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Abstract

The superposition formulas for solutions of integrable vector evolutionary equations on
a sphere are constructed by means of auto-Bäcklund transformation. The equations
under consideration were obtained earlier by Sokolov and Meshkov in the frame of the
symmetry approach.

1 Introduction

In work [1], a classification of vector integrable evolution equations of the form

zt = zxxx +
3

2

(

ln f2

)

x
zxx + f1 zx + f0z, z

2 = 1 (1.1)

was presented. Here z(x, t) is N -component vector of Euclidean space V with the standard
scalar product (·, ·) and f2 = f2(z,zx), f1 = f1(z,zx,zxx), f0 = f0(z,zx,zxx) are scalar
functions. The special form of the second coefficient in the right hand side of (1.1) is
followed from the integrability conditions (for more details see [1]).

If functions fi depend on scalar variables that are constructed by product (·, ·) only,
then eq.(1.1) is called isotropic. If we extend the set of dynamical variables by adding
the variables 〈x,y〉 = (x, Ry), where R is a constant symmetric matrix, then eq.(1.1) is
called anisotropic.

According to [1] there exist four different isotropic equations of form (1.1):

zt = zxxx − 3
(zx,zxx)

z2
x

zxx +
3

2

(

z
2
xx

z2
x

+
(zx,zxx)2

z4
x (1 + az2

x)

)

zx, (1.2)

zt = zxxx +
3

2

(

a2 (zx,zxx)
2

1 + az2
x

− a (z2

xx − z
4

x) + z
2

x

)

zx + 3 (zx,zxx)z, (1.3)

zt = zxxx +
3

2
Dx

(

ln
1 + z

z2
x

)

zxx − 3

2

(1 − z) (zx,zxx)

z
z+

+
3

2

(

(1 + z)z
2
xx

z2
x

− a (1 + z) (zx,zxx)
2

z2 z2
x

+ z
2

x (1 − z)

)

zx, z
2 = 1 + az

2

x,

(1.4)

zt = zxxx − 3
(zx,zxx)

z2
x

zxx +
3

2

z
2
xx

z2
x

zx. (1.5)
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There are some other articles devoted to the vector equation in R
n having the form

of conservation laws were presented in [2], and a special case was considered in [3]. In-
tegrable anisotropic evolutionary equations on the n-dimensional sphere were classified in
[4]. However, superposition formulas were found only for a few equations, namely for the
vector Schwarz-KdV [2], two generalizations of the mKdV [5], and the Landau-Lifshitz
generalization [6].

In this paper we construct superposition formulas for eqs.(1.2), (1.3), for a special case
of (1.4), and for the anisotropic Schwartz-KdV equation. In section 2 the constructing
method of a superposition formulas is described in detail by example of an anisotropic
equation. It will be shown that this equation is connected with the vector generalization of
the Landau-Lifshitz equation. Section 3 is dedicated to eqs.(1.2) – (1.4). The superposition
formula for the anisotropic Schwartz-KdV equation and some properties of the vector
Schwartz-KdV (1.5) are studied in section 4.

2 Algorithm of calculations

Proposition 1. If an integrable vector equation of the form (1.1) has the auto-Bäcklund
transformation (ABT)

yx = f zx + g y + hz, (2.1)

where f, g, and h are scalar functions of variables y,z,yx, and zx, then

f =
√

f2(z, zx) f2(y, yx)−1.

The proposition may be checked by a direct calculation. Firstly, we denote two equa-
tions of the form (1.1) as zt = F (z) and yt = F (y). Secondly, we differentiate (2.1) with
respect to t in virtue of these equations. Then excluding vector yx and all its x-derivatives,
we obtain an identity with respect to vector variables y,zx, zxx and zxxx. By equating
the terms with zxxx to zero one can find that f =

√

f2(z, zx) f2(y, yx)
−1.

Below we demonstrate how to construct a superposition formula (SF) for the anisotropic
integrable equation

zt = zxxx − 3
(zx,zxx)

z2
x

zxx +
3

2

(

z
2
xx

z2
x

+
(zx,zxx)

2

z4
x

+
〈zx〉2
z2

x

)

zx, (2.2)

and its auto-Bäcklund transformation [1]:

yx =

(
√

µ (1 + (y,z)) − 〈y + z〉2
z2

x

− 1

)

(

zx − (y,zx)

1 + (y,z)

(

y + z
)

)

. (2.3)

Here and hereafter the abbreviations 〈w,w〉 = 〈w〉2 and (w,w) = w
2 are used.

According to Prop. 1, if y and z are solutions of (2.2) associated with transformation
(2.3), then the following relation

√

µ(1 + (y,z)) − 〈y + z〉2 =
√

y2
x +

√

z2
x (2.4)

is satisfied.
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By a direct calculation we find that the equation

µ (1 + (y,z)) − 〈y + z〉2
z2

x

=

(

(ỹ − z̃)(1 + (y,z))

(y,zx)

)2

, (2.5)

where

z̃ =
1

2
D−1

x

(

z
2
xx

z2
x

− (zx,zxx)
2

z4
x

+
〈zx〉2
z2

x

)

, ỹ =
1

2
D−1

x

(

y
2
xx

y2
x

− (yx,yxx)2

y4
x

+
〈yx〉2
y2

x

)

,

is compatible with eqs.(2.2) and (2.3). In other words, if we differentiate (2.5) with respect
to t in virtue of (2.2) or if we take the total x-derivative of (2.5), then using (2.3), (2.5),
and its differential consequences we get an identity.

We start from the usual assumption that the diagram

u
ν−−−−→ q

µ

x





x





µ

p −−−−→
ν

v

(2.6)

for the ABT (2.3) is commutative [7]. Here p,u,v,q are vector solutions of (2.2) and µ,
ν are parameters. This means that the four vector equations

ux =

(
√

µ (1 + (u,p)) − 〈u + p〉2
p2

x

− 1

)

(

px − (u,px)

1 + (u,p)

(

u + p
)

)

,

vx =

(
√

ν (1 + (v,p)) − 〈v + p〉2
p2

x

− 1

)

(

px − (v,px)

1 + (v,p)

(

v + p
)

)

,

qx =

(
√

ν (1 + (q,u)) − 〈q + u〉2
u2

x

− 1

)

(

ux − (q,ux)

1 + (q,u)

(

q + u
)

)

,

qx =

(
√

µ (1 + (q,v)) − 〈q + v〉2
v2

x

− 1

)

(

vx − (q,vx)

1 + (q,v)

(

q + v
)

)

,

(2.7)

and the eight scalar equations

√

u2
x +

√

p2
x =

√

µ(1 + (u,p)) − 〈u + p〉2,
√

v2
x +

√

p2
x =

√

ν(1 + (v,p)) − 〈v + p〉2,
√

q2
x +

√

u2
x =

√

ν(1 + (q,u)) − 〈q + u〉2,
√

q2
x +

√

v2
x =

√

µ(1 + (q,v)) − 〈q + v〉2,

(2.8)
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µ (1 + (u,p)) − 〈u + p〉2
p2

x

=

(

(ũ− p̃)(1 + (u,p))

(u,px)

)2

,

ν (1 + (v,p)) − 〈v + p〉2
p2

x

=

(

(ṽ − p̃)(1 + (v,p))

(v,px)

)2

,

ν (1 + (q,u)) − 〈q + u〉2
u2

x

=

(

(q̃ − ũ)(1 + (q,u))

(q,ux)

)2

,

µ (1 + (q,v)) − 〈q + v〉2
v2

x

=

(

(q̃ − ṽ)(1 + (q,v))

(q,vx)

)2

,

(2.9)

are satisfied.
From (2.7) we find:

ϕpx + ϕ1 q + ϕ2 u + ϕ3 v + ϕ4 p = 0. (2.10)

Taking into account (2.8), we have ϕ ≡ 0 and ϕi are some functions of scalar variables
contained in eqs.(2.7). From (2.9) we find variables (q,vx), (q,ux), (u,px), (v,px) and
substitute them into (2.10). Then we multiply this equation by the vectors u, v, p, q and
obtain eight equations: four equations that are constructed by product (·, ·) and the other
four ones are constructed by product 〈·, ·〉. Solving these equations and eqs.(2.8) we find
all zero order scalar products with q and q̃, q

2
x. Substituting all obtained quantities in

(2.10) we have the SF for solutions of (2.2)

q =

(

u − v
)2
(

ξ η p +
(

ν ′ − µ′
) (

η
(

v + p
)2

u − ξ
(

u + p
)2

v
)

)

(

ξ (u + p)2 − η (v + p2)
)2

, (2.11)

where

ξ = 〈u − v〉2 − µ′
(

u − v
)2

+ ψ2, η = 〈u − v〉2 − ν ′
(

u − v
)2

+ ψ2,

ψ =

√

µ′
(

u + p
)2 − 〈u + p〉2 −

√

ν ′
(

v + p
)2 − 〈v + p〉2, µ = 2µ′, ν = 2 ν ′.

In the last step to check the validity of (2.11) we differentiate it with respect to t in
virtue of (2.2). With the help of (2.11) we exclude q from this equation as well as all its
x-derivatives and all scalar products containing them. Then using the first two equations
(2.7) we can see that (2.11) is identically satisfied. All these tedious calculations were
performed on the computer [8]. In detail these steps are described in [5].

Expression (2.11) coincides with the SF of the vector generalization of the Landau-
Lifshitz equation [6]. It was proved in [4] that (2.2) is integrable in R

n. The divergent
form of (2.2) in R

n is

zt = Dx

(

zxx − 3
(z,zx)

z2
zx +

3

2

(

z
2
x

z2
+

(z,zx)2

z4
+

〈z〉2
z2

)

z

)

. (2.12)

If we pass on to the coordinates {y = z r−1, r =
√

z2} in (2.12) then the equation is
equivalent to the system of one vector and one scalar equation, where the vector equation
for y is the generalization of the Landau-Lifshitz equation

yt = Dx

(

yxx +
3

2
(yx,yx)y

)

+
3

2
〈y〉2 yx, y

2 = 1.
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3 Isotropic case

The ABT for (1.2) has the form [1]:

yx = f

(

zx − (y,zx)

ϕ
(y + z)

)

,

f =
√

µϕ
(

1 + (az2
x)−1

) (

µϕ+ 2
)

−
(

1 + µϕ
)

, ϕ = 1 + (y,z).

(3.1)

From Prop. 1 it follows that the relation

y
2
x

z2
x

= f2 (3.2)

holds. By a direct calculation we establish that the equation

ỹ − z̃ = −2 (y,zx)
1 + f

ϕ
, (3.3)

where

ỹ = D−1

x

(

y
2
xx

y2
x

− (yx,yxx)
2 (1 + 2 ay

2
x)

y4
x (1 + ay2

x)

)

, z̃ = D−1

x

(

z
2
xx

z2
x

− (zx,zxx)
2 (1 + 2 az

2
x)

z4
x (1 + az2

x)

)

is compatible with eqs.(1.2) and (3.1).
Then the ABT (1.2) can be written in the symmetric form as

yx
√

y2
x

− zx
√

z2
x

=
ỹ − z̃

2(
√

z2
x +

√

y2
x)

(y + z).

We denote sinh2 y = ay
2
x and sinh2 z = az

2
x for simplicity. With the new notations,

eqs.(3.2) and (3.3) become

ϕ =
cosh(y + z) − 1

µ
, ỹ − z̃ = 2µ (y,zx)

(

1 − sinh(y + z)

tanh z (cosh(y + z) − 1)

)

.

The algorithm of the further calculations is similar to the one presented above. The
SF for solutions of (1.2) reads

q =
(u − v)4

ζ1 ζ2

(

µ ν ξ η p + 4 (µ− ν)
(

ν ξ sinh2(u+ p)v − µ η sinh2(v + p)u
)

)

,

where

ξ = µ (u − v)2 + 4 sinh2(u− v), η = ν (u − v)2 + 4 sinh2(u− v),

ζ1 = ξ + η + ξ η − ξ eu−v − η ev−u + e−p (e−v − e−u) (ξ − η),

ζ2 = ξ + η + ξ η − ξ ev−u − η eu−v + ep (ev − eu) (ξ − η),

sinh2 u = au
2

x, sinh2 v = av
2

x, sinh2 p = ap
2

x.

In the last expression it is possible to exclude variables u, v, and p using relations

cosh(u+ p) = 1 + µ (1 + (u,p) ), cosh(v + p) = 1 + ν (1 + (v,p) ).
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Now we consider the ABT for (1.3) from [1]:

yx = −zx +

(

(y,zx) (1 − µa (y,z))

1 + (y,z)
− (y,z) f

)

y +

(

(y,zx)(1 + µa)

1 + (y,z)
+ f

)

z,

f2 =
µ
(

4 + µa (y − z)2
) (

1 + az
2
x

)

(y + z)2
.

(3.4)

By a direct calculation, we have found that the expression

(y,zx) = − ỹ − z̃ + 2 (1 + (y,z)) f

2µa
(3.5)

is compatible with eqs.(1.3) and (3.4). Here

ỹ = D−1

x

(

a (y2

xx − y
4

x) − a2(yx,yxx)2

1 + ay2
x

− y
2

x

)

,

z̃ = D−1

x

(

a (z2

xx − z
4

x) − a2(zx,zxx)2

1 + az2
x

− z
2

x

)

.

Further, we substitute (3.5) in (3.4) and take the square of both sides of the equation.
Using y

2 = z
2 = 1 and (y,yx) = 0 we find f . The result is the ABT (3.4) in the symmetric

form

yx + zx =
ỹ − z̃

4
(y − z) − y

2
x − z

2
x

ỹ − z̃
(y + z). (3.6)

Substituting the obtained f into (3.5) we have the following expressions

(y,zx) =
1

4
(2 − ϕ) (ỹ − z̃) − ϕ

ỹ − z̃
(y2

x − z
2

x),

and

ϕ =
2 (ỹ − z̃)2 (1 + µa)

µ (4 (y − z)2 + a (ỹ − z̃)2)
,

where ϕ = 1 + (y,z), y2 = 1 + ay
2
x, and z2 = 1 + az

2
x.

The SF for solutions of (1.3) is

q =
ξ − η

F −G
p +

G− η

F −G
u − F − ξ

F −G
v ,

where

F = ξ − 2 (ν − µ) (ξ − η) (a+ ξ2)

µ
(

ν (1 − (u,v)) (a + η2) (a+ ξ2) − 2 (ξ − η)2(1 + a ν)
) ,

G = η − 2 (ν − µ) (ξ − η) (a+ η2)

ν
(

µ (1 − (u,v)) (a+ η2) (a+ ξ2) − 2 (ξ − η)2(1 + aµ)
) ,

η2 =
2 + aµ (1 − (u,p) )

4µ (1 + (u,p) )
, ξ2 =

2 + a ν (1 − (v,p) )

4 ν (1 + (v,p) )
.
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Let us turn to eq. (1.4). The ABT for (1.4) has the form [1]:

yx = ψ

(

zx − (y,zx)y + µ

(

z − 1 +
(y,zx) (ϕ + (y,z))

µ (1 − (y,z)2)

)

(

z − (y,z)y

)

)

,

ψ =
aµ (y,zx)

z − 1
+ ϕ, ϕ2 = 1 + aµ2 (1 − (y,z)2).

(3.7)

It follows from Prop. 1 that

y − 1

z − 1
= ψ2, where y2 = 1 + ay

2

x, z
2 = 1 + az

2

x,

or in the equivalent form

(y,zx) =
Z (Y − ϕZ)

aµ
, where Y 2 = y − 1, Z2 = z − 1. (3.8)

A direct calculation shows that

(y,z) =
(1 − ϕ2) (ỹ − z̃) − 2µ (Y 2 + Z2 − 2ϕY Z)

2µ (ϕ (Y 2 + Z2) − 2Y Z)
(3.9)

is compatible with eqs.(1.4) and (3.7). Here

ỹ = D−1

x

(

ay
2
xx

1 − y
+

1

2

a2 (2 y − 1) (yx,yxx)
2

y2 (1 − y)2
+

(1 − y)2 (1 + y)

a

)

,

z̃ = D−1

x

(

az
2
xx

1 − z
+

1

2

a2 (2 z − 1) (zx,zxx)2

z2 (1 − z)2
+

(1 − z)2 (1 + z)

a

)

,

(3.10)

Then (3.7) can be rewritten in the symmetric form

yx

Y
− zx

Z
=
µ
(

Z2 − Y 2
) (

Z y − Y z
)

ϕ (Y 2 + Z2) − 2Y Z
+

(

ỹ − z̃
) (

ϕ (Z y + Y z) − Z y − Y z
)

2
(

ϕ (Y 2 + Z2) − 2Y Z
) . (3.11)

To simplify the expression for ϕ we introduce the following notations

sinh ζ = b−1
(

Y 2 − Z2
) (

ỹ − z̃
)

−1
, k = 2µ, a = 4 b2

and obtain

ϕ =
k b sinh ζ

(

Z2 − Y 2) + Y 2 + Z2 + 2 cosh ζ Y Z

cosh ζ
(

Y 2 + Z2
)

+ 2Y Z
.

Because (3.11) is cumbersome, we can not construct the SF for (1.4). Now we consider
the simpler cases of equation (1.4)

zt = zxxx + 3z
2

x zx + 3 (zx,zxx)z, (3.12)

zt = zxxx − 3
(zx,zxx)

z2
x

zxx + 3
z

2
xx

z2
x

zx, (3.13)

which were pointed out in [1].
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Equation (3.13) is integrable on R
n [2] and has the divergent form

zt = Dx

(

zxx − 3
(z,zx)

z2
zx + 3

z
2
x

z2
z

)

. (3.14)

If we pass to the coordinates {y = z r−1, r =
√

z2} in (3.14), then the vector y satisfies
(3.12). Therefore, we consider only (3.12).

The ABT for (3.12) was presented in [1]:

yx = zx − (y,zx)y − 2

(

µ− (y,zx)

(y − z)2

)

(

z − (y,z)y
)

. (3.15)

We square left and right hand sides of (3.15) and find (y,zx). Substituting the result
into (3.15) we receive that

yx = zx − µ
(

y − z
)2

2

(

y + z
)

+
y

2
x − z

2
x

2µ
(

y − z
)2

(

y − z
)

. (3.16)

The SF for solutions of (3.12) is

q =ζ−1
(

u − v
)2
(

ξ η p +
(

µ+ ν
)(

ξ (v − p)2 u + η (u − p)2 v
)

)

, (3.17)

where

ξ =2 ν (u − p,v) − µ
(

u − p
)2
, η = 2µ (u,v − p) − ν

(

v − p
)2
,

ζ = − (ξ (v − p) − (u − p) η)2 .

In addition, it can be verified that the expression

ỹ − z̃ = µ
(

y − z
)2
, (3.18)

where ỹ = D−1
x (yx,yx), z̃ = D−1

x (zx,zx), is compatible with eqs.(3.12) and (3.15). Ac-
cording to (3.18) the transformation (3.15) can be rewritten as

yx = zx − ỹ − z̃

2

(

y + z
)

+
y

2
x − z

2
x

2 (ỹ − z̃)

(

y − z
)

.

As the obtained ABT depends on the quasi local variables ỹ and z̃, then the SF can also
depends on quasi local variables ũ, ṽ, and p̃. To introduce these variables explicitly one
must perform the substitutions (u,p) = 1 − (ũ− p̃)/(2µ), (v,p) = 1 − (ṽ − p̃)/(2 ν) into
(3.17).

Also if we write (3.18) for each pair of solutions {p, u}, {p, v}, {q, u}, {q, v} and
exclude the quasi local variables, then the following scalar SF for (3.12) is obtained:

µ
(

u − p
)2 − ν

(

v − p
)2

= µ
(

q − v
)2 − ν

(

q − u
)2
.
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4 Anisotropic Schwartz-KdV equation

Let us now consider the anisotropic Schwartz-KdV equation

zt =zxxx +
3

2
(ln f)x (zxx + z

2

xz) + 3 (zx,zxx)z+

+
3

2
f

(

〈zxx〉2 −
(〈z〉2 〈z,zx〉x − 〈z,zx〉2)2

〈z〉6
)

zx, z
2 = 1,

(4.1)

and its ABT [4]

yx =µ f (〈y,z〉 + g〈z〉2)(zx − (y,zx)y)+

+ µ f (〈y,zx〉 + g〈z,zx〉)(〈y,z〉y − z),

f =
〈z〉2

〈z〉2 〈zx〉2 − 〈z,zx〉2
=: f{z}, g2 =

〈y〉2
〈z〉2 .

(4.2)

According to Prop. 1 we have

(
√

f{y} f{z}
)

−1
= µ (〈y,z〉 +

√

〈y〉2 〈z〉2). (4.3)

Using the algorithm described above we have found that

(y,zx) =
1

2

(

ỹ − z̃
) (

y (y,z) + z
)
√

f{y}
y
√

f{y} + z
√

f{z}

−
〈z,zx〉

(

(y,z) (
√

f{y} y −
√

f{z} z) + 2
√

f{y} z
)

z2
(
√

f{y} y +
√

f{z} z
)

−
〈y,yx〉

(

√

f{y} y −
√

f{z} z − 2 (y,z)
√

f{z} y
)

√

f{y}
y2
(
√

f{y} y +
√

f{z} z
)
√

f{z}
,

(4.4)

is compatible with eqs.(4.1) and (4.2). Here y2 = 〈y〉2, z2 = 〈z〉2 and

Dx ỹ = 〈yxx〉2f − 2 f2
(

〈y〉2 〈yx,yxx〉 − 〈y,yx〉〈y,yxx〉
)2

〈y〉4

+
4f2〈y,yx〉4 + 8f〈y〉2〈y,yx〉2 + 〈y〉4 + 4f2〈y,yx〉〈yx,yxx〉〈y〉4

f〈y〉6 ,

−
(

2 f2〈y,yx〉2 + 2〈y〉2 + f2〈y〉2〈y,yxx〉
)2

f〈y〉6 =: ϕ{y}, f := f{y};

Dx z̃ = ϕ{z}.

Taking into account (4.3) and (4.4) the ABT for (4.2) can be transformed into the
symmetric form
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√

f{y}yx −
√

f{z}zx = −
(

ỹ − z̃
)
√

f{y}f{z}
2
(
√

f{y} y +
√

f{z} z
)

(

y z + z y
)

+

+
〈z,zx〉

(

z
(
√

f{y} y −
√

f{z} z
)

+ 2
√

f{y} z y

)

√

f{z}
z2
(
√

f{y} y +
√

f{z} z
) −

−
〈y,yx〉

(

y
(
√

f{z} z −
√

f{y} y
)

+ 2
√

f{z} y z

)

√

f{y}
y2
(
√

f{y} y +
√

f{z} z
) .

(4.5)

For solutions of (4.1) we have constructed the following SF

q =
µ ν ξ p + (µ− ν) (ν ζ u − µ η v)

√

(

µ ν ξ p + (µ− ν) (ν ζ u − µ η v)
)2

, (4.6)

where

ξ = u v − 〈u, v〉, η = u p + 〈u, p〉, ζ = v p + 〈v, p〉,
p2 = 〈p〉2, u2 = 〈u〉2, v2 = 〈v〉2.

The scalar SF can be derived from diagram (2.6) and equations of form (4.3):

ν (〈q,u〉 +
√

〈q〉2 〈u〉2)
µ (〈q,v〉 +

√

〈q〉2 〈v〉2)
=
µ (〈u,p〉 +

√

〈u〉2 〈p〉2)
ν (〈v,p〉 +

√

〈v〉2 〈p〉2)
. (4.7)

If we make the reduction 〈·, ·〉 = (·, ·) in (4.6), then we get the SF for the vector
Schwartz-KdV equation on a sphere (cf. [2])

q =
−µ ν (u − v)2p + (ν − µ) ( ν (v + p)2u − µ (u + p)2v)

(µ (u + p) − (v + p) ν)2
,

and hence (4.7) can be rewritten as

ν2 (q + u)2 (v + p)2 = µ2 (u + p)2 (q + v)2.

This relation is an analogue of the well known integrable discrete model in [9]:

u(n+ 1,m) − u(n,m)

u(n,m+ 1) − u(n,m)

u(n+ 1,m+ 1) − u(n,m+ 1)

u(n+ 1,m+ 1) − u(n+ 1,m)
=
ν

µ
.

The isotropic Schwartz-KdV equation on sphere S
n was obtained in [1]. Also we can

take the limit transition a→ ∞ in (1.2) and get

zt = zxxx − 3
(zx,zxx)

z2
x

zxx +
3

2

z
2
xx

z2
x

zx, z
2 = 1. (4.8)

Next, if a→ ∞ in ABT (3.1) then as a result we obtain the transformation

yx =
(
√

µ′
(

1 + (y,z)
)

−
√

µ′
(

1 + (y,z)
)

− 1
)2
(

zx − (y,zx)

1 + (y,z)
(y + z)

)

. (4.9)
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The ABT of the isotropic Schwartz-KdV on R
n was constructed in [2]:

yx = µ z
−2

x

(

2 (y − z,zx) (y − z) − (y − z)2zx

)

. (4.10)

The reduction y
2 = z

2 = 1 in (4.10) coincides with the result of the reduction 〈·, ·〉 =
(·, ·) in (4.2), but it does not coincide with transformation (4.9). Transformation (4.9) is
compatible with (4.8), hence it is also the ABT for (4.8). We have constructed the SF for
(4.8) with the help of (4.9).

Firstly, according to Prop. 1 we obtain
√

y2
x z

−2
x =

(
√

µ′
(

1 + (y,z)
)

−
√

µ′
(

1 + (y,z)
)

− 1
)2

. (4.11)

Secondly, we have established that the following equation

ỹ − z̃ = 2
(y,zx)

1 + (y,z)

(

1 +
(
√

µ′
(

1 + (y,z)
)

−
√

µ′
(

1 + (y,z)
)

− 1
)2
)

, (4.12)

where

ỹ = D−1

x

(

y
2
xx

y2
x

− 2
(yx,yxx)2

y4
x

)

, z̃ = D−1

x

(

z
2
xx

z2
x

− 2
(zx,zxx)

2

z4
x

)

,

is compatible with eqs.(4.8) and (4.9).
Using (4.11) and (4.12), equation (4.9) can be transformed to the form

yx
√

y2
x

− zx
√

z2
x

= −1

2

ỹ − z̃
√

y2
x +

√

z2
x

(y + z) (4.13)

that precisely coincides with the result of the reduction 〈·, ·〉 = (·, ·) in (4.5).
For simplicity we denote

cosh2 ϕ1 = µ
(

1 + (u,p)
)

, cosh2 ϕ2 = ν
(

1 + (v,p)
)

,

cosh2 ϕ3 = ν
(

1 + (q,u)
)

, cosh2 ϕ4 = µ
(

1 + (q,v)
)

.

If one write four equations (4.11) for the pairs {p, u}, {p, v}, {q, u}, {q, v} and assume
commutativity of diagram (2.6), then the scalar SF for solutions of (4.8) follows

ϕ1 + ϕ3 = ϕ2 + ϕ4

with above defined ϕi.
The SF for pairs of solutions of (4.8) connected by transformation (4.9) has the form

q = ψ
(

µ′ ν ′ ξ η (u − v)2 ζ1 ζ2 p + (ν ′ − µ′) η (ξ + 1)2ζ1
(

(ξ − η)2 − ζ2
)

u+

+ (µ′ − ν ′) ξ (η + 1)2ζ2
(

(ξ − η)2 − ζ1
)

v

)

,

where

ψ =
ξ η (u − v)2

(

(

ξ − η
) (

ξ ζ2 − η ζ1 + η ξ(ζ2 − ζ1)
)

− ζ1 ζ2

)(

(

ξ − η
) (

ξ ζ1 − η ζ2 + ζ1 − ζ2
)

− ζ1 ζ2

) ,

ξ =
1

2

(
√

ν ′
(

1 + (v,p)
)

−
√

ν ′
(

1 + (v,p)
)

− 2
)2

, ζ1 = (ξ − η)2 + ν ′ ξ η (u − v)2,

η =
1

2

(
√

µ′
(

1 + (u,p)
)

−
√

µ′
(

1 + (u,p)
)

− 2
)2

, ζ2 = (ξ − η)2 + µ′ ξ η (u − v)2.
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Proposition 2. Let u, v and p be solutions of (4.8). If solutions v and p are connected
by ABT of the form

vx = µ1 p
−2

x

(

(v,px)
(

v − p
)

−
(

1 − (v,p)
)

px

)

, (4.14)

and u, p are connected by the following ABT

ux =

(

√

µ2

(

1 + (u,p)
)

−
√

µ2

(

1 + (u,p)
)

− 1

)2 (

px − (u,px)

1 + (u,p)

(

u + p
)

)

, (4.15)

then

(
√

µ2

(

1 + (u,p)
)

−
√

µ2

(

1 + (u,p)
)

− 1
)4

µ2

1

(

1 − (v,p)
)2 − u

2

x v
2

x = 0 (4.16)

is compatible with eqs.(4.8), (4.14), and (4.15).

In the scalar limit, eqs.(4.8), (4.14), and (4.15) take the forms

ut = uxxx − 3

2

u2
xx

ux

, (4.17)

µ1 =
2 vx px

(v − p)2
, (4.18)

µ2 =

(

px (1 + u2) + (1 + p2)ux

)2

8ux px (1 + u p)2
(4.19)

correspondingly. In the same limit, (4.16) becomes an identity according to eqs.(4.18) and
(4.19).

The Schwarz-KdV equation (4.17) is a special case of the Krichever-Novikov equation.
The ABT (4.18) can be obtained from the ABT for KN equation [10]. Equation (4.17)
is invariant under the linear-fractional transformation of u. It can de verified that ABTs
(4.19) and (4.18) are not connected by the linear-fractional transformation of u, v, and
p. However, each pair of solutions {v, p} and {u, p}, connected by transformations (4.18)
and (4.19) accordingly, satisfy the scalar limit of (4.13):

yx z − zx y =
1

4
(ỹ − z̃) (1 + y z),

where ỹ = D−1
x (yxx/yx)2, z̃ = D−1

x (zxx/zx)2.

We have also established that equation (4.8) does not change under the transformation
zx = yx/y

2
x. Obviously, (4.17) admits the transformation zx = y−1

x . Probably, this fact
explains the existence of two ABT (4.18) and (4.19) for (4.17).
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