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E-mail: gvilcu@mail.upg-ploiesti.ro

Received September 11, 2007; Accepted in Revised Form November 13, 2007

Abstract

In this note we introduce the concept of (σ, σ′)-holomorphic map between two almost
quaternionic Hermitian manifolds. We prove that a (σ, σ′)-holomorphic map between
two quaternionic Kähler manifolds with a certain property is a harmonic map and
give some conditions for the stability of such a map.

1 Introduction

The quaternionic structures generalize much relevant properties for 4-dimensional semi-
Riemannian manifolds to higher 4n-dimensional manifolds, some of them being relevant
for mathematical physics. We consider the quaternionic Kähler manifolds which have the
property to be Einstein manifolds and other remarkable properties [1, 4, 5, 16, 20]. R.
Penrose founded out a twistor programme [19] using twistor correspondence for transform-
ing conformal invariant fields given on Minkowski complex space into objects of complex
geometry that are defined on the twistor space.

It is well known that the twistor theory is closely connected with the existence of
canonical quaternionic structures on 4-dimensional oriented semi-Riemannian manifolds.
L. Berard-Bergery [3], S. Salamon [20] and others authors extended the theory to 4n-
dimensional quaternionic manifolds. On other hand, an interesting mechanism for space-
time compactification in the theory of Kaluza-Klein type is proposed in the form of a
nonlinear sigma model, i.e. harmonic map. The general solutions of this model can
be expressed in terms of harmonic maps satisfying the Einstein equations. The idea of
coupling the Einstein field equation to harmonic map seems to appear firstly in the paper
of V. de Alfaro, S. Fubini and G. Furlan [9].

Roughly speaking, a quaternionic Kähler manifold is an oriented 4n-dimensional Rie-
mannian manifold whose restricted holonomy group is contained in the subgroup Sp(n)Sp(1)
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of SO(4n). These manifolds are of special interest because Sp(n)Sp(1) is included in the
list of Berger of possible holonomy groups of locally irreducible Riemannian manifolds
that are not locally symmetric [4]. On the other hand, the study of harmonic maps was
initiated by J. Eells and J.H. Sampson [10] and this topic has been intensively studied
later by several authors. In Section 2 we recall the definitions of quaternionic manifolds
and harmonic maps.

There exists now a rich literature concerning the holomorphic maps between almost
hermitian manifolds and also between almost contact metric manifolds. In Section 3 we
extend this concept in quaternionic setting. Thus, we introduce the notion of (σ, σ′)-
holomorphic map between two almost quaternionic hermitian manifolds and study this
kind of maps. In particular, we prove that they are harmonic maps under some hypothesis.

A harmonic map is said to be stable if the second variation of the energy is non-
negative for any smooth variation of the map. The stability of harmonic maps it is of
great interest in geometry and mathematical physics [2, 13, 21] and it has been studied
in Riemannian geometry [17, 22], in complex geometry [6, 18], and in contact geometry
[14, 15]. Motivated by these considerations, in Section 4 we give some conditions for the
stability of a harmonic map between two quaternionic Kähler manifolds.

Owing to the remarkable properties of quaternionic Kähler manifolds, the results ob-
tained can have important applications in string theory, solitons, theory of liquid crystals,
gravity and general relativity.

2 Preliminaries

Let M be a differentiable manifold of dimension n and assume that there is a rank 3-
subbundle σ of End(TM) such that a local basis {J1, J2, J3} exists of sections of σ satis-
fying for all α ∈ {1, 2, 3}:

J2
α = −Id, JαJα+1 = −Jα+1Jα = Jα+2, (2.1)

where the indices are taken from {1, 2, 3} modulo 3.
Then the bundle σ is called an almost quaternionic structure on M and {J1, J2, J3} is

called a canonical local basis of σ. Moreover, (M,σ) is said to be an almost quaternionic
manifold. It is easy to see that any almost quaternionic manifold is of dimension n = 4m
and orientable.

A Riemannian metric g on M is said to be adapted to σ if it satisfies:

g(JαX,JαY ) = g(X,Y ),∀α ∈ {1, 2, 3} (2.2)

for all vector fields X,Y on M and any canonical local basis {J1, J2, J3} of σ. Moreover,
(M,σ, g) is said to be an almost quaternionic Hermitian manifold.

If the bundle σ is parallel with respect to the Levi-Civita connection ∇ of g, then
(M,σ, g) is said to be a quaternionic Kähler manifold. Equivalently, locally defined 1-
forms ω1, ω2, ω3 exist such that we have:

∇XJα = ωα+2(X)Jα+1 − ωα+1(X)Jα+2, (2.3)

for any vector field X on M , where the indices are taken from {1, 2, 3} modulo 3.
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The second fundamental form αf of a map f : (M,g) → (N, g′) between two Rieman-

nian manifolds is defined by: αf (X,Y ) = ∇̃Xf∗Y − f∗∇XY, for any vector fields X,Y on

M , where ∇ is the Levi-Civita connection of M and ∇̃ is the pullback of the connection
∇′ of N to the induced vector bundle f−1(TN): ∇̃Xf∗Y = ∇′

f∗X
f∗Y. The tension field

τ(f) of f is defined as the trace of αf , i.e.:

τ(f)x =
m∑

i=1

αf (ei, ei), (2.4)

where {e1, e2, ..., em} is a local orthonormal frame of TxM , x ∈ M . We say that f is a
harmonic map if and only if τ(f) vanishes at each point x ∈ M .

3 Harmonic maps between almost quaternionic Hermitian

manifolds

Definition 1. Let (M,σ, g) and (N,σ′, g′) be two almost quaternionic Hermitian mani-
folds. A map f : M → N is called a (σ, σ′)-holomorphic map at a point x ∈ M if for
any J ∈ σx exists J ′ ∈ σ′

f(x) such that f∗ ◦ J = J ′ ◦ f∗. Moreover, we say that f is a

(σ, σ′)-holomorphic map if f is a (σ, σ′)-holomorphic map at each point x ∈ M .

Theorem 1. Let (M,σ, g) and (N,σ′, g′) be two almost quaternionic Hermitian manifolds.

If f : M → N is a (σ, σ′)-holomorphic map, then we have:

J ′
α(τ(f)) = f∗(divJα) − tracegf

∗∇′J ′
α, (3.1)

for all α ∈ {1, 2, 3}, for any canonical local basis {J1, J2, J3} of σ and corresponding local

basis {J ′
1, J

′
2, J

′
3} of σ′.

Proof. Let {e1, ..., em, J1e1, ..., J1em, J2e1, ..., J2em, J3e1, ..., J3em} be an orthonormal ba-
sis of TxM , x ∈ M . It is easy to obtain:

f∗(divJα) − J ′
α(τ(f)) =

m∑

i=1

f∗∇ei
Jαei −

m∑

i=1

f∗∇Jαei
ei

−

m∑

i=1

J ′
α∇̃ei

f∗ei +

m∑

i=1

∑

β 6=α

f∗∇Jβei
JαJβei

−

m∑

i=1

3∑

β=1

J ′
α∇̃Jβei

f∗Jβei. (3.2)

Also, we have:

tracegf
∗∇′J ′

α =
m∑

i=1

(∇′
f∗ei

J ′
α)(f∗ei) +

m∑

i=1

3∑

β=1

(∇′
f∗Jβei

J ′
α)(f∗Jβei),
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and since f is a (σ, σ′)-holomorphic map, we obtain:

tracegf
∗∇′J ′

α =

m∑

i=1

∇̃ei
f∗Jαei −

m∑

i=1

J ′
α∇̃ei

f∗ei −

m∑

i=1

∇̃Jαei
f∗ei

+

m∑

i=1

∑

β 6=α

∇̃Jβei
f∗JαJβei −

m∑

i=1

3∑

β=1

J ′
α∇̃Jβei

f∗Jβei. (3.3)

On the other hand, from:

∇̃Xf∗Y − ∇̃Y f∗X = f∗[X,Y ]

we derive:

m∑

i=1

∇̃ei
f∗Jαei −

m∑

i=1

∇̃Jαei
f∗ei =

m∑

i=1

f∗[ei, Jαei]. (3.4)

From (3.3) and (3.4) we deduce:

tracegf
∗∇′J ′

α =
m∑

i=1

f∗[ei, Jαei] −
m∑

i=1

J ′
α∇̃ei

f∗ei

+
m∑

i=1

∑

β 6=α

∇̃Jβei
f∗JαJβei −

m∑

i=1

3∑

β=1

J ′
α∇̃Jβei

f∗Jβei. (3.5)

Now, from (3.2) and (3.5) we obtain:

f∗(divJα) − J ′
α(τ(f)) = tracegf

∗∇′J ′
α −

m∑

i=1

∑

β 6=α

αf (Jβei, JαJβei). (3.6)

But, since the second fundamental form αf of f is a symmetric form, we remark that:

m∑

i=1

∑

β 6=α

αf (Jβei, JαJβei) = 0. (3.7)

The proof is now complete from (3.6) and (3.7). �

Theorem 2. Let (M,σ, g) and (N,σ′, g′) be two quaternionic Kähler manifolds. If f :
M → N is a (σ, σ′)-holomorphic map such that, for any local section J ∈ Γ(σ) and

corresponding J ′ ∈ Γ(σ′) one has (∇′
f∗XJ ′) ◦ f∗ = f∗ ◦ (∇XJ), for any local vector field X

on M , then f is a harmonic map.
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Proof. Since M is a quaternionic Kähler manifold, we obtain:

divJα =

m∑

i=1

[ωα+1(Jα+2ei) − ωα+2(Jα+1ei)]ei

+
m∑

i=1

[ωα+1(Jα+1ei) + ωα+2(Jα+2ei)](Jαei)

+

m∑

i=1

[ωα+2(ei) − ωα+1(Jαei)](Jα+1ei)

−

m∑

i=1

[ωα+1(ei) + ωα+2(Jαei)](Jα+2ei). (3.8)

Similarly we find:

tracegf
∗∇′J ′

α =

m∑

i=1

[ω′
α+1(f∗Jα+2ei) − ω′

α+2(f∗Jα+1ei)]f∗ei

+

m∑

i=1

[ω′
α+1(f∗Jα+1ei) + ω′

α+2(f∗Jα+2ei)](f∗Jαei)

+
m∑

i=1

[ω′
α+2(f∗ei) − ω′

α+1(f∗Jαei)](f∗Jα+1ei)

−

m∑

i=1

[ω′
α+1(f∗ei) + ω′

α+2(f∗Jαei)](f∗Jα+2ei). (3.9)

On another hand, from (∇′
f∗XJ ′

α) ◦ f∗ = f∗ ◦ (∇XJα), we obtain ω′
α ◦ f∗ = ωα, ∀α ∈

{1, 2, 3}, and from (3.8) and (3.9) we derive:

f∗(divJα) − tracegf
∗∇′J ′

α = 0. (3.10)

Now, from (3.1) and (3.10), we deduce τ(f) = 0 and thus we conclude that f is a
harmonic map. �

4 On the stability of the (σ, σ
′)-holomorphic maps

Let (M,g) be a compact Riemannian manifold and let f : (M,g) → (N,h) be a harmonic
map. The energy of f is defined by E(f) =

∫
M

e(f)ϑg, where ϑg is the canonical measure
associated with the metric g and e(f)x = 1

2trace(f∗h)x, ∀x ∈ M.

We consider now {fs,t}s,t∈(−ǫ,ǫ) a smooth two-parameter variation of f such that f0,0 =
f and let V,W ∈ Γ(f−1(TN)) be the corresponding variational vector fields: V =
∂
∂s

(fs,t)|(s,t)=(0,0), W = ∂
∂t

(fs,t)|(s,t)=(0,0). The Hessian of a harmonic map f is defined

by: Hf (V,W ) = ∂2

∂s∂t
(E(fs,t))|(s,t)=(0,0).

The index of a harmonic map f : (M,g) → (N,h) is defined as the dimension of the
largest subspace of Γ(f−1(TN)) on which the Hessian Hf is negative definite. A harmonic
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map f is said to be stable if the index of f is zero and otherwise, is said to be unstable.
We recall the next second variation formula obtained by E. Mazet and R.T. Smith:

Hf (V,W ) =

∫

M

h(Jf (V ),W )ϑg, (4.1)

where Jf is the Jacobi operator of f (see [2]).

Let (M4m, σ, g) be a compact quaternionic Kähler manifold, (N4n, σ′, h) be a quater-
nionic Kähler manifold with scalar curvature ρ′ and f : M → N be a (σ, σ′)-holomorphic
map. After some long but straightforward computation, we obtain:

∫

M

h(Jf (V ), V )ϑg =
1

2

∫

M

h(DV,DV )ϑg −

∫

M

h(∇̃divJβ
V, J ′

βV )ϑg

−
2ρ′

n + 2

m∑

i=1

[

∫

M

h(f∗ei, V )2ϑg +
3∑

α=1

∫

M

h(f∗Jαei, V )2ϑg]

+
m∑

i=1

[h(∇̃ei
V, (∇̃Jβei

J ′
β)V ) +

3∑

α=1

h(∇̃Jαei
V, (∇̃JβJαei

J ′
β)V )]ϑg,

(4.2)

for all β ∈ {1, 2, 3}, where DV : Γ(TM) → Γ(f−1(TN)) is given by:

DV (X) = ∇̃JβXV − J ′
β∇̃XV, ∀X ∈ Γ(TM).

Theorem 3. Let (M4m, σ, g) and (N4n, σ′, g′) be two quaternionic Kähler manifolds such

that M is compact, N has non positive scalar curvature and, in any point p ∈ M , exists a

basis {J1, J2, J3} of σp such that one of J1, J2 or J3 is parallel. If f : M → N is a (σ, σ′)-
holomorphic map such that, for any local section J ∈ Γ(σ) and corresponding J ′ ∈ Γ(σ′)
one has (∇′

f∗XJ ′) ◦ f∗ = f∗ ◦ (∇XJ), for any local vector field X on M , then f is stable.

Proof. From (4.2) we obtain:
∫

M

h(Jf (V ), V )ϑg =
1

2

∫

M

h(DV,DV )ϑg

−
2ρ′

n + 2

m∑

i=1

[

∫

M

h(f∗ei, V )2ϑg +

3∑

α=1

∫

M

h(f∗Jαei, V )2ϑg].

(4.3)

From (4.1) and (4.3) we obtain:

Hf (V, V ) ≥ 0,∀V ∈ Γ(f−1(TN))

and then we deduce that f is a stable harmonic map. �
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