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The applicability in practice of a diagnostic tool is strongly related to the physical transparency of the un-
derlying models, for the interpretation of the relationships between the involved variables and for direct
model inspection and validation. In this work, a methodology is developed for transforming an opaque,
fuzzy clustering-based classification model into a fuzzy logic model based on transparent linguistic rules.
These are obtained by cluster projection with appropriate coverage and distinguishability constraints onto
the fuzzy input partitioning interface. The methodological approach is applied to a diagnostic task con-
cerning the classification of simulated faults in the feedwater system of a nuclear Boiling Water Reactor.
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1. Introduction

Fault diagnosis, i.e. the detection and classification
of anomalies and faults, is a particularly important
task in hazardous components such as those em-
ployed in the nuclear technology, for its implications
on the safety and efficiency of operation. Conceptu-
ally, the basis for performing these tasks is that dif-
ferent faults initiate different patterns of evolution
of the interested variables, measured by properly lo-
cated sensors. The diagnostic problem then becomes
one of pattern classification, i.e. association of the
different patterns of evolution to the different classes
of system faults.

In this regard, extensive research has been car-
ried out with respect to the investigation of fuzzy
clustering techniques for classification1,2,3,4. These
techniques have proven very effective but often re-
main “black boxes” as to the interpretation of the
physical relationships underpinning the pattern clas-
sification5,6,7,8,9.

In this paper, a fuzzy logic (FL) model of pattern
classification for fault identification is developed.
One of the main strengths offered by the proposed
modeling approach is that the underlying Knowl-
edge Base (KB) is in a rule format, easy to main-
tain, update, examine and understand. In general, to
achieve this, one must first perform the fuzzy par-
titioning of the input space by an adequate choice
of representative fuzzy sets (FSs) and then estab-
lish the fuzzy rules underpinning the relationships
of the involved variables. In the case of FL models
for pattern classification, automatic partitioning and
rule construction processes are often adopted, on the
basis of available pre-classified, labeled data10,11.

In the approach proposed in the present pa-
per, the first stage of the development of the rule-
based classification model amounts to finding clus-
ters corresponding to different types of fault. This
is done by processing pre-classified, labelled ‘train-
ing’ data by means of a supervised evolutionary pos-
sibilistic clustering scheme1. Then, the fuzzy rule-
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based model is obtained by optimally partitioning
the range of each input (the so-called universe of
discourse, UOD) to reflect the previously obtained
clusters, with each fuzzy cluster inducing a fuzzy
classification rule. More specifically, the FSs mak-
ing up the rule corresponding to a given fuzzy clus-
ter are obtained by projecting such cluster onto the
individual one-dimensional coordinate axes of the
involved variables10,12. In synthesis, the idea be-
hind the approach is to first fuzzy-cluster the data
and then derive the FSs and linguistic rules under-
pinning the classification model from proper projec-
tion of the fuzzy clusters found.

Section 2 sets the terminology and framework of
fuzzy reasoning13. Section 3 sketches the possibilis-
tic procedure for creating a cluster from available
pre-classified data1. Section 4 illustrates the mem-
bership functions (MFs) properties and semantic
constraints which are introduced to achieve a trans-
parent model and the pruning process performed to
“clean” the model. Section 5 reports the applica-
tion of the approach to the classification of simulated
faults in the feedwater system of a nuclear Boiling
Water Reactor (BWR). A discussion concerning the
advantages and limitations of the proposed approach
is provided in the last Section.

2. Fuzzy reasoning

In this Section, a short description is provided with
regards to how fuzzy reasoning proceeds13,14. The
content is limited to the general basic concepts, the
terminology and the notation necessary for com-
pleteness and self-consistency of the paper. Given
the aim of providing a transparent fuzzy rule-based
classification model, the Mamdani Fuzzy Inference
scheme is chosen over the Takagi–Sugeno one due
to the flexibility offered by expressing linguistic out-
puts.

The two key elements of fuzzy reasoning are the
Fuzzy Rule Base (FRB) (or Knowledge Base, KB)
and the fuzzy inference engine. The former consists
of a set ofR if-then rules. The genericj-th fuzzy
rule, j = 1,2, . . . ,R, is made up of a number of an-
tecedent and consequent linguistic statements, suit-
ably related by fuzzy connections:

Rj : if (x1 is X1 j) and . . . and(xn is Xn j)

then(y1 is Y1 j) and . . . and(ym is Ym j) (1)

The linguistic variablesxp, p = 1, . . . ,n, are the an-
tecedents, represented in terms of the FSsXp j of the
UOD Uxp, with MFs µXp j(xp). The linguistic vari-
ablesyq, q = 1, . . . ,m, are the consequents, repre-
sented by the FSsYq j of the UODUyq, with MFs
µYq j(yq). The connective operatorand links two
fuzzy concepts and it is generally implemented by
means of at-norm, typically the minimum opera-
tor or the algebraic product. The rules of the FRB
are joined by the connectiveelseand are generally
implemented by means of ans-norm, typically the
maximum operator13.

The fuzzy inference engine receives the (linguis-
tic) variables which constitute the Fact, viz.,

Fact: x1 is X′
1 and . . . and xn is X′

n

whereX′
p is a FS on the UODUxp of the p-th lin-

guistic input variablexp, and compares it with the
antecedents of the rules in the FRB to arrive at the
Conclusion, viz.,

Conclusion: y1 is Y′
1 and . . . and ym is Y′

m

whereY′
q is a FS on the UODUyq of theq-th output

variableyq.
In the case of fault classification, the fuzzy in-

ference engine i) receives as Fact then values of
the monitored variables, possibly fuzzyfied to ac-
count for measurement imprecision, ii) computes
the ‘strength’ with which each of theR rules in
the FRB is activated by the incoming input Fact,
i.e. the degree to which the rule matches the Fact,
and iii) properly combines the consequents of the
rules, weighed by their respective strengths, to de-
termine the output memberships to the different fault
classes13,14.

3. A supervised evolutionary possibilistic
clustering classifier

Fuzzy clustering algorithms have been widely stud-
ied and applied in various substantive areas such as
taxonomy, medicine, geology, business, engineer-
ing, image processing and others. A general clas-
sification of these algorithms is offered in2 in terms
of three categories: fuzzy clustering based on fuzzy
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relations, fuzzy clustering based on the minimiza-
tion of an objective function and the class of non-
parametric classifiers based on the fuzzy generalized
k-nearest neighbors rule. The interested reader is re-
ferred to2 for a detailed discussion of the three cate-
gories and an extensive literature review of works in
the field.

The clustering scheme adopted in the present
work belongs to the second category. A set of
N, n-dimensional patterns−→x k, k = 1, . . . ,N, pre-
classified toc a priori known classes (in our case,
corresponding to thec categories of faults whose
recognition is of interest), is assumed available. The
information regarding this known, physical class-
membership partitionΓt ≡ (Γt

1,Γ
t
2, . . . ,Γ

t
c) is used

to supervise an evolutionary algorithm for finding
c optimal Mahalanobis metrics which definec ge-
ometric clusters as close as possible to the a priori
known physical classes1,5,15,16. The Mahalanobis
metrics are defined by the matricesMi , i = 1, . . . ,c,
whose elements are identified by the supervised evo-
lutionary algorithm so as to minimize the distances
sik = (−→x i

k −
−→v ∗

i )
TMi(

−→x i
k −

−→v ∗
i ) between the pat-

terns−→x i
k belonging to classi and the class prototype,

i.e. the cluster center−→v ∗
i .

More specifically, the supervised training proce-
dure for the optimization of thec Mahalanobis met-
rics is carried out via an evolutionary optimization
method previously presented in the literature within
a supervised fuzzy clustering scheme16 and further
extended to diagnostic applications by both fuzzy5

and possibilistic clustering schemes1.
The target of the supervised optimization is

the minimization of the distanceD(Γt ,Γ) between
the a priori known physical class partitionΓt ≡
(Γt

1,Γ
t
2, . . . ,Γ

t
c) and the obtained geometric cluster

partitionΓ ≡ (Γ1,Γ2, . . . ,Γc):

D(Γt
,Γ) =

c

∑
i=1

D(Γt
i ,Γi)

c

=
c

∑
i=1

N

∑
k=1

∣

∣µ t
i (
−→x k)−µi(

−→x k)
∣

∣

N ·c
(2)

where 06 µ t
i (
−→x k) 6 1 is the a priori known mem-

bership of thek-th pattern to thei-th physical class

and 06 µi(
−→x k) 6 1 is the membership to the corre-

sponding geometric cluster in the space of the mon-
itored variables.

A sketch of the procedure is provided in Ap-
pendix A, but the interested reader should refer to1

for a more thorough mathematical treatment.
To overcome some known limitations associated

to fuzzy clustering17, the framework of possibility
theory is adopted for the patterns membership to the
different clusters17,18,19. In this interpretation, the
MF µi(

−→x k) represents the degree of similarity of the
generic incoming pattern−→x k with the prototypical
member−→v ∗

i of clusteri 1. If the classes represented
by the clusters are thought of as a set of FSs defined
over the UOD, then there should be no constraint on
the sum of the memberships, as there is instead in
fuzzy clustering2,20. The only constraint is that the
membership values do represent degrees of similar-
ity, or possibility, i.e. they must lie in[0,1] 21:

0 6 µi(
−→x k) 6 1, i = 1, . . . ,c, k = 1, . . . ,N (3)

max
i

µi(
−→x k) > 0, k = 1, . . . ,N (4)

where constraint (4) simply ensures that the set of
fuzzy clusters covers the entire UOD.

A possibilistic partition derived under these con-
straints defines a set of distinct, uncoupled possi-
bilistic distributions (and the corresponding fuzzy
subsets) over the UOD21.

Thus, at convergence the supervised evolution-
ary possibilistic clustering algorithm provides the
c metricsMi, the c possibilistic cluster centers−→v ∗

i

and thec·N possibilistic membership valuesµi(
−→x k)

of the patterns−→x k, k = 1, . . . ,N, to the clusters
i = 1, . . . ,c, optimal with respect to the classification
task.

The c identified clusters are FSs in then-
dimensional space of the monitored variables, each
FS being associated to a different class. These are
to be translated into the antecedent part ofc rules of
the kind22:

if (x1, . . . ,xn) is Xi i = 1, . . . ,c (5)

where(x1, . . . ,xn) is the multi-dimensional linguis-
tic variable describing then variables monitored
for performing the classification andXi is the FS
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associated to thei-th multi-dimensional clusterΓi,
i = 1, . . . ,c.

Once the antecedent part of the fuzzyif-then
rule associated to classi has been constructed, the
corresponding consequent part must be set up. In
this work, this is accomplished consistently with
a possibilistic approach by providing the degree
of membership of a pattern to each class1,23. To
achieve this, a discrete output variableyq is asso-
ciated to each class,q = 1, . . . ,c. Each output vari-
able is described by two linguistic labels{YES,NO},
with corresponding singletons FSsYNO

q and YYES
q

(Fig. 1). Then, in the consequent part of the fuzzy
rule representing thei-th class, all the output vari-
ablesyq, q 6= i, appear labelled with the FSYNO

q , ex-
cept thei-th output variableyi , representing thei-th
class, which is labelled withYYES

q :

yq

µYYES
q

NO YES

YNO
q

yq

µYNO
q

NO YES

YYES
q

Fig. 1. The two singletons FSsYNO
q andYYES

q associated
to theq-th output variable

if (x1, . . . ,xn) is Xi then(y1 is YNO
1 )

and (y2 is YNO
2 ) and. . . and (yi is YYES

i )

. . . and (yc is YNO
c ) (6)

Note that this form of the consequent part of the rule
also allows an easier handling of multiple faults23.

The c fuzzy logic rules derived from the identi-
fied clusters constitute the FRB of the classification
model. On the basis of these rules, the possibilistic
classification of the generic pattern−→x ′ of the values
of the monitored variables is performed by a Mam-
dani Fuzzy Inference Engine leading to the fuzzy

conclusiony1 is Y′
1 and . . . and yc is Y′

c, whereY′
q,

q = 1, . . . ,c, is the discrete output FS of the vari-
able yq, constituted by the two values of member-
ship or non-membership to classq. Figure 2 shows
an example of output FSs for a given input pattern to
be classified into one of three possible classes: the
pattern most possibly belongs to class 3 (with de-
gree 0.95) but it could possibly belong also to class 1
(with degree 0.7) and 2 (with degree 0.3).

y1

µY′
1

NO YES

0.3
0.7

y2

µY′
2

NO YES

0.3
0.7

y3

µY′
3

NO YES

0.05

0.95

Fig. 2. Example of a possibilistic classification into 3
classes.

As a final remark, we note that the supervised
evolutionary possibilistic clustering algorithm is run
a priori, off-line to obtain the partition of the mon-
itored variables space into clusters from which the
fuzzy inference model is derived. Once this is
achieved, the diagnostic model can be set on-line for
performing the fault classification in real time.

4. Obtaining a transparent fuzzy rule-based
model

The classification model derived with the approach
illustrated in Section 3 is really still a ‘black box’,
due to the difficulties of describing and interpreting
in terms of rules antecedents the multi-dimensional
FSs representing the identified clusters. In the
present Section, a method is propounded to extract a
transparent, rule-format KB from the previously ob-
tained multi-dimensional FSs. To ease the presenta-
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tion of the procedure, reference will be made to the
two-dimensional artificial classification problem of
Fig. 3. The relative data comprise 4 classes of pat-
terns obtained by random sampling from different
Gaussian distributions. Each class can be consid-
ered to correspond to a different type of system fault
to be classified.

Fig. 3. Two-dimensional artificial case study comprised of
4 fault classes: ‘+’ represents patterns of classΓt

1,‘∗’ of
classΓt

2, ‘◦’ of classΓt
3 and ‘⊲’ of classΓt

4

To obtain a transparent KB, the following two
steps are performed:
- projection of then-dimensional fuzzy clusters into
n mono-dimensional FSs (Section 4.1);
- enforcement of appropriate semantic constraints on
the obtained FSs (Section 4.2).

4.1. Projection of the n-dimensional fuzzy
clusters into n mono-dimensional FSs

As a result of the clustering classification algorithm
presented in Section 3, eachn-dimensional training
pattern−→x k, k = 1, . . . ,N, is possibilistically classi-
fied by its membershipµi(

−→x k) to each classi =
1, . . . ,c. The projection of the genericn-dimensional
fuzzy cluster onto then mono-dimensional UODs of
the rules antecedent variables is performed as fol-
lows:

(i) the mono-dimensional MFs of the antecedents

FSs are generated by pointwise projection of the
membership valueµi(

−→x k) onto the antecedent vari-
ables UODs10,12,22,23,24,25. In the particular case
of two patterns−→x 1 and−→x 2 of the same clusteri
having the same projection onto thep-th input vari-
able axis (i.e.x1p = x2p), the membership function
on the p-th projection is taken equal toµXpi(xp) =

max
(

µXpi(x1p),µXpi(x2p)
)

, whereXpi is the FS re-
sulting from the projection of clusteri onto thep-
th input variable,i = 1, . . . ,c. This is in force of
the compositional rule of inference22. For example,
by projecting onto the ranges of the antecedentsxp,
p = 1, 2, the cluster of Fig. 3, associated to classΓt

2,
corresponding to the second Gaussian distribution
(symbol ‘∗’ in Fig. 3), the FSsX12 andX22 shown
in Fig. 4, are obtained.

(ii) the resulting non-convex MFs are transformed
into convex MFs. To do this, starting from the small-
est value of the antecedentxp, only the membership
of those values that have membership higher than
the previous one are kept, until the maximum mem-
bership value is reached12. Then, the same proce-
dure is applied starting from the highest value of
the antecedent, until the maximum MF is reached.
Fig. 5, shows the application of this procedure to the
non-convex FSs of Fig. 4. The enveloping solid line
represents the resulting convex MFs.

Fig. 4. Projections of the cluster of Fig. 3, corresponding to
classΓt

2 onto the UODs of the 2 antecedentsx1 andx2
(abscissa: antecedent values; ordinate: membership value

of the generick-th pattern to the cluster projection,
k = 1, . . . ,N

(iii) The convex FSs are approximated by linear in-
terpolation to FSs with MFs of trapezoidal shape.
The use of trapezoidal MFs allows a good iden-
tification of the projections zones. Other alterna-
tive representations, e.g. truncated Gaussian FSs,
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may work as well. Before performing the lin-
ear interpolation, all membership values under a
threshold (chosen to be 0.1 in the present work)
are rounded off to 0 and analogously all mem-
bership values above an upper threshold (chosen
to be 0.9 in the present work) are rounded off
to 1. Figure 6 shows the two FSs that represent
the projection of the cluster of Fig. 3, correspond-
ing to classΓt

2 onto the 2 antecedentsx1 and x2.

Fig. 5. Approximation of the projections of the cluster of
Fig. 4, associated to the classΓt

2 into convex non typical
FSs

By so doing, the original premise of thei-th rule
for cluster i, “ if (x1, . . . ,xn) is Xi”, i = 1, . . . ,c, of
Eq. (4) is transformed into a new fuzzy proposition
of the kind:

if (x1 is X1i) and . . . and (xn is Xni) (7)

Obviously, the method is approximate and some in-
formation on the cluster is inevitably lost in the pro-
jection, due to the decomposition error arising from
projecting the multi-dimensional FS into its mono-
dimensional constituents22. On the other hand, it
enables expressing the KB in a form with a clear
and interpretable semantic meaning.

4.2. Enforcement of appropriate semantic
constraints on the obtained FSs

To achieve the physical interpretability of the model,
semantic constraints are imposed to the FSs obtained
in the previous step in an attempt to obtain an “op-
timal” interface26,27,28,29. This is sought through
the procedure described below in Sections 4.2.1–
4.2.4; note that at each step of the procedure, the
corresponding FSs modification required to achieve
an improved physical interpretability is actually car-

ried out only if the classification performance on the
training data is not significantly decreased.

4.2.1. Pruning of FSs covering a large portion of
the UOD

Some FSs projections can turn out to be cover-
ing great portions of the variables UODs, adding
little specific information to the model and over-
shadowing more focused FSs. Such sets can be re-
moved from the antecedents of the rules24. For ex-
ample, in Fig. 7, the projection of the clusters of
Fig. 3, associated to the classesΓt

1, Γt
2, Γt

3, andΓt
1

onto the antecedent variablex2 results in FSX21 cov-
ering a wide portion of the UODUx2.

The pruning of a FS modifies only the rules in
which the FS appears as antecedent. The modifica-
tion amounts to canceling from the antecedents the
one corresponding to the eliminated FS.

Fig. 6. The trapezoidal FSs corresponding to the cluster of
Fig. 3, associated to the classΓt

2

The criterion for elimination of a FSXpi widely
covering the UODUxp is26:

βolXpi > Uxp ; p = 1, . . . ,n; i = 1, . . . ,c (8)

wherelXpi is the width at half height of thei-th FS
Xpi of variablexp andβo > 1 is the so-called over-
lap parameter which quantifies the portion of UOD
Uxp that can be covered by the support of the FS
Xpi. The larger is the value ofβo, the more severe is
the pruning criterion. A valueβo = 1 implies that a
FS is eliminated only if its support covers the whole
UOD; a value ofβo > 1 is such that the elimination
criterion of Eq. (8) is satisfied by FSs with supports
smaller than the entire UOD. A value ofβo = 1.5
was found to be optimal by trial-and-error for the
application which follows in Section 5.
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4.2.2. Addition of FS “nearly zero”

In practical diagnostic applications it is important
also to be able to distinguish that the system is in
a condition of no faults, as depicted by the absence
of deviations of the measured signals from their nor-
mal behaviour. However, if the training data do not
contain realizations from the class of no faults (sta-
tionary state), there is no cluster representing such
situation and correspondingly no antecedents and no
rules.

Fig. 7. Overlapping MFs obtained from the clusters
projection. The thick solid line in the left Figure denotes

the FSX21 to be pruned

To overcome this limitation, a triangular FS
called “nearly zero” is forced in the partition of the
UODUxp of each variablexp (Fig. 8). The new FS is
centered in 0 and the zero-membership vertices are
arbitrarily chosen equal to±0.1 of the minimum and
maximum of the UODUxp of the antecedent variable
xp, respectively. A rule tailored to stationary condi-
tions can then be added to the FRB:

if (x1 is ‘nearly zero’) and(x2 is ‘nearly zero’)

then(y1 is YNO
1 ) and(y2 is YNO

2 )

and(y3 is YNO
3 ) and(y4 is YNO

4 ) (9)

By this addition, it is expected that when a Fact rep-
resentative of the system in no-fault, stationary con-
ditions is input to the fuzzy classification inference
model, the above new rule will be the most activated
so that the corresponding pattern is correctly classi-
fied.

Fig. 8. FS “nearly zero” for variablex2 (arrow)

4.2.3. Annihilation of narrow FSs

In order to avoid the overlapping among pairs of lin-
guistic terms and the possible consequent semantic
inconsistencies, it is necessary to have sufficiently
distinct FSs28. If a FS Xp j is too narrow, its con-
tribution is too specific and model transparency is
somewhat lost. Annihilation of FSXp j is performed
if there is a FSXpi for which the following criterion
is satisfied (Fig. 9)24:

lXpi µXpi

(

zj,1 +zj,2 +zj,3 +zj,4

4

)

> βalXp j

i = 1, . . . ,c; j = 1, . . . ,c; i 6= j (10)

wherelXpi and lXp j are the half-height widths of the
FSsXpi andXp j of the same input variablexp, zj,s,
s= 1, 2, 3, 4, stand for the input variable values cor-
responding to the four vertices of the trapezoidal
MF of Xp j, βa > 1 is the annihilation parameter that
quantifies how much the FSXpi covers the FSXp j.
The larger is the value ofβa, the more severe is the
annihilation criterion11,26. The value of 1.5 for βa

was found by trial-and-error to produce optimal re-
sults in the case study analyzed in the present work.
The degree of membership toXpi of the symmetry

center
zj,1 +zj,2 +zj,3 +zj,4

4
of FSXp j is introduced

in (10) because it is representative of the level of
coverage of the two FSs11,30,31. If the two FSs do
not intersect themselves, the membership value is 0;
on the contrary, if they are identical the membership
value is 1.
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The FRB is appropriately modified by replacing
the canceled FSXp j with the FSXpi.

Fig. 9. Annihilation of a narrow FS (arrow)

4.2.4. Fusion of similar FSs

If two FSs describing the same variable are suffi-
ciently overlapped, then they should be fused into
a single FS because similar11,26. Appropriate mea-
sures can be used in order to asses the pairwise sim-
ilarity of the FSs in the FRB.

The similarity measureΩ of the two FSsXpi and
Xp j here adopted is given by the ratio between the
intersection and the union of their two areas32:

Ω(Xpi,Xp j) =
|Xpi ∩Xp j|

|Xpi ∪Xp j|

=
|Xpi ∩Xp j|

|Xpi|+ |Xp j|− |Xpi∩Xp j|
(11)

If the value of Ω is higher than a pre-established
threshold, the two FSs are deemed similar and they
are fused. The four parameterszfus,s, s= 1, 2, 3, 4,
of the new, fused trapezoidal MF will be:

zfus,s =
zi,slXpi +zj,slXp j

lXpi + lXp j

;s= 1, 2, 3, 4 (12)

where thezfus,s are the values corresponding to the
four vertices of the trapezoidal MF11,30,31 result-
ing from the fusion,zi,s, zj,s are the four vertices of
the two fused FSs, andlXpi , lXp j are the half-height
widths of the FSsXpi andXp j, respectively.

The FRB is modified by replacing the fused FSs
with their fusion (Fig. 10).

Fig. 10. Fusion of two similar FSs (arrows)

Finally, notice that the implementation of the
steps described in this Section 4 modifies the fuzzy
KB whose j-th rule takes the form:

if (x1 is X1 j) and . . . and(xn is Xn j)

then(y1 is Y1 j) and . . . and(yc is Yc j) (13)

The fuzzy rules thereby obtained are used for build-
ing the Fuzzy Inference Engine described in Sec-
tion 2.

5. Case study: classification of transients in the
feedwater system of a Boiling Water Reactor

5.1. Problem statement

The identification of a predefined set of faults in a
Boiling Water Reactor (BWR) is considered. Tran-
sients corresponding to the faults have been simu-
lated by the HAMBO simulator of the Forsmark 3
BWR plant in Sweden33. Figure 11 shows a sketch
of the system33.

The considered faults occur in the section of the
feedwater system where the feedwater is preheated
from 169◦C to 214◦C in two parallel lines of high-
pressure preheaters while going from the feedwater
tank to the reactor. Process experts have identified
a set of 18 faults that are generally hard to detect
for an operator and that produce efficiency losses if
undetected34. Thec = 6 faults regarding line 1 are
here considered as the classes to be distinguished by
the classification. These are numbered F1–F5 and
F7, coherently with the original numbering33. Ap-
pendix B provides a brief description of the faults
considered.
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Fig. 11. Sketch of the feedwater system33

For each type of fault, the patterns to be used
for building the classification model have been con-
structed by simulating transients with the plant at
80% of full power, taking values every 6 seconds
from tin = 80s to tfin = 200s.

Among the 363 monitored variables, onlyn = 5
have been chosen for the transient classification us-
ing the feature selection algorithm proposed in35:
position level of control valve for preheater EA1
(PLV), temperature of drain 4 before valve VB3
(T1), water level of tank TD1 (WL), feedwater tem-
perature after preheater EA2 (T2) and feedwater
temperature after preheater EB2 (T3). Figure 12 re-
ports an example of the evolution of the five moni-
tored variables in correspondence of the six differ-
ent simulated faults. The difference of the variables
values from the steady state values are reported, be-
cause such deviations are those upon which the fault
classification is based.

5.2. Application and results

The objective of the application is that of using the
available pre-classified patterns of variables devia-
tion for building a classifier based on fuzzy clus-
tering and then extracting from it a set of transpar-
ent and accurate diagnostic rules for classifying the
feedwater system faults. 80% of the available pat-
terns have been used for building the classifier and

the remaining 20% for testing its accuracy.

Fig. 12. Time-evolution of the five monitored variables
deviations (in abscissa the time in seconds and in ordinate

the variable deviation from steady state)

The application of the evolutionary algorithm
for optimizing the possibilistic clustering model de-
scribed in Section 3, supervised by the pre-classified
data available from the simulated fault scenarios,
leads by construction to 6 clusters, each one cor-
responding to a different type of fault. These are
translated into a possibilistic clustering classifier,
based on a KB of the form of Eq. (5) in which
the multi-dimensional input FSs correspond to the
multi-dimensional fuzzy clusters. The correspond-
ing classification performance on the test patterns is
reported in Table 1. Two defuzzification methods
have been considered for the final class assignment
of an incoming pattern(x1,x2, . . . ,xn) starting from
the inferred output FSsY′

1,Y
′
2, . . . ,Y

′
c (Fig. 13):

- method I – the input pattern is crisply assigned to
the class whose corresponding outputyq has the
FS Y′

q with the largest membership grade to the
linguistic label{YES}, q = 1,2, . . . ,c.

- method II – the pattern is possibilistically as-
signed to all the classes whose corresponding out-
put yq, q = 1,2, . . . ,c, has the FSY′

q with mem-
bership value to the linguistic label{YES} larger
than a thresholdγ (here chosen equal to 0.6).
If none of the membership grades to the label
{YES} is larger thanγ , then the pattern is labeled
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‘atypical’. If more than one membership grade is
larger thanγ , then the pattern is labeled ‘ambigu-
ous’.

1
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0.95

0.7
0.3

0.3
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µY′
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µY′
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µY′
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µY′
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µY′
1

y6

y5

y4

y3

y2

y1

NO YES

Method II
γ = 0.6 Pattern

possibilistically
assigned to

classes 1 and 3

Method I
Pattern
crisply

assigned to
class 3

Fig. 13. Defuzzification methods I and II

Fig. 14. Projection of the six clusters onto the input
variables

Projecting the multi-dimensional clusters onto
the UODs of the five antecedents corresponding to
the five input variables, the FSs reported in Fig. 14,
are obtained. With this partition of then = 5 mono-
dimensional antecedents UODs, a new fuzzy rule-
based classification model is built, based on a KB
with rules of the form of Eq. (13) and equal in num-
ber to the fault classes. The classification results
of the test patterns are also presented in Table 1.
Comparing these results with those obtained directly

from the multi-dimensional input FSs representing
the clusters, a minor deterioration of the classifi-
cation performance is observed: one pattern previ-
ously correctly classified is now found atypical with
both defuzzification methods. This minor decrease
in the performance is due to the loss of information
following the projection of the multi-dimensional
FSs into their mono-dimensional constituents.

Applying the transparency constraints of Sec-
tion 4 for obtaining an optimal partition of the UODs
Uxp of the input variablesxp, p= 1, . . . ,5, the FSs in
Fig. 15, are obtained.

Fig. 15. Final partition of the inputs UODs

Table 1 reports the classification results after the
application of each step of the procedure for obtain-
ing a transparent FRB (Section 4). In particular,
the step of pruning the FSs covering a large por-
tion of the UOD results in the elimination of the
two FSs obtained from the projection of the sixth
cluster, representing the sixth class of fault, and in
the consequential canceling of the two correspond-
ing variablesx2 andx4 from the antecedents of the
associated sixth rule. After this modification of the
FRB, the percentage of atypical patterns decreases
from 8% (2 patterns) to 4% (1 pattern) because a
pattern with the value of the input variablex4 out
of range, and thus previously labeled as atypical be-
cause not activating any rule, is now correctly classi-
fied. This is due to the fact that the input variablex4

is no longer an antecedent of the sixth rule in the new
FRB, so that the strength with which this rule is ac-
tivated depends only on the values of the remaining
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three input variables that are such to give a non-zero
strength of the sixth rule, thus leading to a correct
classification of the pattern to the sixth class.

The successive steps of the procedure result in a
more transparent FRB without decreasing the clas-
sification performance. In particular, all the test pat-

terns are correctly classified except one pattern char-
acterized by the first input variable with a value out
of the range of the training patterns. This pattern is
correctly labeled as atypical by the FRB of the clas-
sification model.

Table 1. Classification performances

Type of KB
Defuzzification Correct Error Ambiguous Atypical∗

method [%] [%] [%] [%]

Multi-dimensional input FSs
I 100 0 0 0
II 96 0 0 4

Mono-
dimensional
input FSs

after:

Projection
I 92 0 0 8
II 92 0 0 8

Pruning of FSs
covering UOD

I 96 0 0 4
II 96 0 0 4

Addition of FS
“nearly zero”

I 96 0 0 4
II 96 0 0 4

Annihilation of
narrow FSs

I 96 0 0 4
II 96 0 0 4

Fusion of similar
FS

I 96 0 0 4
II 96 0 0 4

∗ Including the patterns with an input variable out of range.

To appreciate the transparency of the seven rules
obtained after the last step of the proposed approach,
Table 2 reports the resulting KB. Note that rule num-
ber 7 derives from the need of distinguishing pat-
terns corresponding to the no-fault, stationary state
(Section 4.2.2). Again, the original rule forced into
the KB to meet the purpose may come out modified
by the pruning process because of the elimination or
fusion of some of the FSs “Nearly 0”.

Figure 16 presents the fraction of the 25 test data
points correctly (top), incorrectly (middle) and not
assigned (bottom) using defuzzification method II,
as a function of the value of the thresholdγ . The
classification thresholdγ offers an additional flex-
ibility to the modelling and can be interpreted as
a measure of confidence in the classification. For
high confidence in the classification, one must as-
sign a pattern to a class only if its membership is
close to 1, e.g. by imposing a thresholdγ = 0.98.
In this case, many patterns may not be assigned to
any class: in the present application, withγ = 0.98,

about 40% of the patterns are assigned to the right
class, 60% are not assigned and no misclassifica-
tion or assignment to more than one class occurs;
on the other hand, if one wishes to assign all pat-
terns to a class, a low value of the thresholdγ must
be adopted, e.g.γ = 0.28. In this case, the number
of patterns assigned to more than one class might in-
crease unacceptably: in the present application, with
γ = 0.28 about 58% are assigned to the correct class
and 38% are assigned to more than one class. Thus,
a compromise is sought. In the present application
this is obtained with a value ofγ = 0.6 which leads
to satisfactory results since 96% of the test patterns
are correctly classified and 4% are not assigned to
any class, whereas there are no erroneously classi-
fied patterns, nor patterns assigned to more than one
class.
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6. Conclusions

An innovative procedure for building a transpar-
ent fuzzy logic model for pattern classification has
been propounded, for use in fault diagnosis tasks.
Differently from other classification techniques, the
proposed approach aim at mining transparent fuzzy
rules from data, emphasizing the linguistic inter-
pretability of the acquired knowledge, which is a
fundamental requirement for the application of any
diagnostic tool in safety-critical fields like nuclear
technology.

Starting from an available set of labeled patterns

of monitored variables partitioned in different phys-
ical classes, a supervised evolutionary clustering al-
gorithm, based on the Mahalanobis metric, is ap-
plied to find optimal geometric clusters, in the space
of the monitored variables, which are as close as
possible to the physical classes. The clusters found
induce classification rules which are translated into
a transparent if-then format by a procedure of fuzzy
cluster projection, enforcement of appropriate con-
straints to the mono-dimensional FSs thereby ob-
tained and their combination into transparent and
physically interpretable fuzzy rules.

Table 2. The Table of rules of the KB

Rule

IF

PLV T1 WL T2 T3

THEN

F1 F2 F3 F4 F5 F7

1 Open Lower Higher
Nearly
equal

Lower Yes No No No No No

2
Partially

open
Lower Lower Low High No Yes No No No No

3
Very

closed
Lower Lower

Nearly
equal

Low No No Yes No No No

4
Partially
closed

Higher Lower High Higher No No No Yes No No

5
More
closed

Lower Lower
Nearly
equal

Low No No No No Yes No

6 Closed - Lower - High No No No No No Yes

7
Partially

open
Lower Lower

Nearly
equal

Low No No No No No No

The obtained fuzzy logic-based fault classifica-
tion model provides as output the possibilistic mem-
bership grades to the different classes, thus explic-
itly accounting for the ambiguities of the classifi-
cation problem inherent in its characterizing input
features, which may lead to the misclassification or
vague classification of certain patterns.

The methodology has been successfully applied
to a test case regarding the classification of a prede-
fined set of faults in the feedwater system of a Boil-
ing Water Reactor. The considered faults have been
identified by experts as non-critical from a safety
point of view but of major concern because leading
to significant losses of energy production while quite
difficult to detect and classify.

The diagnostic results obtained with the pro-
posed approach are satisfactory in terms of both
classification accuracy and model interpretability.

On the other hand, other diagnostic problems
may be characterized by physical classes that are
highly overlapping and little compact in the moni-
tored variables space. In this case, direct application
of the procedure currently developed for cluster pro-
jection into convex fuzzy sets is most likely to lead
to non informative fuzzy sets that would result in a
low classification performance. In this respect, work
is ongoing for the extension of the procedure by al-
lowing the possibility of projecting a single cluster
into more than a single FS, i.e. a non-convex FS, for
higher model resolution.
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Finally, the sensitivity of the model to the param-
eters controlling the pruning, annihilation and fusion
steps of the procedure is under study, with the ob-
jective of providing additional guidelines for their
selection.

Fig. 16. Classification performance as a function of the
confidence thresholdγ
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Nomenclature

BWR Boiling Water Reactor

FL Fuzzy Logic

FRB Fuzzy Rule Base

FS Fuzzy Set

KB Knowledge Base

MF Membership Function

UOD Universe of Discourse

PLV Position Level of control
Valve for preheater EA1

T1 Temperature of drain 4 before
valve VB3

T2 feedwater Temperature after
preheater EA2

T3 feedwater Temperature after
preheater EB2

WL Water Level of tank TD1

R number of rules in FRB

j index of the generic rule,j =
1, . . . ,R

xp antecedent linguistic variable,
p = 1, . . . ,n

Xp j FS of the p-th antecedent in
the j-th rule

Uxp UOD of xp

µXp j(xp) MF of xp to Xp j

yq consequent linguistic variable,
q = 1, . . . ,m

Yq j FS of theq-th consequent in
the j-th rule

Uyq UOD of yq

µYq j(yq) MF of yq toYq j

t t-norm intersection operator,
in this work taken as the min-
imum operator

s s-norm, in this work taken as
the maximum operator

X′
p generic FS of thep-th an-

tecedent inUxp representing
the “fact”

Y′
q generic FS of theq-th conse-

quent inUyq representing the
“conclusion”

−→x k k-th generic n-dimensional
pattern

N total number of available pat-
terns−→x k

c a priori known number of
classes

Γt≡(Γt
1, . . . ,Γt

c) a priori known physical class-
membership partition
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µi(
−→x k) possibilistic membership of

the pattern−→x k in the i-th clus-
ter, i.e. degree of similarity of
the pattern−→x k with the cluster
center−→v ∗

i

Γ≡(Γ1, . . . ,Γc) obtained geometrical cluster
partition

µ t
i (
−→x k) a priori known possibilistic

membership of−→x k to classi

Γi generic clusteri

Xi FS associated to thei-th clus-
ter

YNO
q , YYES

q consequent singleton FSs

w j degree of fulfillment of an in-
put pattern to the premise of
the j-th rule

ε minimum coverage level

lXpi width at half height of the FS
Xpi of the variablexp

βo overlap parameter

βa annihilation parameter

zj,s s = 1,2,3,4, four vertices of
the trapezoidal FSXp j

Ω(Xpi,Xp j) similarity measure of the two
FSsXpi andXp j

γ confidence threshold used for
the classification

ξ predefined threshold used in
the clustering algorithm

−→v ∗
i i-th cluster center

sik distance between−→x k and−→v ∗
i

Mi matrix defining the Maha-
lanobis metric of thei-th clus-
ter

T transpose operator

Appendix A. The supervised evolutionary pos-
sibilistic clustering classifier

The overall iterative training scheme can be sum-
marized as follows:

1. At the first iteration (τ = 1), initialize the met-

rics of all thec clusters to the Euclidean metrics, i.e.
M

i
(1) = I , i = 1,2, . . . ,c, whereI is the identity ma-

trix.

2. At the generic iteration stepτ , run the pos-
sibilistic clustering algorithm17 to partition theN
training data intoc clusters of membershipsΓ(τ) =
{Γ1(τ), . . . ,Γc(τ)}, based on the current metrics
M

i
(τ) and on the “supervising” initial partitionΓt

which sets the initial memberships of theN patterns
to c clusters equal to the true memberships to the a
priori known classes. ThenΓ(τ) is set equal to the
obtained optimal partitionΓ∗ = {Γ∗

1, . . . ,Γ∗
c}.

3. Compute the distanceD(Γt ,Γ(τ)) between the
a priori known physical classes and the geometric
possibilistic clusters by Eq. (2). At the first iteration
(τ = 1) initialize the best distanceD+ toD(Γt ,Γ(1)),
D+

i to D(Γt
i ,Γi(1)) and the best metricsM+

i
to M

i
(1)

and go to step 5.

4. If Γ(τ) is close toΓt , i.e. D(Γt ,Γ(τ)) is
smaller than a predefined thresholdξ , or if the
number of iterationsτ is greater than the prede-
fined maximum allowed number of iterationsτmax,
stop: Γ(τ) is the optimal cluster partitionΓ∗; other-
wise, if D(Γt ,Γ(τ)) is less thanD+ upgradeD+ to
D(Γt ,Γ(τ)), M+

i
to M

i
(τ) andD+

i = D(Γt
i ,Γi(τ)).

5. Incrementτ by 1. Update each matrixM+
i

by
exploiting its unique decomposition into Cholesky
factors5, M+

i
=

{

G+
i

}T
G+

i
, whereG+

i
is a lower tri-

angular matrix with positive entries on the main di-
agonal. More precisely, at iterationτ , the entries
gi

l1,l2
(τ) of the Cholesky factorG

i
(τ) are updated as

follows:

gi
l1,l2(τ) = gi+

l1,l2
+Ni

l1,l2(0,δ+
i )

if l1 < l2 (A.1)

gi
l1,l2(τ) = max

(

10−5
,gi+

l1,l2
+Ni

l1,l2(0,δ+
i )

)

if l1 = l2 (A.2)

where δ+
i = αD+

i , α is a parameter that controls
the size of the random step of modification of the
Cholesky factor entriesgi+

l1,l2
, Ni

l1,l2
denotes a Gaus-

sian noise with mean 0 and standard deviationδ , and
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Eq. (A.2) ensures that all entries in the main diago-
nal of the matricesG

i
(τ) are positive numbers and

soM
i
(τ) are definite positive distance matrices. No-

tice that the elements of thei-th Mahalanobis ma-
trix are updated proportionally to the distanceD+

i
between thei-th a priori known class and thei-th
cluster found. In this way, only the matrices of those
clusters which are not satisfactory for the classifica-
tion purpose are modified.

6. Return to step 2.

Appendix B. Details on the fault types consid-
ered in the case study

F1 leakage through the second high-pressure preheater
(line 1). A leakage from the primary incoming side
to the primary outgoing side means that part of the
feedwater will pass the heater without being heated.
If it is a big leak it can be detected by looking at the
temperature after the preheater, but it’s hard to de-
tect if you do not know it. The consequences are
loss of efficiency. Equipment involved: 463EA1 -
preheater

F2 leakage in the first high-pressure preheater (line 1)
to the drain tank. A leakage from primary side to
secondary side means that part of the feedwater will
go to the drain side of the preheater instead of con-
tinuing to the reactor. If it is a bigleak it can be
detected by the position of the drain valve which is
more open than it should be, but it is hard to detect
if you do not know it. The consequences are loss of
efficiency. Equipment involved: 463EA2 - second
preheater

F3 Leakage through the first high-pressure preheater
drain back-up valve (line 1) to the condenser. A
leakage here means that part of the drain water will
go to the condenser instead of going to the feed
water tank. If it is a big leak it can be detected
by the position of the ordinary drain valve, it is
less open than itshould be, but it’s hard to detect
if you do not know it. The consequences are loss of
efficiency. Equipment involved: 463VB20 -drain
back-up valve. Fault simulated by: Introduce a leak
through the closed valve

F4 Leakage through line 1 high-pressure preheaters
bypass valve. A leakage here means that part of
the feedwater will not be heated in the preheater
line. If it is a big leak it can be detected by see-
ing that the temperature after that line is lower than
the temperature after the other line. But it’s hard to
detect if you don’t know it. The consequences are
loss of efficiency. Equipment involved: 463VB7.2 -
bypass valve. Fault simulated by introducing a leak
through the closed valve

F5 Leakage through the second high-pressure pre-
heater drain back-up valve(line 1) to the feedwater
tank. A leakage here means that part of the drain
water will go to the feedwater tank directly instead
of going through the first preheater. If it is a big
leak it can be detected by the position of the drain
valve, it’s less open than it should be but it’s hard to
detect if you don’t know it. The consequences are
loss of efficiency. Equipment involved: 463VA25 -
drain back-up valve. Fault simulated by introducing
a leak through the closed valve

F7 Steam line valve to the second high-pressure pre-
heater (line 1) closing. Closing of this valve means
that less steam will go through the preheater. If it
is closing much it can be detected by the position
of the drain valve, it’s less open than it should be,
but it’s hard to detect if you don’t know it. The
consequences are loss of efficiency. Equipment in-
volved: 423VA6 - Steam line valve. Fault simulated
by closing a valve that is monitored to be open and
re-defining the state “valve open” as “valve 40%
open”. Closing the valve, up to 60% (i.e. 40%
open)
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