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The article overviews current trends in research studies related to reliability prediction and prognostics.
The trends are organized into three major types of prognostic models: failure data models, stressor models,
and degradation models. Methods in each of these categoriesare presented and examples are given. Ad-
ditionally, three particular computational prognostic approaches are considered; these are Markov chain-
based models, general path models, and shock models. A Bayesian technique is then presented which
integrates the prognostic types by incorporate prior reliability knowledge into the prognostic models.
Finally, the article also discusses the usage of diagnostic/prognostic predictions for optimal control.
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1. Introduction

Prognostics is an important aspect of an equipment
surveillance system. Such a system is usually made
up of several modules which use equipment related
data to perform monitoring, diagnostics, and prog-
nostics (see Fig. 1). While the monitoring and di-
agnostics (identification) portions have been well
established for several decades, the prognostics-
related techniques have recently attracted much at-
tention in many research studies. The reason of
the growing interest in the development of prog-
nostic methods is that the prognostic requirements
for modern engineering systems and mission- and
safety-critical components have become quite am-
bitious and present many challenges to the system
design teams. Many papers describe the monitor-
ing, detection and identification functions of surveil-
lance; two recent articles focusing on empirical
models and module integration are by Garvey1 and
Hines2. Prognostic modules are usually developed
to predict one of several related measures:

1. Remaining Useful Life (RUL): the amount of
time, in terms of operating hours, cycles, or

other measures the component will continue
to meets its design specification.

2. Time to Failure (TTF): the time a component
is expected to fail (no longer meet its design
requirements).

3. Probability of Failure (POF): the failure prob-
ability distribution of the component.

Fig. 1. Typical Equipment Surveillance System

These terms are very similar and the authors do
not attempt to differentiate between the first two.
Since the time the failure event occurs cannot be
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precisely predicted, a failure probability distribu-
tion results. Ideally, this distribution is constructed;
however, point-wise failure-time estimates are more
common. When point-wise estimates are given,
a measure of uncertainty or a confidence interval
around the prediction is desirable.

1.1. Motivation

Prognostics has emerged as an alternative to tra-
ditional reliability prediction, run-to-failure, and
scheduled maintenance. Traditional approaches to
system and component reliability are to be ques-
tioned since in many engineering applications the
intrinsic lifespan of components and interconnec-
tions becomes significantly shorter than that of the
systems within which they are used3. For exam-
ple, the assumptions of essentially unlimited life
and constant failure rate for electronics should be
reviewed. System designers have traditionally as-
sumed that the increasing failure rate portion of the
well-known “bathtub” reliability curve is unreach-
able and not a concern in life cycle operations. This
assumption has been historically correct, since com-
ponent lifetime has traditionally been longer than the
system’s expected life. However, the advent of elec-
tronic components whose life is not longer than the
system life makes the constant failure rate assump-
tion invalid4.

In maintaining a fleet of complex engineer-
ing systems one can identify many needs such as
maximum assets availability, very low rate of Re-
turned Tested OK components, minimal periodic
inspections, low number of spare items, accurate
parts lifespan tracking, minimum false alarms, etc.5

Maintainers need to have the ability to accurately
predict future equipment health status and to an-
ticipate problems and maintenance routines before
downtime occurs. Predictive capabilities would
enable the maintainer to execute a very benefi-
cial maintenance strategy based on future expected
equipment condition. Some of the benefits provided
by such an “on-condition” based maintenance are

• less time spent on inspection,
• optimized maintenance planning,
• improved fault detection, and
• increased asset availability.

Prognostic capabilities using existing monitoring
systems, data, and information will enable more ac-
curate equipment risk assessment and provide a ba-
sis for answering operational questions such as:

• Should we continue to operate or immediately
shutdown for maintenance?

• Can we change operations (speed, load, stress) to
continue operations to the next maintenance op-
portunity?

• Will the equipment have high probability of safe
operation for the planned mission?

Prognostics founded in root cause analysis al-
lows accurate physics-based diagnostic and prog-
nostic determinations for nuclear plant equipment to
be derived. Some research studies for understand-
ing and controlling the aging processes of safety-
critical nuclear plant components are currently in
progress6,7.

2. Prognostics Overview

Prognostics methods can be categorized by their ar-
chitecture, how they operate, the results they pro-
duce, or through several other means. An approach
that may be most instructive is to categorize them by
the type of information they use. Three prognostic
method types are defined this way:

Type I: Time-to-Failure Data-Based
These methods consider historical time to failure
data which are used to model the failure distribu-
tion. They estimate the life of an average component
under average usage conditions. The most common
method is Weibull Analysis8.

Type II: Stress-Based
These methods also consider environmental stresses
(e.g. temperature, load, vibration, etc.) under which
the component operates. They estimate the life for
an average component under the given usage condi-
tions. A common method is the Proportional Haz-
ards Model9.

Type III: Effects-Based
These methods also consider the measurable or in-
ferred component degradation. An example is the
General Path Model10.

Figure 2 provides a graphical representation of
the three prognostic methods. The most common
type is Type I which is the initial topic of most relia-
bility engineering texts such as those by Ebeling11,
Elsayed12, Barlow and Proschan13 or Meeker and
Escobar14. These books begin with the development
of failure time methods and then progress to more
advanced methods that use sensed information. The
following sections will provide more details on each
of these method types.
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2.1. Type I: Failure Data-Based Prognostics

In applications where failure rates of non-critical
items are relatively low and the usage of advanced
prediction models is constrained due to sensory
equipment limitations, failure data-based prognos-
tics is the only candidate to predict reliability. This
group of methods estimates failure data density
functions with various parametric or non-parametric
models.
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Fig. 2. Prognostic Method Types

Failure data analysis is based on gathering in-
formation about how long the item operates before
failure. Statistics collected from a large sample of
similar items are estimated to draw conclusions re-
garding time-to-failure for a typical item. In reliabil-
ity analysis, the item’s lifetime is modeled consid-
ering only a static probability distribution that does
not take into account condition data observed at the
particular object of interest. The lifetime probability
distribution is given by

F(t | Θ) = P(T 6 t)

wheret is some time,T is a random variable repre-
senting failure time, andΘ is a vector of parameters.

The simplest parametric model is the exponen-
tial model which is applicable to constant failure rate
components:

F(t | λ ) = 1−exp(−λ t).

These components have an equal probability of fail-
ing for each instant of time. They do not degrade or
wear out and are characterized by a single parame-
ter: the constant failure rateλ (t) = λ . Hazard rate is
commonly used in place of failure rate Probably the
most common parametric model is the Weibull dis-
tribution. This model is used because it is flexible
enough to model a variety of failure rates. The for-
mula for the failure rate (eqn. (1)) is a two parameter

model with a shape parameter (β ) and a characteris-
tic life (θ ).

λ (t) =
β
θ

(

t
θ

)β−1

(1)

These two parameters provide the modeling flexibil-
ity for components exhibiting an increasing failure
rate (β > 1), a constant failure rate (β = 1), and
a decreasing failure rate (β < 1). With the correct
choice of shape parameter, the Weibull distribution
does a good job of modeling the exponential, nor-
mal, or Rayleigh distributions. Example of different
shape parameters are given in Fig. 3.

Fig. 3. Weibull failure distributions with different shape
parameters

Additional information on Weibull modeling can
be found in a multitude of texts one of which is the
New Weibull Handbook8.

2.2. Type II: Stress-Based Prognostics

A readily apparent disadvantage of reliability data-
based prognostics is that it does not consider the op-
erating condition under which a specific component
is used. It provides a failure distribution for the aver-
age component operating under average conditions.
However, components operating under harsh condi-
tions would be expected to fail sooner and compo-
nents operating under mild conditions to last longer.
A group of prognostic methods that take the operat-
ing conditions under consideration are aptly named
stress-based prognostics.

The simplest class of methods for stress-based
prognostics is failure-time linear regression mod-
els. These models use prior observations of explana-
tory variables such as stress, temperature, or voltage
and the response variable, which is usually the fail-
ure time, to predict the life of a component. The
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proportional hazards model (PHM), developed by
Cox15, is a technique that merges failure time data
and stress data. The model uses environmental con-
dition information, termed covariates(zj), to modify
a baseline hazard rate (λ0(t)) to form a new hazard
rate:

λ (t;z) = λ0(t)exp

(

q

∑
j=1

β jzj

)

(2)

Failure data collected at covariate operating condi-
tions are used to solve for the parameters(β j) using
Maximum Likelihood Estimation (MLE) algorithm.
A basic assumption of the PHM is that the covari-
ates are multiplicative. The multiplicative effect of
the covariates on the baseline is such that when the
ratio of two cases is evaluated at some time, their
hazard rates are proportional. The baseline hazard
is the hazard rate when covariates have little or no
influence on the failure rate.

2.3. Type III: Effects-Based Prognostics

Effects-based prognostics uses degradation mea-
sures to form a prognostic prediction. Adegradation
measureis a scalar or vector quantity that numeri-
cally reflects the current ability of the system to per-
form its designated functions properly. It is a quan-
tity that is correlated with the probability of failure
at a given moment. Adegradation pathis a trajec-
tory along which the degradation measure is evolv-
ing in time towards the critical level corresponding
to a failure event.

The degradation measure does not have to be a
directly measured parameter, it could be a function
of several measured variables that provide a quan-
titative measure of degradation. It could also be an
empirical model prediction of the degradation that
cannot be measured. For example, pipe wall thick-
ness may be an appropriate degradation parameter
but there may not be an unobtrusive method to di-
rectly measure it. However, there may be related
measurable variables that can be used to predict the
wall thickness. In this case the degradation parame-
ter is not a directly measurable parameter but a func-
tion of several measurable parameters.

Many effects-based prognostics models track the
degradation (damage) as a function of time and pre-
dict when the total damage will exceed a predefined
threshold that defines failure. Cumulative damage is
defined to be irreversible accumulation of damage in
components under cyclical loadings. There are sev-
eral mathematical approaches to model cumulative
damage.

• Markov Chain-based Models

• Shock Models
• General Path Models

Markov Chain Prognostic Models are discrete in
the time domain and in the degradation measure do-
main. For each duty cycle, there is a non-zero prob-
ability of receiving a unit-size damage. The model
is usually formulated as a probabilistic simulation of
past and future degradation16. If the degradation is
directly measurable, then the simulation is only per-
formed for the future. The model has several param-
eters which can be estimated from historical degra-
dation and failure data:

• Probability of a damage occurrence in a duty cy-
cle

• The magnitude of the damage (usually a unit-size
damage is assumed)

• The critical damage level (Failure Threshold)

Figure 4 shows an example Markov Chain prog-
nostic model. The area marked by the diagonal up-
ward hatching is a collection of degradation path-
ways that grow towards the failure threshold over
time. If the actual degradation is measurable, then
the model can be used to simulate future pathways
from the current state.

Fig. 4. Markov Chain Prognostic Model Example

These are represented by the dot-filled area. The
collection of degradation paths can be used to pre-
dict the failure distribution (POF). In the figure, Dis-
tribution F1 represents the population failure distri-
bution while DistributionF2 is the predicted distri-
bution for the individual. One can see that the in-
dividual failure density has a lower variance (less
uncertainty) than the population-based distribution.
This represents the advantage of using individual-
based prognostics: reduction in the uncertainty of
the predicted RUL. As the degradation approaches
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the failure threshold, the RUL prediction becomes
more exact.

Shock Modelsare used predict the RUL for sys-
tems which are subject to randomly arriving shocks,
which deliver some damage of a random magni-
tude17. They are continuous in the time and the
degradation measure domains. Shock models have
several important parameters that are estimated from
historical failure data:

• Random Time between successive shocks,
• Random Magnitude of Shocks
• The critical failure threshold

Figure 5 shows an example shock model. The
method is similar to the Markov Chain model but
the time between shocks and the shock magnitudes
are continuous random variables.

General Path Models(GPM) were first proposed
by Lu and Meeker10 and use measurable degrada-
tion data and predict future degradation over time.
The GPM assumes that the degradation is a func-
tion of time, duty cycles, or some other measure.
Extrapolation of this degradation function was used
for RUL estimation by Upadhyaya,et al.18 Depend-
ing on the model functional relationship, the model
could have several parameters. A linear model has
two parameters:

• Critical Threshold
• Random Degradation Rate

b

Time,t

Damage, D

t1 d1

t2 d2

t3 d3

t4 d4

Fig. 5. Shock Model Example

The linear model is represented by Eq. (3) in
which the damage is a function of time.

D(t) = αt + ε (3)

whereε ≃ N(0,σ2
noise) is the error term.

Figure 6 shows a linear path model example. The
model parameters are estimated using historical data

and the RUL is calculated by measuring the current
degradation and estimating the RUL using the linear
model. Confidence intervals can be calculated using
standard linear regression equations. The details of
using linear path models for RUL prediction is given
by Usynin19.

Other functional relationships may also be used.
Figure 7 shows a general path model in which

the degradation path is not linear. In these cases in
which degradation may increase with time or load
cycles, a transformation may be derived to make the
relationship linear, or the actual functional form can
be predicted from the historical degradation paths.
The observed degradation path, y, is given by Eq. (4)

yi = η(t,ϕ ,Θi)+ ε (4)

whereϕ is the vector of fixed effects (population)
parameters andΘi is the vector of random (individ-
ual) effects for uniti. The Time-to-Failure (TTF)
distribution is given by Eq. (5)

Pr{T 6 t} = FT(t,ϕ ,GΘ(·),D,η) (5)

whereGΘ is the distribution ofΘi and D is the criti-
cal threshold.

Fig. 6. Linear Path Model Example

A common method for integrating prior pop-
ulation based historical data with current individ-
ual data is Bayesian updating. A complete discus-
sion of Bayesian statistics is available in Carlin and
Louis20. The following notation is used to describe
the Bayesian procedure.

Θ - model parameter to estimate
DATA - available observations
L(DATA | Θ) - likelihood of DATA
f (Θ) - the prior density ofΘ
f (Θ | DATA) - the posterior PDF ofΘ
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Figure 8 shows the basic Bayesian updating pro-
cedure. First, historical data is used to estimate the
model parameter. Next, new data is collected and
used to update the model resulting in a new poste-
rior distribution of the parameters. This posterior is
used as the new prior distribution. Lastly, when new
data is collected, it is used update the parameter dis-
tribution again.

As an example, a number of degradation paths
may have been collected that are modeled with a lin-
ear model. The one unknown parameter is the slope
parameter, and the historical linear fits can be used to
create a probability distribution for the slope param-
eter. Without any collected data, one would expect
the new individual to have the same traits as the his-
torical population; thus, this historical behavior pro-
vides a prior distribution. As new data is collected,
the prediction of the distribution is individualized so
that it is tailored to the current individual compo-
nent. Over time, the measured data overwhelms the
prior distribution and the predicted slope is that of
the data.

C
ra

ck
L

en
gt

h

Millions of Cycles

Fig. 7. General Path Model Example

2.4. Combined Prognostics Model Types

Some prognostic model architectures can make use
of a combination of historical failure data, environ-
mental data, and effects based data. An example
of a combined prognostics architecture is the life
consumption monitoring (LCM) methodology intro-
duced by Ramakrishnand and Pecht21.

A brief review of the LCM procedure is given in
Mishra22. The LCM is defined to be a prognostic

methodology that consists of the following steps:
1) Failure modes, mechanisms and effects analysis,
2) Virtual reliability assessment,
3) Monitoring critical parameters,
4) Raw data simplification,
5) Stress and damage analysis,
6) RUL prognosis.

Each step is briefly described and references to
the mathematical models involved are given. Two
case studies were performed to demonstrate the
proposed methodology. The objects of interest in
the both studies were two identical printed circuit
boards (PCB) placed under the hood of a car. The
PCB’s were subject to various stress conditions.
Temperature and vibration were identified to be the
strongest affecting factors. A failure modes and
mechanisms analysis revealed seven different fail-
ure modes such as electrical short between traces,
short between windings in the inductors populating
the PCB’s, change in electrical resistance due to sol-
der joints degradation.

N e w
D a t a

M o d e l  f o r
D a t a

P r i o r

L i k e l i h o o d

N e w
P o s t e r i o r

Fig. 8. Bayesian Updating Methodology

Virtual reliability assessment revealed that the
failure mode having the shortest time-to-failure was
a solder joint fatigue. The conducted assessment
predicted 34 days to failure based on solder joint fa-
tigue.

In recently published prognostics research, a
great deal of attention has been focused on the use of
machine learning techniques such as artificial neural
networks, fuzzy logic-based models, classification
and pattern recognition methods23,24,25,26.

A variety of neural network modifications have
been applied to construct a prognostic framework.

Wang and Vachtsevanos27 use dynamic wavelet
neural networks as the prognostic system reasoner.
A combination of radial basis function neural net-
works and rule extractors is applied to gas turbine
engine prognostics by Brotheron28. A Bayesian be-
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lief network is a main tool in Health Management
System for avionics proposed by Parker29.

2.5. Gaps in Prognostics-related Research and
Possible Future Directions

In recently published prognostics-related research
much attention has been paid to the various models
and approaches ranging from ordinary least squares
regression to wavelet-based neural networks that
aim primarily to producing an accurate prediction of
future reliability conditions of the object of interest.
To the authors’ knowledge, only few studies pub-
lished in the open literature have considered the use
of prognostic information for constructing an opti-
mal preventive maintenance strategy, these are by
Gertsbakh30 and Jardine and Tsang31. The studies
agree in that preventive maintenance based on the
usage of diagnostic information periodically or con-
tinuously collected on the system of interest is ex-
pected to be more efficient than a preventive main-
tenance strategy based on the time-to-failure distri-
bution. However, the higher efficiency comes at the
expense of having a prognostic model characteriz-
ing statistical properties of the random processη(t),
which reflects damage accumulation (degradation)
in the system.

Considering capabilities to continuously assess
and predict reliability aspects of the system, the
practitioner may be interested in how the prognostic
information can improve the system control in terms
of availability and cost reduction.

The research field related to the use of prognos-
tic models for optimal control remains wide-open.
Some researchers and practitioners have outlined the
main directions to follow and issues to address in re-
gards to the prognostics-based optimal control32,33.
However, there is a significant lack of specific con-
trol methods and approaches which would be suit-
able for dealing with uncertain conditions imposed
by highly random environmental conditions, vari-
ability in operational loadings and imperfect relia-
bility models.

In the presence of a large variety of diagnostic
information available online, it would be highly de-
sirable to develop methods and approaches for in-
corporating the prognostic information into the op-
timal control of the system. The following qualita-
tive example illustrates the idea of prognostic-based
control.

Consider a system assigned to complete some
mission subject to some time constraints. The sys-
tem performance is numerically quantified by the

system performance rate, which can be thought of
as the metric characterizing how fast the system is
able to accomplish the mission. Quality-related as-
pects of accomplishing the mission are out of this
simple example’s scope.

The system is assumed to be subject to degra-
dation. While in operation the system degrades at
some degradation rate, which is a function of a) the
system current performance rate, and b) the current
environmental conditions.

The performance rate, at which the system is op-
erating in particular environmental conditions im-
poses some degradation rate that shapes the sys-
tem degradation profile. Apparently severe envi-
ronmental conditions and a high-performance rate
will cause the system to degrade fast. On the con-
trary, normal environmental conditions and moder-
ate performance rates cause the system to degrade
relatively slowly.

The environmental conditions evolve indepen-
dently from the system and are considered to be to-
tally random and uncontrollable. The performance
rate is assumed to be the only means to control the
system performance.

In this setting, the practitioner wants to accom-
plish the mission at the lowest expense in terms of
degradation acquired by the system. Running the
system at a high performance rate minimizes the
time needed to finish the mission; thus, meeting the
time constraints. However, the high performance
rate imposes a high degradation rate, especially in
the case of severe environmental conditions. This
can cause the system to fail due to wear-out before
the mission is accomplished. On the other hand, a
low or moderate performance rate can hinder the
mission progress, and eventually cause the system
to fail in accomplishing the mission since the time
constraints are not met. It can be concluded that one
should find an optimal performance rate, following
which the system will meet the reliability require-
ments and time-related constraints as well. An ex-
ample of this case may be the drilling of an oil well
when inbound weather conditions limit the time on
task.

Since the degradation rate is subject to random
fluctuations, there is no one single value of the opti-
mal performance rate that would provide an accept-
ably good result for any sequence of encountered
environmental conditions. The practitioner rather
needs to have an optimal control policy that would
select a control action (the performance rate) opti-
mally chosen for each combination of the environ-
mental conditions and the degradation level the sys-
tem has attained. One obvious solution to the control
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policy problem would be that the practitioner would
choose the performance rate such that the standard-
ized mean performance rate would be larger than
or equal to the standardized mean degradation rate.
The standardized rate means the rate defined for a
percent value ranging from 0 to 100. Thus the stan-
dardized mean performance rate is the volume (per-
centage) of mission-related work, which in average
is performed within a unit of time. The standardized
mean degradation rate is the damage (degradation)
acquired by the system in a time unit.

Mean Performance Rate=Et [W(t + ∆t)−W(t)/∆t]

Mean Degradation Rate=Et [D(t + ∆t)−D(t)/∆t]

where W(t) is the percentage of the mission com-
pleted, 0%6 W(t) 6 100%, D(t) is the degradation
acquired by the system up to timet, 0%6 D(t) 6

100%.
Following this control policy the performance

rate is selected such that the newly updated aver-
age performance rate is larger than, or at least equal
to, the mean degradation rate imposed by the chosen
control action (performance rate). The deficiency of
this control policy is that the mean degradation rate
is assessed with some uncertainty attributed to the
imperfectness of the prediction methods and/or un-
certainty due to sensory equipment limitations. The
errors in assessing the mean degradation rate can
cause the chosen performance rate to significantly
deviate from the optimal rate.

A more sophisticated example may include the
presence of uncertainty in the performance rate that
is due to the impact of the system degradation. Run-
ning a degraded piece of equipment would cause de-
viations from the normal performance profile such
that the identical control actions performed in the
initial and near-to-finish stages initiate different per-
formance rates. The spread of deviations in the sys-
tem performance profile is expected to significantly
affect the control policy in terms of its optimality.

Concluding this section, the following statement
is made. The usage of prognostic information for
optimal control can greatly improve the assets op-
erational availability and cost reduction. However,
the problem of incorporating the prognostic infor-
mation into the control process seems to be difficult
and requires approaches that would handle a num-
ber of uncertainty-related issues and surpass the best
of heuristic control strategies. A good candidate to
resolve the problem is reinforcement learning (RL),
which is a general algorithmic approach to stochas-
tic optimal control problems. RL-based algorithms

can perform with or without models of the system.
The algorithms can be used online and offline as
well. The distinctive feature of RL-based methods
is that they tend to focus computation on areas in
the system state space, where the control actions are
likely to be taken.

3. Conclusion

This article presented a brief overview of current
trends in prognostics-related research. A classifica-
tion of prognostic model types has been presented
which is based on the types of data sources that
are available in real-world applications. These data
sources are a) historical records reflecting general
reliability aspects of the entire population (or a large
sample) of one-kind components, b) reliability data
including external stresses affecting the system reli-
ability, c) reliability data including degradation ef-
fects observed at the system of interest. It should
be noted that there could be classifications based on
some other criteria, for example, types of reliability
models, (empirical versus physics-based models);
however, one would probably choose a prognostic
technique based on the data available and prognos-
tic objectives.

The article has also outlined one possible direc-
tion in prognostics research regarding the use of pre-
dicted reliability information for optimal operational
control. In the presence of a great deal of uncer-
tainty attributed to random environment, variability
in operational loads, and item-to-item variation of
reliability properties, reinforcement learning-based
algorithms seem to be an appropriate method for
solving the optimal control problem for degrading
equipment given imperfect prognostic information.
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