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Abstract

We apply singularity analysis to a caricature of the simplified multistrain model of
Castillo-Chavez and Feng (J Math Biol 35 (1997) 629-656) for the transmission of
tuberculosis and the coupled two-stream vector-based model of Feng and Velasco-
Hernéndez (J Math Biol 35 (1997) 523-544) to identify values of the parameters for
which the system of nonlinear first-order ordinary differential equations describing
the model are integrable. A number of combinations of parameters for which the
system is integrable are identified. We compare them with the results we obtained by
a symmetry analysis in an earlier paper (J Math Anal Appl 333 (2007) 430-449.

1 Introduction

We make a singularity analysis of a caricature of the simplified multistrain model of
Castillo-Chavez and Feng [4] for the transmission of tuberculosis and to the coupled two-
stream vector-based model of Feng and Velasco-Hernandez [7]. These models have been
investigated in terms of their reproductive numbers and subthreshold epidemic equilibria
by van den Driessche and Watmough [16]. This study complements our earlier study [13] of
this model using symmetry methods. Singularity and symmetry analyses are not common
for mathematical models of epidemiological phenomena. The usual approach, apart from
direct numerical integration, is through the theory of dynamical systems. Since most
systems of first-order ordinary differential equations are nonintegrable, the qualitative
information provided by the theory of dynamic systems is about as much as one can expect
to obtain. Our primary interest is in integrable systems. In the case of a model containing
a number of parameters there exists the possibility of combinations of the parameters
allowing the system to be integrable. In our symmetry analysis of this model we identified
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numerous combinations of the parameters which lead to the system being linearisable or
for which one could obtain at least a first integral if not the general solution in closed
form. In this paper we examine the model using the method of singularity analysis with
the same purpose in mind, more precisely the identification of combinations of values of
the parameters of the model for which the solution exists as an analytic function.

The model which we wish to discuss in detail is presented by van den Driessche and
Watmough [16] in their equations (14a), (14b) and (14c), videlicet

L=—0b+v)h +vhh+66LS
L= —(b+v)—vhil+ kLS (1.1)
S =—b(S — 1)+ 11 + yolo — (A1) + Bo12)S,

where 31 and (2 represent the infection rates for the two strains in the case of the tuber-
culosis model and for the two vectors in the Dengue fever model, v is the common contact
rate of infection, b is the common birth and death rate and ~; and 7, are the recovery
rates. This model does not represent the full system discussed by Castillo-Chavez and
Feng [4], but is a caricature of it, presumably to be able to combine both models. The
model has only a single susceptible compartment, but it has two infectious compartments
corresponding to the two infectious agents. Although it is not stated in [16], the source
papers [4, 7] are clear that the variables represent proportions of a constant population
which has thereby been scaled to unity, ie Iy + Is +.5 = 1. The addition of the three
components of (1.1) reflects this in that, if I; + I+ S = 1 is an initial point of the system,
then it is a singular point and provides a stationary solution. Consequently it is not cor-
rect to consider the system (1.1) as three-dimensional since it is subject to the constraint
I1 + I, + S = 1! and so (1.1) exists on a surface in the three-dimensional configuration
space of (1.1). To obviate the necessity to consider the Lie analysis of (1.1) subject to this
constraint we revert to a manifold of lower dimension by using the constancy of the total
population to write

S=1-1—-1 (1.2)
so that the three-dimensional system is reduced to the two-dimensional system

L= —b—y) = Bl — (B —v)1 1
Iy = (B —b—2)lo — (B2 + V)1 15 — (13 (1.3)

As we mentioned above, in a previous paper [13] we considered this problem from the
viewpoint of symmetry analysis. This approach has been demonstrated to be suggestively
successful [15, 5] for some models of sexually transmitted diseases. Here we use the meth-
ods of singularity analysis to examine system (1.1) for its integrability in terms of functions
analytic away from their polelike singularities. Although there are close connections be-
tween symmetry analysis and singularity analysis [6, 3], the correspondence between the

IThe giving of a precise value to a first integral can make a considerable difference to the properties which
the subset of the system enjoys. An integral having a precise numerical value was termed a ‘configurational
invariant’ by Hall [9] and subsequently the correct meaning was explained by Sarlet et al [14].
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possession of a suitable number of Lie point symmetries to ensure integrability and the
presence of solutions which are analytic apart from movable poles is amply demonstrated
in the fifty classes of second-order ordinary differential equations which have the latter
property [10]. The number of Lie point symmetries possessed by these equations varies
from zero to eight, with the latter being the maximal number of Lie point symmetries
for a second-order ordinary differential equation. Consequently a full theoretical analysis
of the system is incomplete without both the singularity and symmetry analyses being
performed.

The paper is structured as follows. Due to the constraint on the total population we
eliminated the variable S and replaced system (1.1) by a pair of first-order differential
equations. Not only do we perform the singularity analysis on this system but also we
consider the ‘equivalent’ second-order equation obtained by the elimination of one of the
dependent variables. The reason for this is that the results of a singularity analysis are not
automatically preserved — as is the case for symmetries under nonpoint transformations —
by anything more than a Mdbius transformation. In Section 2 we perform the singularity
analysis of the reduced system (1.3). In Section 3 by making use of the fact that the
system (1.3) is autonomous we reduce it to a single first-order equation and examine that.
In Section 4 we replace the system of two first-order equations by a single second-order
equation and analyse that equation. In the concluding section, Section 5, we summarise
the results of the present investigation and compare them with the results of the symmetry
analysis previously performed [13].

2 Painlevé analysis of the reduced system

To determine the leading-order behaviour of the reduced system (1.3) we make the sub-
stitutions

I =ar? and Iy =679, (2.1)

where 7 = t — tg and ty is the location of the putative singularity in the complex time
plane, into the dominant terms of the system (1.3), obvious by virtue of their common
self-similar symmetry —td; + 1101, + 120z, [8], to find the pattern of exponents

p—1 2p p+gq
2.2
q—1 p+q 2q (22)

for (1.3a) and (1.3b) respectively. The terms balance for p = ¢ = —1. With these values
of the exponents of the leading-order terms of I; and I the coefficients o and § satisfy
the system

Bro® + (b1 — v)ad = a
(B2 +v)ad + 202 =6 (2.3)

which, since a and ¢ are by implication nonzero, is equivalent to the linear system

fra+ (b1 —v)d =1
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(Bo+v)a+ P26 = 1. (2.4)

There are three possible solutions. If v # 0 and (1 # v + (s,

L5 _L (2.5)

o= —
v v

If v = 0, it is necessary that 32 = (1, but this is not a realistic case, as we showed in [13].

If 81 = v+ fo,

5= éu ~ Bia). (2.6)

For the second case the coefficient « is arbitrary and so the required second arbitrary
constant enters the expansion at the leading-order terms. Consequently for these values of
the parameters the system (1.3) passes the Painlevé Test. That the system (1.3) possesses
the Painlevé Property and is integrable in terms of functions analytic away from isolated
singularities may be demonstrated by explicit solution of the system and we do so towards
the end of this section.

For the first case, videlicet v # 0 and 1 # v + (2, in which the coefficients of the
leading-order terms are given by (2.5), we must determine the resonances. We substitute

L=ar 4 pr L=0rt4ort (2.7)
into the dominant terms of (1.3) and require balancing of the terms linear in p and o, ie

(r = 1) = —2B10p1 — (B — v)op — (B — v)ao

(r=1)o = —(B2 +v)op — (B2 + v)ao — 2[z60. (2.8)

The consistency of this homogeneous linear system requires that

r+ @ - (1 — @>
v v
=0, (2.9)
(1+2) -2
v v
1€
poo1, 10202 (2.10)
v
For the system (1.3) to pass the Painlevé Test in the case that 3; # (2 + v it is necessary
for the nongeneric resonance to be an integer, ie the parameters be related according to

b= P2 —nv, n€ Z/{-1}. (2.11)

In the absence of nondominant terms n may be any nonzero integer, ie the Laurent expan-
sion for the solution can be in terms of either a Left Painlevé Series or a Right Painlevé
Series [6], but the presence of the nondominant terms precludes the possibility of the
existence of a Left Painlevé Series. Hence n is a positive integer.
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To determine the condition(s) for consistency we substitute
L = Zaﬂ'iil, I, = Zbﬂ'iil (2.12)
i=0 i=0

into the full system (1.3) to obtain

(i — 1)ai7i_2 = (ﬁl —b— 'yl)aﬂi_l — [Blaiaj + (ﬁl — u)aibj] TH—j_2
(i — 1)bﬂ'i72 = (ﬁz —b— VQ)biTiil — [(ﬁg + I/)aibj + ﬁzbibj]7'i+ji27 (2.13)

where there is summation on both ¢ and j, and require that this be an identity for all
powers of 7 > —2. The identity for 772 has already been established above. The only
difficulty that can occur is at the resonance. We illustrate the procedure in the case that
the nongeneric resonance is r = 1, ie $; = 3. The vanishing of the coefficients at the
power 7! gives the system

Br—b—m
1+ﬁ . 1_@ aq T
1% 14
- (2.14)
_<1+@> B Bi—b—
v v by S

which is manifestly consistent if 47 = 5. For greater integral values of the nongeneric
resonance the computation is lengthier, but the essentials are the same. The rank of
the coefficient matrix drops from two to one at the resonance and this imposes a single
constraint on the nonhomogeneous terms. This leads to some relationship between ~; and
2. In general this involves the other parameters.

Thus the system (1.3) passes the Painlevé Test subject to the one constraint 51 = G2 +v
or the two constraints 31 = 2+ (n+1)r and a relation connecting ; and 7, for nonnegative
n.

That the system (1.3) possesses the Painlevé Property and is integrable in terms of
functions analytic away from the movable singularity at £y may be demonstrated by explicit
solution of the system. There are two cases. We recall that Case I corresponds to one of
the coefficients of the leading-order behaviour being arbitrary.

Case I: 81 = v+ [

I = €Xp [(ﬁ2+y_b_’71)t] (215)

Ar -+ A exp (B2 — b= 10) 8+ L exp (B v = b= )1

(B2 —b—2) Agexp (B +v —b—2) ]

oo {1+ dpoxp (8= b - )+ 2o (Bt -0 )l

I = (2.16)
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in the general Case and for v = v + o

_ exp [(B2 — b —2) 1]
Ay + Agexp [(B2 — b —72) 1]
{(Ba=b—7)As— (B2t v)exp[(fa+v—b—)t

= B2 {A1 + Asexp (B2 — b — ) t]} (2.18)

with A; and Ay being constants of integration.

I (2.17)

Case II: v # 0 and 31 # v + (2

We illustrate the possession of the Painlevé Property in the particular case considered
above, ie the nongeneric resonance is » = 1. If the nongeneric resonance is to be r = 1,
we require that §y = (81 and 75 = 1. The system (1.3) is then

Li=B—b—m)l— It — (B —v)IiL, (2.19)
Iy= (B —b—m)l2— (B +v)[1 ]y — B3 (2.20)

The system (2.19,2.20) is an example of a decomposed system [2] since the two equations
may be added to give the single equation

=B —b—m)— B2 (2.21)

where I = I1 + Is. As a Riccati equation, a Bernoulli equation and a variables separable
equation (2.21) is eminently solvable. We obtain

exp [(B1 — b — )]

1+51+;—’hexp[(ﬁl_b_%)t]

and using this can substitute for I; in (2.20) to obtain a nonautonomous equation for Is.
Thus we come to the solution

exp [(B1 —b—m)]

I=

(2.22)
A

I = 5 — I (2.23)
Al + T [(B1 —b—m)t]

I = ) ffj;ﬁ[?t] 8 8 ) (2.24)
a (s Gewian) -2 (a+ Bowion)

where () = 61 — b — 1, and so we have given an explicit illustration of the possession of
the Painlevé Property in this case.

In the analysis above we have considered the case in which p = ¢ = —1 for which all
dominant terms are considered. However, there does exist the possibility of special cases.
We now consider these two special cases. Both cases arise as a consequence of particular
values of one of the coefficients of the leading-order terms. The first case is for p = —1 and
q > —1. The second is for p > —1 and ¢ = —1. We dispose of each in turn. In the case of
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the former, if the coefficient of the leading-order term for Iy is & = 1/, the leading-order
term for I can be §79, where (3 is arbitrary and ¢ = — (82 + v) /31 provided (B2 +v < 1
which is necessary to maintain the dominance of I;. Since the parameters are necessarily
positive, —1 < ¢ < 0 and the system (1.3) can only be a candidate for the possession of
the so-called weak Painlevé Property.

In a similar fashion for the second case we have the coefficient of the leading-order term
for I to be 1/82 and the coefficient of 7P is arbitrary and p = — (1 — v) /B2. Now there
are two possibilities. The exponent, p, is in the interval (—1,0) if 0 < 1 — v < [ and
again we have the situation of the possession of the weak Painlevé Property. However, if
we remove the lower bound of the inequality, there is the possibility that p takes integral
values. We exclude the case of zero since that corresponds to 5y = v and the separability
of the system. When not all variables in the system are singular, one must proceed a little
cautiously. When we substitute the series

L= A7™ and L=) B'" m>1, (2.25)
=0 =0

into system (1.3), we obtain

> {m+ AT — (B — b — ) A+ B A AT
=0
+mBoA; Byr ™ (2.26)

> {@=)Bir" 2 = (B —b—72) Bim' ' + (B + v) A By
=0
—|—mﬂ2BiBjT+i+j_2} . (227)

From the coefficients of the two leading-order terms we find that By = 1/32 and Ay is
arbitrary. The second, nontrivial, resonance is always zero. Thereafter the subsequent
coeflicients in the series expansions are determined by standard recursion relations.

3 Analysis of the reduced equation

Since the system (1.3) is autonomous, ie possesses the Lie point symmetry 0y, it may be
reduced to a single first-order ordinary differential equation using this symmetry. The
reduction is easily achieved by the simple expedient of dividing (1.3a) by (1.3b) to obtain

Ay  (Bi—b—m)1 — /I — (b1 —v)i]s

— = . 3.1

dly (B2 —b—"2)a — (B2 +v)1 ]2 — G213 (8:1)
Some simplification is achieved by the substitution I; = ul,. One finds that

du  (Bi—B—m+r)u—(B—F—v)ulu+1)h (3.2)

dly (B2 —b—2)lo — (B2 + v)uli — 3213
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Equation (3.2) is an Abel’s equation of the second kind for w(I3) or equally I2(u) and
in general one can never expect much joy with the solution of an Abel’s equation, be it of
the first or of the second kind.

We observe in (3.2) the occurrence of the factor (8 — 2 — v) in the numerator and are
reminded that for 51 = v + [ the system (1.3) passes the Painlevé Test. If we put this
factor to zero in (3.2), we obtain a linear first-order equation in I; !, videlicet

i<l>+ P2 —b— (i) _ (Lot v)utp (3.3)
du \L) (v=m+r)u\bL V=1t 72 '
which is trivially integrable. We obtain

B —b—
I uV_’Yl‘i"YQ (34)
2 B2 +v A B2 B’ '

K+

U+ U
P2+20—b=2v+7 Botv—b—m
where K is the constant of integration,

_ Bt 2v b 2%+ p_Ptv-b-m

A ;
V=711 72 v—"1+ 72

and we recall that 11 = uls.

In the case that the Painlevé Property is possessed with the nongeneric resonance r = 1
we have the two constraints 1 = (2 and 71 = 2. This makes the first bracket of the
numerator of (3.2) zero and the equation again reduces to a linear first-order equation,
this time in I, videlicet

dly  (Be4+v)u+P2,  Bo—m

-2 y = (3.5)

du vu(u+ 1) vu(u+ 1)
which is also trivially integrable. The solution is

I B2 — 2

I = Ku P/v 4 2212 3.6

e L N ] (3.6)
in the case that 82 # 0 and

_ 1L 72
= |[K -2 logu] (3.7)

in the case that #o = 0 which is not really physical. In both cases K is the constant of
integration and Iy follows from I; = uls.

In fact without the double constraint imposed at the resonance » = 1 but simply the
requirement that 5y + v = (2 + 1 we also obtain a simple linear first-order equation,
videlicet

dl; (B2 +v)u+ B B2 — 2

du  (Br-B-ulu+l) > (B—fPo—v)ulutl) (3.8)
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However, in this case we are left with a nontrivial integration to obtain the particular

solution and have
1/(B1—B2—v) 1/(B1—B2—v)
I = [uﬁ2(u + 1)V} . [K + / [uv—ﬂl (u+ 1)62—61] e du} . (3.9)

We note that, if in the numerator of (3.2) we set both brackets at zero, we have u is a
constant, ie [y = K I5. This is a special case of the case for which the nongeneric resonance

is zero.
For this system the improvement in the ease of integrability of the differential equation

when the parameters are constrained to the values required by the values » = 0,1 of the
nongeneric resonance is quite dramatic.
4 Analysis of an equivalent second-order ordinary differen-

tial equation
We may solve (1.3a) for I5 in the case that 5) # v as

I 1
L= — |2 (3 —b— I
2 I (b1 —=b—m]+ 0 -

and substitute this into (1.3b) to obtain a second-order equation for Iy, videlicet

Bt )G == v) oy

s B+ Be— vy
L — ﬁl_’/ Il+ ﬂl_y
SAMPZB = L (61— b - ) — (1= ) — b= i
+3 1_ 4B =0 =) [26182 — (B = v)(Br +v)] = Bi(Br = v)(Bz — b~ )} Y
—bh—
s e L [(B = v)(B = b= 72) = 2By — b= )] [} = 0 (42)

Equation (4.2) is rather complex, but it has a structure reminiscent of a second-order
equation of the Riccati hierarchy [11] and so one does have some hope. Firstly we consider
the particular case for which the Painlevé analysis gave the nongeneric resonance to be

Zero.

In this case we have 8; = 3 + v and (4.2) becomes

2
d <1>_(2V—b+62—2’yl+’yg)%<lll>

a2 \ I,
l) =—(B+v)v

+v=—m+1)B+v—-b—m) <I1 (4.3)
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which is also a linear second-order equation with constant coefficients but now with a
constant nonhomogeneous term. The solution of (4.3),

1
I =

v(fr+v)

Arexp[(m1 —v2 —v)t] + Asexp[(Be +v —b—71)t] — —mt7) Bo—v—b—1)

(4.4)

is also trivial and its eight Lie point symmetries translate back to eight Lie symmetries of
(1.3). (See Case II(A) of [13].) The solution is also analytic.

The order of equation (4.2) can be increased to a third-order equation by means of the
Riccati transformation Iy = aw/w. The resulting equation has the form

1. ..
— WWw — aw? + doi + fu? —i——3[eoz—d]d)3
w w
1 1
JFE[bour2d—:a]aﬂcwrJ [ca® —ba+2—a] v =0, (4.5)

where a through f are the coefficients of the terms in I and its derivatives of (4.2) as the
equation is written above. This equation may be reduced to one with the symmetry 9,
if the coefficients of w?*, W20 and w? are set to zero [1]. The first is achieved by setting
a to either 1/03; or 1/v. The former imposes a nonphysical constraint on the parameters
when the coefficient of w?@ is set equal to zero. The latter works if one requires 3 = 3.
Finally the coefficient of &? is made zero if (81 — v)y1 = 72(61 +v), implying that 8, > v.
There remains the equation

W — al? + dww + fo? =0. (4.6)
We use the symmetry J,, to reduce the order with the transformation

v =g ot (4.7)
to obtain the linear second-order equation

i4+do+ f(l—a)p=0 (4.8)

which is readily solved and which possesses eight Lie point symmetries. Note that a # 1
since the equality imposes the unacceptable constraint §; = 0.

Remark: This procedure is an instance of the application of the Jacobi Last Multiplier
[12] in order to increase the order of system (1.3).

5 Discussion

In [13] we obtained the following results from the symmetry analysis of (1.3) and related
equations. If By = v, the equations are separable and closed-form solutions are easily
obtained. The derived second-order equations are linearisable under the following circum-
stances.
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1. B =v and B = 2v.

2. fp=p1—v.
There are a number of subcases, videlicet v1 = vo + v, f1 = b+ 71, 1 =b+ 72 + v,

Bi = 3(e+v+m+2b), Bt =b+2y1 —y —v, fi = 3(4b—n +5y +5v),
b1 =b—7v1+4+2v+2v, 51 =b—4v + 572 + dv, for which the solutions take various
forms.

3. Bo=p1 = 3vand v, = 7.

When (5 = 1 = v and 71 = 72 we obtain a variant of the Ermakov-Pinney equation with
the three-element algebra, sl(2, R).

In all of the above cases we are able to obtain solutions in closed form. There is a number
of instances for which the derived second-order equation possesses two symmetries. In the
first case the equation can be integrated to obtain a solution in implicit form. For the
remaining cases a first integral is obtained. In general the integral cannot be written as a
quadrature. The cases are

1. fo=vand B; = —y +v+71.

2. Bi=v—m -+ and By = =2y + 272 +v.
3. /1=2(n—12—v)and B2 =7 — 72 — 2.
4. By =3 (B1 —v) and By = 2y, — 272 — v.

5. By =2
6. Bo=2(b1—v)and 2 =2(11 —v)+b, Si=b+m.
7. Bo=b+y and B = b+ 1.

vV — Bl 1
8. By = Bir (Qﬂ% + Biv + 21/2) and v = 657 (26;’ + 5ﬁ%l/ — 23+ (672 + 1) Blu).

1 —v)and B =2 — 71 + 2v.

In terms of the singularity analysis presented above we found that for the case By =
1 — v the system (1.3) possessed the Painlevé Property with the nongeneric resonance
being r = 0. The coincidence with the linearisable cases above is noted. For 0y # 31 — v
with v # 0 the nongeneric resonance is » = 1+ (82 — 1) /v. The Painlevé Property
is found if B — 1 = nv, where n is a nonnegative integer provided there is a further
constraint on the other parameters. When we compare the results of the singularity
analysis with those of the symmetry analysis given in [13] and summarised above, we see
that there is coincidence for the linearisable cases and the Ermakov-Pinney form found in
the symmetry analysis. We saw that the linearising transformation was of Mobius type. In
the cases for which the derived second-order equation possesses two Lie point symmetries
we recognise the resonance, r = 1, in the first, second, third and fourth instances when
the conditions B2 = (1 and ;1 = 2 are imposed. Of course the presence of the two Lie
point symmetries does not imply integrability in terms of analytic functions. We saw that
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generally it was not possible to go beyond the existence of a first integral. When there are
many symmetries, the singularity and symmetry analyses give coincident results. When
there are two symmetries, there can be coincidence, but the singularity analysis imposes
further constraints upon the parameters. However, the singularity analysis reveals cases
not indicated by the symmetry analysis. These cases come in two forms. Firstly there are
the combinations of parameters for which the nongeneric resonance is greater than one.
Secondly there is the case in which only one of the variables, I, has a polelike singularity.
This requires that the parameters (31, f2 and v be related according to v = (1 + mpfs,
where m is a positive integer. One can be quite certain that the solutions so obtained,
albeit analytic, cannot be expressed in closed form.

In this paper and [13] we have presented the symmetry and singularity analyses of
the system (1.3) which is the mathematical expression of the simplified multistrain model
for the transmission of tuberculosis and the coupled two-stream vector-based model for
dengue fever and have identified relationships between the parameters in the models for
which the equations can be integrated, possessed at least a first integral or a solution
which is analytic. This is the first part of our programme. The second is to relate our
results to the statistics available for these diseases. There is some evidence [15, 5] that the
relationships found between the parameters by means of mathematical analysis can be of
relevance in reality.
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