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Noetherian first integrals
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Abstract

From time to time one finds claims in the literature that first integrals/invariants
of Lagrangian systems are nonnoetherian. Such claims diminish the contribution of
Noether in the topic of integrability. We provide an explicit demonstration of noethe-
rian symmetries associated with the integrals which have been termed nonnoetherian.
To further emphasise our point we construct the noetherian first integrals/invariants,
which are associated with symmetries linear in the velocities, for the two-dimensional
autonomous isotropic harmonic oscillator and the autonomous anisotropic oscillator
and illustrate the roles which the invariants can play in the description of the clas-
sical motion. We relate these symmetries to the corresponding problem in quantum
mechanics. Further we show that the complete symmetry group of this anisotropic
harmonic oscillator has the same representation as that of the corresponding isotropic
oscillator. As a concluding example we show that a symmetry claimed to be non-
noetherian is trivially Noetherian.

1 Introduction

In a series of papers [5, 9, 10, 11, 12, 13] various authors have developed a method to study
what have been called nonnoetherian constants of motion and their associated symmetries.
In [5] the above procedure, which is known in the relevant literature [9, 10, 11, 12, 13] as
the method of s- and g-symmetries, has been applied to the two-dimensional autonomous
isotropic harmonic oscillator with equations of motion

T4+2x=0
y+y=0 (1.1)

and Lagrangian

L= +9*—2° -9 (1.2)
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and to the autonomous anisotropic oscillator with equations of motion

T+x=0
jHwiy=0, o #£1, (1.3)

and Lagrangian
L=1 (:'c2 + 9% — a2 — w2y2) . (1.4)

In the case of the isotropic oscillator the formalism of the s- and g-symmetries [9,
10, 11, 12, 13] has been used [5] to obtain the off-diagonal component of the conserved
Jauch-Hill-Fradkin tensor [4, 14]

A =2y +xy (15)
and in the case of the anisotropic oscillator the corresponding conserved quantities,
I = (& +iz)* (y — iwy) (1.6)

and its complex conjugate. In both cases the first integrals were described [5] as non-
noetherian.

It is the purpose of this paper to demonstrate that these first integrals are in fact
noetherian first integrals (Section 2) thereby restoring the credit to Noether which is
her due, to outline how all of the quadratic first integrals/invariants for the harmonic
oscillator can be obtained by the use of Noether’s Theorem (Section 3) and to show how
the nonquadratic first integrals of the anisotropic oscillator of the type (1.6) can be derived
by means of the Lie theory of extended groups (Section 4). We illustrate the role which
the explicitly time-dependent invariants play in the description of the classical motion.
The excellent review of Noether’s Theorem by Sarlet and Cantrijn [25] is the basis for
Section 2 of the paper.

The papers to which particular attention is here drawn are but part of an inexplicable
phenomenon of denial associated with Noether’s Theorem for more than sixty years. In
Noether’s original work [23] her theorem is developed in the context of field theory, ie more
than one independent variable, and at the level of generalised transformations. The latter
marked a distinct departure from the point, subsequently contact, transformations used
by Lie in his theory of infinitesimal transformations which was based upon geometrical
principles. Scarcely a decade later Courant and Hilbert [2] provided a bowdlerised version
of the then not so recently late Emmy Noether’s Theorem. This treatment admitted only
point transformations. Courant and Hilbert were not the only luminaries to short-sell
Noether. In the seventies Lovelock and Rund [22] repeated the same minimalist treatment.
Even later Dresner [3] persisted in the same despite earnest entreaty to give the woman
a fair hearing. In this Dresner cited the authority of Courant and Hilbert! Doubtless
there are other texts acting as purveyors of inadequate truth. The wonder of it all is that
Noether’s text is clear even to one unfamiliar with German and the translation by Tavel
[24] into the lingua franca of our day does dot the s and cross the #s for those who need
that done.
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2 Noether Symmetries

Following Sarlet and Cantrijn [25] we have that a Lagrangian, L, possesses a first inte-
gral/invariant, I, associated with a symmetry, I', where

I'=71(t,x, )0 + ni(t, z, &), (2.1)

given by

I=f— 7L+ (n; —a7) (2.2)

8—.%.'1' )
where the function, f, is commonly regarded as the gauge function which expresses the
equivalence of the Lagrangian in the Action Integral up to a total time derivative of f. In
fact its provenance is completely different as can be seen by reference to the original paper
of Noether [23] [page 241], where its origin is demonstrated to be in the boundary contri-
bution to the value of the Action Integral occasioned by the infinitesimal transformation
which in contrast to the infinitesimal transformations for the Variational Principle does
not have to be zero at the boundary. For the velocity-dependent transformation generated
by the symmetry, I', we have

of or OL (0on; . OT oL .
L L_ — T, = -, = 1’ s 23
3i‘j 8i'j 31‘2 <8.%'] . 3$j> +T({91‘j J " ( )
and
af . of or . or oL .. 0L
- tiig- =L\ 5 +diqg— v i — &
ot i, (at”am)”af“(” ) o
on; . Opp . Or . Or\ JL
- ) T~ 1~ 1 ) T~ . - 2.4
+<6t T i, T ot “Jaxj> o, (24)
In the case of a regular Lagrangian 7, n; and I are related by [25]
01
S — W 2.
Ny — LT g 8:53]" (2.5)
where g% is given by
0’L . ,
T =4, 2.6
0i;02r, : (2.6)

When the velocity-dependent transformations are used, there is no loss of general-
ity in setting 7 = 0 whereby (2.2)-(2.4) are considerably simplified. Both isotropic and
anisotropic oscillators have g/ = §“. Thus for the former we obtain from (2.5) and the
integral (1.5) that

n=-y, £=-i, 27)

where the notation z; = x, o = y, 11 = n and 72 = £ has been used. The symmetry I'
defined by (2.1) follows now from (2.7) and is

T = 40, + 0,, (2.8)
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in which the common minus sign has been dropped. For the latter (1.6) yields
T = (+iz)* " w(y — iwy) Oy + ( +ix) 9] . (2.9)

The generator for the complex conjugate invariant is obvious.
Thus we have, by explicit demonstration, showed that (1.5) and (1.6) are noetherian
constants of the motion.

3 Quadratic first integrals/invariants for the isotropic oscil-
lator

Given that there appears to be some confusion in the literature concerning the nature of
Noether symmetries and noetherian first integrals/invariants we determine those for the
isotropic oscillator which are quadratic in the velocities. From (1.2), (2.5) and (2.6) it is
evident that the noetherian symmetry which generates a first integral /invariant quadratic
in the velocities is itself linear in the velocity. Hence from (2.1) it follows that

n=at+by+d, &E=ax+cy-+e, (3.1)

where a, b, d, a1, ¢ and e are functions of x, y and ¢ only.
From (2.3) and due to (1.2) we obtain that (7 = 0, see (2.6) and following)

of _;om .08
or  “oi  Yoi
of _.on .0

_ 2o 98 2
a5 oy Yoy (3.2)

The requirement of consistency between the expressions for df /0% and df /0y yields

% _ 3—2- (3.3)
From equations (2.1), (3.1)-(3.3) we readily deduce that

I'=(az+by+d) 0y + (bt +cy+e)dy, (3.4)
and

f=1tai? +biy+ ey + g, (3.5)

where g depends upon x, y and ¢ only.
When (3.4) and (3.5) are substituted into (2.4) and the coefficients of linearly indepen-
dent combinations of powers of # and g are set equal to zero, we obtain

da | 0a
9 = 292 (3.6)
2(% 0a 0b | 0a (3.7)

oz "oy oz ' 20y
ob  Oc 0Ob Jdc
2+ — = — + 1 :

8y+3x 3y+23x (3:8)
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Oc _10c

dy 20y

da 0 _ 00

ot ox 20t

,, 0d oc_ o

ot Oy ox Ot

oc _0e 0

ot Oy 20t
od 0

—aa:—by—i—aza—i
Oe Jg

—bx—cy—i—a—a—y

—dw—ey:%.

The solution of the system (3.6)-(3.15) is

a = Ag+ Agsin 2t + Ay cos 2t + 2y (Aysint + Ay cost) + Doy?
b= —By— F3cos2t + E4sin2t — x (A sint + Az cost)

—y (Bysint + By cost) — Doxy
c=Cy+ Cysin2t + Cycos 2t + 2z (By sint + By cost) + Doz

d= Eysint 4+ Fycost —x (Agcos2t — Aysin2t) +y (Eg — E3sin2t — E4cos 2t

—xy (Ay cost — Agsint) +y? (By cost — Bysint)

(3.16)

~— ~
W w

(3.19)

e=—Mjsint — Mycost + x(—Ey — E3sin2t — Ey cos 2t) — y (Cy cos 2t — Cy sin 2t)

422 (A cost — Aysint) — xy (B cost — Bysint)

g=—No+ z(Ejcost — Eysint) —y (M cost — My sint)
—12% (A — Assin2t — Aycos2t) + xy (By — F5cos 2t + Eysin2t)
—3y? (Co — Cysin2t — Cocos 2t)

where all upper case letters are constants.

We now apply (1.2), (3.1) and (3.5) to (2.2) (with 7 = 0) to obtain

I = —%axQ—bxy— %cyQ—dm—ey—Fg.

(3.20)

(3.21)

(3.22)

When we insert (3.16) — (3.21) into (3.22), we find that the constant Ny is a trivial constant
of the motion since it is additive, but the other constants give rise to nineteen noetherian



14 PGL Leach and GP Flessas

first integrals/invariants, videlicet
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(3.23)

X
=

X
N
5
H_

I

xy — y) (x £ id) exp [£it]
wy — dy) (y + i) exp [Lit]
(29 — zy) F i (zy + Ty)] exp [£2it]

B, Bo) Ist
E3, Ey) Iyt
Ep) Lo Yy — Ty

Ey, Er)  Iux [z + id] exp [£it]
(My,Ms) Loy = [y=ig]exp|Eit],

where the constant(s) in parentheses indicate(s) which constants with nonzero values
lead(s) to that/those integral(s). We know that in obtaining the quadratic integrals we
would also obtain I1g — Ij24, ie those first integrals/invariants which are linear in the
velocities. Needless to remark the integrals I; — I1yp can be expressed as functions of the
fundamental integrals I11+ and Iyo4.

The integrals, I1, Is and I3, are essentially the elements of the Jauch-Hill-Fradkin tensor
for the two-dimensional isotropic oscillator [14, 4]. When written in terms of canonically
conjugate coordinates these integrals along with I constitute the elements of the invari-
ance algebra, su(2), of the Hamiltonian for the two-dimensional isotropic oscillator under
the operation of taking the Poisson Bracket. These integrals may be used in a quadratic
form to give the orbit of the oscillator. The integrals, I4+, Is+ and Ig4, provide the ele-
ments of the noninvariance algebra of the isotropic oscillator [15, 16] and have been shown
[19] also to provide information about the orbit in configuration space. If one defines

Bij = (&3 — xyxy) sin 2t — (x5 + @25) cos 2t (3.24)
Cij = (Zi2j — w;w5) cos 2t + (w;d; + 25) sin 2t (3.25)
J = 5Tr(By) (3.26)
K = 3Tr(Cy), (3.27)

it is a simple matter to determine that the quadratic forms constructed from B;; and Cj;
by double contraction with the position vector, r, lead to the relations

T(JI - B)r = L?sin2t (3.28)
T(KI—-C)r=L?cos2t, (3.29)

where L is the magnitude of the angular momentum (written as Ig = 1120 in the list of
integrals/invariants above). Both quadratic forms, (3.28) and (3.29), describe hyperbola
of time-dependent size. The hyperbolae pulsate periodically and the trajectory of the
oscillator is given by the common intersection of hyperbola and the ellipse given by the

quadratic forms constructed from the elements of the Jauch-Hill-Fradkin tensor?.

*Note that we use the exponential form for the listing of the integrals/invariants in (3.23) since these
correspond to the forms of the operators of use in quantum mechanics. The trigonometric forms, being
real, are more convenient in classical mechanics.
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4 Anharmonic oscillator

When one looks for the noetherian first integrals associated the symmetries linear in the
velocities, the integrals obtained are quadratics or biquadratics in the four fundamental
integrals

I = xcost — xsint
Iy = xsint + x cost
Is = ycoswt — ysinwt/w

Iy = wysinwt + g cos wt. (4.1)

The only autonomous quadratic integrals which can be obtained from (4.1) are those
corresponding to I; and I3 for the isotropic oscillator. The integral (1.6) can be obtained
as follows: From the combinations

Ji = I +ily = (& + ix) exp [—it] (4.2)
Jy =1y —iwls = (y — iwy) exp [iwt] (4.3)

we find that (1.6) is given by
I=J0"Js. (4.4)

The integral complex conjugate to (1.6) follows similarly.

However, a more direct route to (1.6) comes by an application of the Lie theory of
extended groups to the differential equations (1.3). In general a system of second-order
differential equations

N(t,x,2,%) =0 (4.5)
possesses a Lie point symmetry

I'=7(t,2)0 + ni(t, x)0, (4.6)
if

r[2}N|N =0 (4.7)
where T'? is the second extension of I' given by

T =T + (i — 7;) 0, + (s — 278; — 7) O, (4.8)

We can show, the computation proceeds essentially along the lines of Section 3, that
equations (1.3) possess the Lie point symmetries

'y =0
I'y =sinto, I'y = sinwtd, (4.9)
I's = costd, I's = coswtdy, '

FG = 1‘83[; F7 = yay
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which is the minimum number of Lie point symmetries which a two-dimensional au-
tonomous system of second-order equations can have [6, 7, 26]. If, for example, we take
the symmetry

X =T3 —il'y = exp [—it]| Oy, (4.10)

the first integral associated with X, I(¢,x,2), must satisfy the two conditions

xWr=o (4.11)
and

dl

— =0. 4.12

dt (1.3) ( )

The associated Lagrange’s system for (4.11) is

dt d d idd dy
a. @ v % (4.13)
0 exp[—it] 0 exp[—it] O

for which the characteristics may be taken to be
uy =t ugzalc—i—m (4.14)
Uz =y Ug = 7.

In terms of the characteristics in (4.14) the associated Lagrange’s system of (4.12) is

dug _ dup  dug  duy (4.15)
1 Ty Uy wusz’ ’

The combinations of, respectively, the first and second and the third and fourth trivially
give the two characteristics

v] = ugexp[—iuy] and vy = ui + w2u§. (4.16)

The third characteristic is obtained from the second and third of (4.15) with the aid of
the second of (4.16). It is

v3 = wlogug + log [z (ug — iwus) 02_1/2] (4.17)
and (1.6) is recovered from
I =exp |:1}3 — log <iv;1/2>} . (4.18)

We noted that the symmetry, X, in fact gives three first integrals [18] which is a
point to bear in mind when comparing Noether’s Theorem with the Lie method. Given
a Noether symmetry, Noether’s Theorem gives a single first integral by the application
of the formula (2.2) whereas the Lie method gives (2n — 1) first integrals/invariants,
where n is the dimension of the system, provided closed -form solutions to the associated
Lagrange’s system can be obtained. The ‘provided’ covers some possibly very difficult
practical mathematics in seeking the solutions of the associated Lagrange’s system as
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has been evidenced in the determination of the first integrals for the Kepler and related
problems [8, 17]. An attractive approach is to use Noether’s Theorem to determine those
integrals/invariants with ‘obvious’ Noether symmetries and to supplement those results
with the Lie method?® [1].

5 Conclusion

A prime purpose of this paper was to emphasise that the integrals possessed by Lagrangian
systems are necessarily noetherian. In particular we showed that the integrals constructed
by Garcia [5] using the method of s- and g-symmetries can be obtained using Noether’s
Theorem. This is not to naysay the development or employment of other methods for the
calculation of first integrals/invariants. Any method which leads to the determination of
first integrals/invariants for systems of differential equations has its validity and may play
a useful role in a particular context. Our major point is that such first integrals/invariants
for nondegenerate Lagrangian systems must necessarily be associated with a Noether sym-
metry as a direct consequence of the relationship (2.5). It is most unfortunate that many
texts, both classical and modern, fail to do justice to the Theorem of Noether as she
originally presented it. Much ingenuity, as in the development of the method of s- and
g-symmetries, has been employed to determine first integrals/invariants for systems in
which the emasculated version of Noether’s Theorem has been found wanting. These de-
velopments are a timely reminder that we should look carefully at the statement of the
theorem and not to its latter-day expositions. The acceptance of symmetries other than
point symmetries is necessary if one is to obtain the full benefits of the analysis of systems
of differential equations and their associated Lagrangians using the symmetric approach.
The origin of symmetry analysis is found in geometry and the transformations which make
sense there. The generalised symmetries of Noether’s Theorem have departed from the ge-
ometric origins of transformation theory. What has been lost in the geometric connection
is gained in a wider variety of problems susceptible to analysis using Noether’s Theorem
and the unification of the concept of the relationship between invariance under infinitesi-
mal transformation and the existence of first integrals/invariants. As an example of this
we consider an example discussed by Hojman which he claims is not only not a Noether
symmetry but is not even an s-equivalence symmetry and therefore belongs to a third
kind of Lagrangian symmetry [12] [p 2408]. The example is based upon a two-dimensional
simple harmonic oscillator, but the number of dimensions is immaterial. The Lagrangian
and equations of motion are, respectively,

n
i=1

3 A noetherian integral can have a Lie symmetry which differs from the generating Noether symmetry,
eg the rescaling symmetry, I' = 3t0; + 210y, is a Lie point symmetry of the components of the Laplace-
Runge-Lenz vector which are obtained by Noether’s Theorem from generalised symmetries [21] and so those
components are two of the invariants of the associated Lagrange’s system. This facilitates the reduction of
the number of active variables in what are somewhat complicated equations, thereby making them more
manageable.
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in an usual notation. The so-claimed nonnoetherian symmetry is

n n
=35> (&+d))_ a0y (5.2)
i=1 j=1

In the absence of a transformation of the independent variable the formula for the calcu-
lation of a Noetherian symmetry is

n
: oL oL
=3 e | 5.3
/ — [77@ ag " (9%} .
When (5.1) and (5.2) are substituted into (5.3), the result is an exact differential so that
it is a trivial matter to find that

F=3> (@+d)> ad;. (5.4)
i—1 =1

Consequently (5.2) is a mainstream Noetherian symmetry.

As part of the realisation of the purpose of this paper we have presented the integrals
of the anisotropic oscillator as a consequence of the existence of Noether symmetries. To
emphasise further the relationship between generalised symmetries and Noether invariants
we constructed the nineteen first integrals/invariants which have terms up to quadratic
in the velocities for the autonomous isotropic harmonic oscillator in two dimensions. Fur-
thermore we showed how the same could be done with the anisotropic oscillator. In this
instance an Ansatz for the velocity dependence in the symmetry is not a priori obvious al-
though it becomes obvious a posteriori because of the relationship (2.5). In such a case the
value of the Lie method of extended groups in leading to the desired result by a prescribed
procedure was illustrated.

The relationship between the Noether point symmetries of the classical Lagrangian and
the Lie point symmetries of the corresponding time-dependent Schrodinger equation and
the use of the latter in determining the wave functions for the quantal isotropic oscillator
and related potentials was demonstrated by Lemmer et al [20]. It is interesting to see that
the same features are observed for the quantal anisotropic oscillator. The time-dependent
Schrodinger equation corresponding to the Lagrangian (1.4) is

2 2
%+g—£—(2+w2y2)+2i%:0 (5.5)
and the normalised wave function, obtained by the usual method of separation of variables,
is

1/4
“ Hy () Hy, (y'/?)

(m2m+nmin!)L/? "

x exp [—32% — twy® —i(m+wn+ 3 (1+w))t]. (5.6)

u(z,y,t) =

The Lie point symmetries of (5.5) are conveniently written as

that
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Zpt = explLit] (0p F xudy)

Zy+ = exp|Fwit] <w_1/23y F w1/2yu8u) (5.7)
Zy = U0y,

Zs = [(t,2,9)0u,

where f(t,z,y) is a solution of (5.5). The symmetries Z, and Z, are generic for ho-
mogeneous linear partial differential equations and take no part in the generation of the
similarity solutions. The Lie Brackets of the finite symmetries with the infinite number of
solution symmetries are

[Zta ZS]LB = ftau; [Z:via Zs]LB = exp[:l:it] (fm + xf) Ou
2 2l = 10 Zys, 2] = explwit] (w/2f, £ 02y ) 0, (58)

and the coefficient of 9, on each right hand side is a solution of (5.5)

The corresponding Noether symmetries of the classical Lagrangian have as integrals
the energy, the two integrals related to the initial conditions in the x coordinate and the
two integrals related to the initial conditions in the y coordinate. The actions of the Lie
point symmetries of (5.7) on solution surfaces defined by

. wl/4 1/2
Em,n =u (7T2m+"m'n')1/2 Hm(x)Hn(yw )
exp [—%xQ - %wa —i(m+wn+3(1+w))t] (5.9)

are easily calculated to be

iZtEm,n = (m +wn + %(1 + W)) Em,n

in+Em,n = (2m)1/2 Em—l,n

iZySmm = —[2(m+ 1) Spsin (5.10)

iZy4 Zmgn = (20)2 Sy

iZy S = — 20+ 1] S
so that ¢Z; maps solutions into themselves with an eigenvalue equal to the energy and
the other symmetries map solutions into other solutions. The symmetries, Z, and Z,,
act as annihilation operators in the & and y coordinate respectively and the symmetries,

Z,— and Z,_, as creation operators. Unlike the case of the isotropic oscillator there is no
interaction between the two parts of the wave function [20].
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