k=l+1

(DkF ) ρ

=

q
∑

k=l+1

∆





l−1
∑

j=0

(

Dj−l+kF
)

Dj−lρ



+

q
∑

k=l+1

(Dk−lF )D−lρ

=

q−l
∑

k=1

(DkF )D−lρ+ ∆





l
∑

j=1

q−j
∑

k=l+1−j

(

DkF
)

D−jρ



 .

using (2.3). Combining these pieces we obtain

Dt ρ = F ρ+
l
∑

k=1

(DkF ) ρ+

q
∑

k=l+1

(DkF ) ρ

= F

l
∑

j=0

D−jρ+

q−l
∑

k=1

(DkF )D−lρ+ ∆





l
∑

j=1

q−j
∑

k=0

(

DkF
)

D−jρ



 .

The third sum contributes directly to the flux. Thus it is the first two sums that may be
the obstruction to ρ being a density. For convenience, we shift this expression to give

DlDt ρ = (DlF )

l
∑

j=0

Djρ+

q
∑

j=l+1

(DjF ) ρ+ ∆





l−1
∑

j=0

q+l−j
∑

k=l

(DkF )Djρ





= σ + ∆ J
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say. The variable of lowest shift is now w. �

3.2 Leading Integrability Conditions

At this stage J will form part of the flux. Rather than applying the Euler operator (2.8) to
σ, we use the necessary condition (2.9). The resulting equations are most easily expressed
in terms of the Kronecker sum [10, Chapter 13].

Definition. Let R be m × n matrix and S be an arbitrary matrix. The Kronecker (or
direct or tensor) product of R and S is the matrix given by

R⊗ S ≡











R11 S R12 S · · · R1n S

R21 S R22 S · · · R2n S
...

...
. . .

...
Rm1 S Rm2 S · · · Rmn S











.

If R and S are square matrices, Kronecker sum of R and S is given by

R⊕ S ≡ R⊗ I + I ⊗ S

where I is the appropriately sized identity matrix.

The leading integrabilty conditions which follow from (2.9) are the conditions that must
hold on terms in the candidate density that depend on both w and Dqw. However, in the
initial split, all terms that depend on Dqw but not w were shifted. Thus these leading
integrability conditions give all conditions that involve the highest shift variable Dqw.

Theorem 3. Consider the differential-difference equation

ẇ = f(D−lw, D−l+1w, . . . , w, . . . , Dm−1w, Dmw)

for a vector-valued variable w =
[

w1 w2 · · · wN

]T
. Let L = max (l,m). For a

density ρ that depends on q > L shifts, the leading integrability conditions are

SX ≡

[(

Dl

(

∂f

∂D−Lw

)T

Dl

)

⊕ Dq

(

∂f

∂DLw

)T
]

X = 0 (3.4)

where X is a vector with N2 components given by

X =











X1

X2
...

XN











with Xj =
∂2ρ

∂wj ∂Dqw
=























∂2ρ

∂wj ∂Dqw1

∂2ρ

∂wj ∂Dqw2
...

∂2ρ

∂wj ∂DqwN























.
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Proof. From Lemma 2, the obstruction for ρ to be a density is that

σ = Dl

(

f
∂

∂w

) l
∑

j=0

Djρ+

q
∑

j=l+1

Dj

(

f
∂

∂w

)

ρ

be a total difference. All terms in both sums depend on w which is the variable of lowest
shift. The term with maximum shift in first sum is j = l which depends on Dq+lw

(assuming q > m) and the term with maximum shift in second sum occurs when j = q

which depends on Dq+mw. Now

∂σ

∂w
=

(

∂

∂w
Dlf

)

∂

∂Dlw

l
∑

j=0

Djρ+ Dlf
∂2

∂w ∂Dlw

l
∑

j=0

Djρ+

q
∑

j=l+1

(Djf)
∂2ρ

∂w ∂Djw

=

(

∂

∂w
Dlf

)

∂

∂Dlw

l
∑

j=0

Djρ+

q
∑

j=l

(Djf)
∂2ρ

∂w ∂Djw
.

In terms of components, this equation reads

∂σ

∂wβ

=
∑

α



(
∂

∂wβ

Dlfα)
∂

∂Dlwα

l
∑

j=0

Djρ+

q
∑

j=l

∂2ρ

∂wβ ∂Djwα

Djfα



 .

In the asymmetric case l > m, (2.9) gives

∂2σ

∂Dq+lw∂w
= Dl

(

∂2ρ

∂Dqw∂w

∂f

∂D−lw

)

= 0

with

∂f

∂D−lw
≡













∂f1

∂D−lw1

∂f1

∂D−lw2
· · ·

∂f1

∂D−lwN
...

...
. . .

...
∂fN

∂D−lw1

∂fN

∂D−lw2
· · ·

∂fN

∂D−lwN













and

∂2ρ

∂Dqw ∂w
≡















∂2ρ

∂Dqw1 ∂w1

∂2ρ

∂Dqw1 ∂w2
· · ·

∂ρ

∂Dqw1 ∂wN
...

...
. . .

...
∂2ρ

∂DqwN ∂w1

∂2ρ

∂DqwN ∂w2
· · ·

∂2ρ

∂DqwN ∂wN















where N is the number of components of w. Therefore, if

∂f

∂D−lw

has full rank, (3.3) implies that there are no non-trivial densities depending on q > l shifts.
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Similiarly, for the case l < m, (2.9) gives

∂2σ

∂Dq+mw ∂w
=

∂2ρ

∂w ∂Dqw
Dq ∂f

∂Dmw
= 0.

Again, if

∂f

∂Dmw

has full rank, (3.3) implies that there are no non-trivial densities depending on q > m

shifts. In particular, the scalar case will have no non-trivial densities for q > max (l, m)
unless it is symmetric.

For the symmetric case, we have

∂2σ

∂Dq+lw∂w
= Dl

(

∂2ρ

∂Dqw∂w

∂f

∂D−lw

)

+ Dq

(

∂f

∂Dlw

)T
∂2ρ

∂Dqw ∂w

and so (2.9) gives (after a transpose)

Dl

(

∂f

∂D−lw

)T

Dl ∂2ρ

∂w ∂Dqw
+

∂2ρ

∂w ∂Dqw
Dq(

∂f

∂Dlw
) = 0. (3.5)

This system may be rewritten as a linear system for the vector unknown X given in

Theorem 3. XT is formed by the concatenation of the rows of
∂2ρ

∂w ∂Dqw
. The system

(3.5) becomes [10]

[(

Dl

(

∂f

∂D−lw

)T

Dl

)

⊕ Dq

(

∂f

∂Dlw

)T
]

X = 0.

Note that this also covers the asymmetric cases when one of the factors is 0. �

For the Toda lattice (2.2), we have

∂f

∂D−1w
=

[

0 1
0 0

]

and
∂f

∂Dw
=

[

0 0
− v 0

]

.

and so the leading integrability condition (3.4) is









0 − Dqv 0 0
0 0 0 0
D 0 0 − Dqv

0 D 0 0































∂2ρ

∂u ∂Dqu
∂2ρ

∂u ∂Dqv
∂2ρ

∂v ∂Dqu
∂2ρ

∂v ∂Dqv























= 0.
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Thus

∂2ρ

∂u ∂Dqu
= Dq−1v c

∂2ρ

∂u ∂Dqv
= 0 (3.6)

∂2ρ

∂v ∂Dqv
= Dc

where c = c(w,Dw, . . . ,Dq−1w) with the remaining derivative arbitrary.

3.3 Necessary Conditions

It is clear that if the coefficient matrix, S, in (3.4) has a zero eigenvalue then the eigenspace
associated with this eigenvalue will be a solution to (3.4). However, since the shift operator
appears in S, eigenvalues may depend on D. In this case the eigenvalue may have a non-
trivial kernel which will lead to other solutions (in the case of the Toda lattice, there are
no other solutions).

Lemma 4. Let A and B be square matrices with eigenvalues λi, µj respectively. Then

the eigenvalues of A⊕B are given by λi + µj. Furthermore, let

Ai = A− λi I

Bj = B − µj I

and x̃, ỹ be non-zero solutions of

A2
i x̃ = 0 and B2

j ỹ = 0.

Then the eigenvectors of A⊕B associated with λi + µj are

x̃⊗ ỹ

if x̃ is an eigenvector of A and ỹ is an eigenvector of B and

z = Ai x̃⊗ ỹ − x̃⊗ Bj ỹ. (3.7)

if neither x̃ nor ỹ are eigenvectors.

Proof. Suppose the eigenvalues of A are λi with associated eigenvectors x(i) and the
eigenvalues of B are µi with associated eigenvectors y(i). Since ⊗ is a tensor product, we
have

[A⊕B]x(i) ⊗ y(j) = Ax(i) ⊗ y(j) + x(i) ⊗B y(j) = (λi + µj)x
(i) ⊗ y(j).

Thus the eigenvalues of A⊕B are µi+λj with associated eigenvectors x(i)⊗y(j). If neither
A nor B is defective, this gives the complete set of eigenvectors.

Suppose A is defective and that x̃ is a generalized eigenvector associated with the
defective eigenvalue λi; that is

Ak
i x̃ = 0 with Ak−1

i x̃ 6= 0
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for some integer k > 1. Note that

[A⊕B − (λi + µj) I ⊗ I]k = [Ai ⊗ I + I ⊗ Bj]
k =

k
∑

m=0

(

k

m

)

Am
i ⊗ Bk−m

j

since

(A⊗ I) (I ⊗B) = A⊗B = (I ⊗B) (A⊗ I)

for any matrices A and B. Therefore

[A⊕B − (λi + µj) I ⊗ I]k x̃⊗ y(j) = 0

and so x̃ ⊗ y(j) is a generalized eigenvector of A ⊕ B. Similiarly, if B is defective with
a generalized eigenvector ỹ then x(i) ⊗ ỹ will be generalized eigenvectors of A⊕ B. Note
that these generalized eigenvectors can never become true eigenvectors.

If both A and B are defective with generalized eigenvectors

Ak1

i x̃ = 0 and Bk2

j ỹ = 0

then

[A⊕B − (λi + µj) I ⊗ I]k1+k2−1 x̃⊗ ỹ = 0

since the second factor will vanish for terms in the sum with m < k1 (k1 + k2 − 1 −

m ≥ k2) and the first factor will vanish for the remaining terms. Therefore x̃ ⊗ ỹ is
a generalized eigenvector. However, in this case, it may be possible to construct some
genuine eigenvectors. Note that (A − λi I)m x̃ is a generalized eigenvector for each m =
0, . . . , (k1 − 2) and, in fact, is an eigenvector for m = k1 − 1. Consider the vector

z = Ak1−1
i x̃⊗ Bk2−2

j ỹ −Ak1−2
i x̃⊗ Bk2−1

j ỹ. (3.8)

We have

[A⊕B − (λi + µj) I ⊗ I] z = [Ai ⊕ Bj] z

= 0 ⊗ Bk2−2
j ỹ + Ak1−1

i x̃⊗ Bk2−1
j ỹ

−Ak1−1
i x̃⊗ Bk2−1

j ỹ −Ak1−2
i x̃⊗ 0

= 0.

Therefore z is an eigenvector. Note that, if k1 > 2 then Ai x̃ is also a generalized eigen-
vector. However the eigenvector generated by it will be the same as that generated by x̃.
Therefore the linearly independent eigenvectors will be generated by the solutions of

A2
i x̃ = 0 and B2

j ỹ = 0

which are not eigenvectors. With these choices, (3.8) becomes (3.7). �
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Lemma 5. Let A be a square matrix with eigenvalues λi and associated eigenvectors x(i).

Then the matrix DqA has eigenvalues Dqλi with associated eigenvectors Dqx(i) and the

matrix DlADl has eigenvalues Dlλi Dl with associated eigenvectors x(i). Moreover the

eigenvectors (3.7) of Dlλi D
l ⊕ DqB are

z = Dl (Ai x̃) ⊗ Dq ỹ − x̃D−l ⊗ DqBj Dqỹ. (3.9)

Proof. We have

(DqA) Dqx(i) = Dq(Ax(i)) = Dqλi D
qx(i)

and so the eigenvalues of DqA are Dqλi with associated eigenvectors Dqx(i). Furthermore

(

Dl(A)Dl
)

x(i) = Dl
(

Ax(i)
)

= Dl
(

λi x
(i)
)

=
(

Dlλi Dl
)

x(i)

and so the eigenvalues of Dl(A)Dl are Dlλi D
l with associated eigenvectors x(i).

Finally note that

[DlAi D
l] Dl (Ai x̃) = 0

since Dl (Ai x̃) is an eigenvector of DlAi D
l and

DqBj DqBj Dqỹ = Dq(B2
j ỹ) = 0.

Therefore

[DlAi D
l ⊕ DqBj] z = Dl(Ai x̃) ⊗ DqBj Dq ỹ − Dl(Ai x̃) ⊗ DqBj Dq ỹ = 0.

�

For the Toda lattice, the eigenvalues are all zero. The eigenvectors are
[

0 1
]T

,
[

1 0
]T

and the generalized eignvectors are
[

1 0
]T

,
[

0 1
]T

for

A =

(

∂f

∂D−1w

)T

=

[

0 0
1 0

]

and

B = Dq

(

∂f

∂Dw

)T

=

[

0 − Dqv

0 0

]

respectively. The eigenvalue 0 of S will have two eigenvectors

[

0
1

]

⊗

[

1
0

]

=









0
0
1
0








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and, from (3.9),

D

(

A

[

c

0

])

⊗

[

0
1

]

−

[

c

0

]

D−1 ⊗ B

[

0
1

]

=









cDq−1v

0
0

Dc









.

Note that the presence of the shift operator in the first factor necessiates that the “con-
stant” c, which could be a function of w and its shifts, be included explicitly in the
generalized eigenvector x̃. The resultant integrability conditions are clearly the same as
(3.6).

We are now in a position to complete the proof of Theorem 1. Returning to (3.4), let

λi, x
(i) and µi, y

(i) be the eigenvalues and associated eigenvectors of

(

∂f

∂D−Lw

)T

and

(

∂f

∂DLw

)T

respectively. The eigenvalues of S are

DLλi D
L + Dqµj . (3.10)

For (3.4) to have a non-trivial solution, at least one of the eigenvalues (3.10) must have a
non-trivial kernel in which case

X = c z (3.11)

where z is an eigenvector associated with the eigenvalue and

[

DLλi D
L + Dqµj

]

c = 0

will be a solution to (3.4).

Note that S will have a zero eigenvalue if and only if both
∂f

∂D−Lu
and

∂f

∂DLu
have zero

eigenvalues. In this case (3.10) is trivial and (3.11) will be a solution for arbitrary c. On
the other hand, if either λi or µj is zero (but not both) then (3.10) has a trivial kernel.

Suppose neither λi nor µj are zero and q = pL+ r with p, r integers, 0 ≤ r ≤ L− 1.
Let

c =

(

p−1
∏

k=1

DkLλi

)

DpLζ

and so

[

DLλi D
L + Dqµj

]

c = DLλi

(

p
∏

k=2

DkLλi

)

D(p+1)Lζ + DpL+rµj

(

p−1
∏

k=1

DkLλi

)

DpLζ

=

p−1
∏

k=1

DkLλi

(

DpLλi D
(p+1)Lζ + DpL+rµj DpLζ

)

=

p−1
∏

k=1

DkLλi D
pL
(

λi DLζ + ζ Drµj

)

.
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Therefore c will be in the kernel of (3.10) if and only if

ζ Drµj = − λi D
Lζ. (3.12)

This completes to proof of Theorem 1.

Corollary 6. Suppose that

ζ Drµj = − λi D
Lζ

has a non-zero solution, ζ. Then

DLλj DL + DmL+rµi

will have a one dimensional kernel generated by

c =

(

m−1
∏

k=1

DkLλj

)

DmLζ. (3.13)

for each m = 0, 1, 2, . . ..

Proof. Note that if (3.12) has a non-zero solution for some r then, by the proof of The-
orem 1, (3.13) will lie in the kernel of

DLλj DL + Dqµi

for any q = mL+r, m = 0, 1, 2, . . .. It remains to show that the kernel is one-dimensional.
Let λi = α ζ for some α. Then Drµj = −αDLζ. Moreover, since the eigenvalues are func-
tions of D−Lw, . . . , DLw then α = α(D−L+rw, . . . , DLw) and ζ = ζ(D−Lw, . . . , Drw).
Suppose ζ ′ is another non-zero solution of (3.12) then

− ζ ′αDLζ = −α ζ DLζ ′

and so

ζ ′

ζ
= DL

(

ζ ′

ζ

)

.

Thus ζ ′ = aζ for some constant a (since L 6= 0). Therefore the kernel is 1-dimensional. �

4 Examples

Bogoyavlenskii Lattice

The Bogoyavlenskii lattice [4] is a given by [14, Eq. (17.1.2)]

u̇ = u





p
∏

j=1

Dju−

p
∏

j=1

D−ju




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is a generalization of the Kac-van Moerbeke lattice [9, 8]

u̇ = u(Du− D−1u).

Here L = p and

∂f

∂D−pu
= λ = −

p−1
∏

j=0

D−ju

∂f

∂Dpu
= µ =

p−1
∏

j=0

Dju.

Therefore, for a density that depends on q > p shifts, the leading integrability conditions
(3.4) are given by

S
∂2ρ

∂u ∂Dqu
= 0

with

S = DpλDp + Dqµ = −





p−1
∏

j=0

Dp−ju



Dp +

p−1
∏

j=0

Dq+ju.

The kernel of S will be generated by the solution of (3.12)

ζ

p−1
∏

j=0

Dr+ju =





p−1
∏

j=0

D−ju



Dpζ

for r = 0, 1, . . . , p− 1 which is

ζ =
r−1
∏

j=−(p−1)

Dju.

Thus the kernel is generated by (with q = mp+ r)

c =

(

m−1
∏

k=1

Dkpλ

)

Dmpζ = (−1)m−1
q−1
∏

k=1

Dku.

Therefore the density may be choosen so that

∂2ρ

∂u ∂Dqu
=

q−1
∏

k=1

Dku

and so, if it exists, has the form

ρ =

q
∏

k=0

Dku+ ρ(1)(u, Du, . . . , Dq−1u).
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For the case p = 2, the lowest order densities with q > 2 are

ρ3 = uDuD2uD3u+ u (Du)2 D2u+ 1
2 u

2 (Du)2

ρ5 = uDuD2uD3uD4uD5u+ u (Du)2 D2uD3uD4u+ uDuD2u (D3u)2 D4u

+ (uDu)2 D2uD3u+ u (DuD2u)2 D3u+ uDu (D2uD3u)2

+ u2 (Du)3 D2u+ u (Du)3 (D2u)2 + 1
3 u

3 (Du)3

which illustrate the general form obtained above.

Shifted Modified Volterra Lattice

Consider the modified Volterra Lattice [8] in which the right hand side has been shifted

u̇ = u2 (Dsu− D−su)

with s > 0. In this case, (3.12) is

− ζDru2 = − u2 Dsζ.

For r = 0 this equation has the solution ζ = 1 for all s. However a non-zero solution does
not exist for any other r < s. Thus this DDE can only have densities for q = ps shifts.

Belov-Chaltikian Lattice

The Belov-Chaltikian lattice [2, Eq. (12)] is a given by

u̇ = u(Du− D−1u) + D−1u− v

v̇ = v(D2u− D−1u)

This is an asymmetric lattice for the vector variable

w =

[

u

v

]

.

The condition for a density that depends on q > 2 shifts to exist is that

∂f

∂D2w
=

[

0 0
0 v

]

has a zero eigenvalue. This is clearly the case. The eigenvector (of the transpose) associ-
ated with 0 is

[

1
0

]

and so the eigenvectors of S associated with 0 are

[

1
0

]

⊗

[

1
0

]

=









1
0
0
0









,

[

0
1

]

⊗

[

1
0

]

=









0
0
1
0








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(remember that the 2 × 2 zero matrix has two eigenvctors associated with 0). Thus the
leading integrability conditions are

∂2ρ

∂u ∂Dqv
=

∂2ρ

∂v ∂Dqv
= 0;

that is, the density must have the form

ρ = g(w, Dw, . . . , Dq−1w)Dqu+ ρ(1)(w, Dw, . . . , Dq−1w).

This form is demonstrated in the rank 4 density given in [11].

Blaszak-Marciniak Three Field Lattice I

The Blaszak-Marciniak three field lattice as given in [11, Eq. (2)] is

ẋ = Dz − D−1z

ẏ = D−1xD−1z − xz (4.1)

ż = z (y − Dy).

Let

w =





x

y

z





and thus

A =

(

∂f

∂D−1w

)T

=





0 D−1z 0
0 0 0
−1 D−1x 0





B =

(

∂f

∂Dw

)T

=





1 0 0
0 0 −z

0 0 0



 .

A has a triple eigenvalue 0 with a single eigenvector
[

0 0 1
]T

. The generalized eigen-

vector x̃ =
[

c 0 0
]T

is the solution of A2 x = 0. B has double eigenvalue 0 with

only one eigenvector
[

0 1 0
]T

a simple eigenvalue 1. The generalized eigenvector

ỹ =
[

0 0 1
]T

is the solution of B2 x = 0. Therefore the Kronecker sum S has a 6-fold
eigenvalue 0 and a triple eigenvalue 1. The integrability conditions will be given by the
eigenvectors associated with 0. There are two such eigenvectors; one generated by the
eigenvectors





0
0
1



⊗





0
1
0




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and one generated by the generalized eigenvectors via (3.9)

D(A x̃) ⊗ Dqỹ − x̃D−1 ⊗ DqBDqỹ =





0
0

−Dc



⊗





0
0
1



−





c

0
0



⊗





0
−Dq−1z

0



 .

Therefore the leading integrability conditions are

∂2ρ

∂x ∂Dqy
= − c1 Dq−1z

∂2ρ

∂z ∂Dqy
= c2

∂2ρ

∂z ∂Dqz
= − Dc1

with all other second order derivatives zero. The rank 4 density for this lattice [11, 18] is
(after shifts)

1
4 y

4 + 1
2 x

2 z2 + (xDx− y − Dy − D2y) zDz + x yDy z + x (Dy)2 z + x y2 z

which satisfies the leading integrablity conditions with c1 = 0 and c2 = − Dz.
In [3, Eq. (3.23)] this lattice is given by

ẋ = D2z − z

ẏ = xDz − zD−1x

ż = z (y − D−1y)

(the form (4.1) may be obtained by y 7→ − y and z 7→ D−1z). In this form, the lattice is
asymmetric and so the leading integrability conditions are determined by

∂f

∂D2w
=





0 0 1
0 0 0
0 0 0



 .

The transpose of this matrix has a triple eigenvalue 0 with two eigenvectors. However
this yields six eigenvectors associated with 0 for S. Therefore the resultant intergrability
conditions give only three zero derivatives; they are a subset of those derived for the
symmetric form.

5 Conclusion

There is an extensive literature on the subject of integrable differential-difference equa-
tions. Most of this literature is focused on the construction of integrable systems. For a
symmetry approach see the work of Yamilov and his coworkers [1, 12, 13, 17] and papers
cited therein, [14] for an exhaustive discussion of the Hamiltonian approach and [15] for
Jacobi operator approach. In contrast, this paper examines the integrability or lack of
integrability of a lattice directly.
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This approach is useful to compute densities and their associated flux for systems that
are not completely integrable. With the initial split, not only a candidate for the density
is constructed but its associated flux is simultaneously updated. This would avoid the
need for the use of discrete homotopy operators [6] to compute fluxes if a density was
determined purely from an application of the Euler operator. An additional advantage is
the relative ease with which the leading conditions may be integrated.

Lower order integrability conditions may also be found by this approach. Integration
of the leading conditions splits the candidate density

ρ = ρ̃+ ρ(1)(w, Dw, . . . , Dq−1w).

The next condition is similar to (3.5) but with a non-zero right hand side

DL

(

∂f

∂D−Lw

)T

Dl ∂2ρ(1)

∂w ∂Dq−1w
+

∂2ρ(1)

∂w ∂Dq−1w
Dq−1(

∂f

∂Dlw
) = K(ρ̃)

for q − 1 > L. The left hand side again has the structure of a Kronecker sum. Now
we require that K(ρ̃) lie in the column space of this Kronecker sum. Integration of this
conditions yields a split of ρ(1). A similar form is shared by the integrability conditions
for q − s > L. However the computation of the right hand sides for specific equations
quickly becomes a task for an algebraic program such as Maple or Mathematica and
there appears little to gain from attempting these calculations for the general case. Term
explosion is polynomial in nature. Thus the resources required are on a par with Lie
symmetry programs.

Another approach to the computation of densities is described in [5]. In this approach it
is assumed that a scaling symmetry is present and that the densities depend polynomially
on w and its shifts. Under these assumptions, they reduce the determining equations for
a density to a (potentially, very large) linear algebraic system of equations. Part of the
problem here is that the shifts of a variable all have the same weight under the scaling
symmetry. They have no way a priori to limit the shifts in their candidate density of a
given rank. However one can now limit the number of shifts required by computing the
rank of ρ̃ which then gives the minimum rank that requires q shifts. This, in turn, reduces
the size of the system of linear equations that determine the density.
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