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We investigate a number of measures relating partition® €ass of measures we consider are congru-
ence measures. These measures are used to calculate thatgibetween two partitionings. We provide

a number of examples of this type of measure. Another clagseafsures we investigate are prognosti-
cation measures. This type of measure, closely related tmeept of containment between partitions,
is useful in indicating how well knowledge of an objects sl@s one partitioning indicates its class in a
second partitioning. We apply our measures to some datagapplications. One example is in choos-
ing the appropriate level of a concept hierarchy. We alsméhice a measure of the non-specificity of a
partition. This measures a feature of a partition relataétiéagranularity of the constituent classes of the

partition.
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1. Introduction

Partitioning of objects is a pervasive activity in the
human cognition and conceptualization. For exam-
ple a notable feature of human language is the im-
plicit partitioning. Terms like small, medium and
large essentially imply a partitioning of the objects
over which they are applied. Concepts such as cold,
warm and hot involve a partitioning of temperatures.
Humans find it easier to reason with the type of gran-
ules that result from partitioninty.

Modern technologies agenda to develop human
like computational intelligence requires us to have
sophisticated tools for managing objects that are par-
titions34°. In addition many applications in data
mining involve the use of partitionint’®. The
emerging field of granular computifg®!! is one
attempt to provide these tools.

Our purpose here is to investigate some measures

that can be used in relating partitions.

One class of measures are what we call congru-
ence measures. These measures are used to calcu-
late the similarity between two partitionings. For
example if we partition a set of people by education
and openness to new technology we are interested
in calculating how similar these two partitions are.
Another application is comparing the results of two
clustering algorithms. Another class of measures we
investigate are what we refer to as prognostication
measures. This type of measure, closely related to
a concept of containment between partitions, is use-
ful in indicating how well knowledge of an objects
class in one partitioning indicates its class in a sec-
ond partitioning. We also introduce a measure of the
non-specificity of a partition. This measures a fea-
ture of a partition related to the granularity or size of
the constituent classes of the partition.
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2. Comparing Partitions

AssumeX is a finite collection of objects. These
objects can be people, countries, companies or any
other class of objects. A common process performed
within many tasks in modern intelligent computa-
tional technology is partitioning these objects. We
recall this involves obtaining a collection of distinct
subsets 0K, Ay, ..., Aq, called classes such thatn

Aj =@ and L(j Aj = X. In this case each element
j=1

Xk € X lies inJ exactly one of these classes. The data

mining task of clusterint314 involves a partition

of the objects. The use of concept hierarchids-

volves a partition of object. The field of rough sets is

based on a partitionid§. Many other tasks involve

this type of partition operation.

Within this context it becomes interesting to
compare partitions. Thus P = (Aq,...,Aq) and
P, = (By,...,Bp) are two partitions a natural ques-
tion is how similar or congruent are these two parti-
tions. A example of this arises when we cluster ob-
jects by different features and are interested whether
the resulting partitions are the same.

One goal here is to investigate and suggest a
measures of congruence between partitions. As-
sumeP is the set of all partitions over the space
X we are interested in obtaining a mapping Cong :
P x P — [0,1] indicating the degree of congruence
or similarity of two partitions. Assumi, andP, are
two partitions we want this mapping to satisfy
1) CondgPy,P,) = Cong P, Py)

2) Cong(Pl, Pl) =1
That is we require that Cong
relationshig”’.

We note that we can associate with any)sévo
special partitions. The first is the universal partition
where we just have one set. We shall denote this
P* = (X). The other special partition is the one in
which each element iX is in a distinct class. We
denote thid, = (Ay,...,An) whereA = {x }. Con-
ceptually these are the very opposite partitionings,
they are the least similar of any pair of partitions
Thus another property we desire of Cong is

3) CondP*,P.) = Min[Cong Py, P,)]
We now turn to the formulation of Cong.

is similarity

3. Equivalence Class Approach to Comparing
Partitions

It is well known that any partitioning oK can be
uniquely associated with an equivalence relation on
X. Here we shall consider the formulation of the
congruence mapping using this important connec-
tion.

We recall an equivalence relatiokE on X
is a mappingE : X x X — {0,1} such that

HEXXx) =1 Identity
2) E(x,y) = E(y,x) Symmetry
3) E(x,2) > Miny[E(x,y),E(y,2)] Transitivity

Condition three implies that iE(x,y) = 1 and
E(y,z) = 1 thenE(x,z) = 1.

It is well known that ifAq,...,Aq is a partition-
ing of X then we can obtain an equivalence relation
E such thatE(x,y) = 1 if x andy are in the same
class andE(x,y) = 0 if they are in different classes.
Alternatively if E is an equivalence relation ofiwe
can obtain a partitioning by assigning elemeand
y to the same class E(x,y) = 1 and to different
classes iE(x,y) = 0. From this perspective we can
associate with eack € X an equivalence clasiy
such thay € A if E(x,y) = 1.

We now note some special equivalence relations
and the associated patrtitioning they induceE lis
such thaE(x,y) = 1 for all x andy thenE partitions
X into one setA; = X. This is the partitioning we
denoted a$*. We denote this equivalence relation
asE*. At the other extreme is the cage where
E.(x,y) = 0 for x #y. In this case our classes are
A = {x;}. Here our are classes amesingleton sets.
This is the partitioning we denoted Bs

AssumeE; andE; are two equivalence relations.
We shall sayE; C E; if Ex(x,y) < Ex(x,y) for all
x andy. It can be shown that for any equivalence
relationE we haveE, C E C E*.

We also note that iE; C E, then if x andy are
in the same equivalence class is unéerthen are
also in the same class undes. Furthermore ifE;
induces the partitioningAs, ..., Aq) andE; induces
the partitioning(By, ...,Bp) thenq > p. That isE;
generally has more equivalence classes.

We note that if forx # y we indicate by(x,y) an
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unordered pair{x,y) = (y,X), then if X hasn ele-

(n)(n—1)
2

In the following we shall us® to indicate the set of

all distinct unordered pairs frox.

ments we have@) = unordered pairs.

In the following we shall find it convenient at
times to expresk as a subset of the spaldeof un-
ordered pairs. Here we shall use the notatibre
to indicate the subset &f related toE. In this case
U-E((xy)) = E(X,y) = E(Y,x). Furthermore we

may find it useful at times to refer tég) asn°2

to indicate it is the combination of elements taken
two at a time.

We now suggest a measure of congruence be-
tween partitions which we express in terms of
their underlying equivalence relations. AssuRje
(A1,...,Aq) andP, : (By,...,Bp) are two partitions
of X based on the equivalence relatidésand E;
respectively. We define

Cong (P1,P) = Cong (Ey, Ez)
—1- A 31U -Eal(xy) ~U Eal(x )] #0

(2)

Here §|U-E1(<x,y>)—U-E2(<x,y>)| is the

number of pairs that have different values Ea
andE.

We easily observe thatQ Cong, (E;,Ez) < 1. It
is also clear that CongE;,E») = Cong (Ez, Ez).

Consider two relationsE; and E, such that
E1 = Ep, that isEj(x,y) = Ex(x,y) for all x andy.
Here they have the same partitions. In this case
U-Ei((x.y)) —U -Ea({x,y)) = 0 for all (x,y) and
therefore Cong(E;,E1) = 1. Thus if the classes
of two partitions are the same then their congru-
ence is one. We further note thathf # E,, there
exists somex andy such thatE;(x,y) # Ex(X,y)
theny |U -E1((x,y)) —U - Ex((X,y))| # 0 and hence

U

Cong (E1,E2) < 1. Thus Cong(E1,E) =1 if and
onIy if E; = BEo.

Consider the equivalence relatidti, here all
E*(x,y) = 1. This results in a partition with one

classA; = X. Let E be any other equivalence re-
lation, partitioning of the space. It is clear that

Cong (E",E) =1— ——(#J -E=0)

(2)

where &) - E = 0 is number of elements id that
have zero membership id - E. From this it eas-
ily follows that if E; and E; are two equivalence
relations such thak; C E, then Cong(E*,Ey) >
Cong (E*,Ey).

Analogously we see that witk, the equiva-
lence relation such thd,(x,y) = 0 for x # y then

CongE,,E) = 1— i (#E = 1),

2
From this it follows that ifE; andE, are such that
E; C E; then CongE,, E;) < CongE,,E;).

Consider the two partitionE* andE,. In this
caselU -E*((x,y)) —U -E.({(x,y)) = 1 for all (x,y)
and hence CondE*,E,) = 0. Thus these are the
two complete opposite partitions. We can fur-
ther see that for any other two pair of partitions
Cong (E1,E2) > 0. Thus Cong(Ep,Ep) = 1 iff
E; = E; and Cong(E;3,Ez) = 0 iff E; = E* and
E; =E..

We also note here that for any partitidh al-
ways has less equivalence classes theand more
thanE*.

Consider two equivalence relatios and E;
where E; C Ep, Ei(xy) < Ex(xy). Let Pp:
(A1,...,Aq) andPs : (By,...,Bp) be their respective
partitionings. We observe that for ady there ex-
ists aBy such thatA; C B,. We see this as fol-
lows. Assumex andy are such thai; (x,y) = 0 and
E2(x,y) = 1. Herex andy are in different equiva-
lence classes undér, we denote theséy and Ay.
However undeE; they are in the same equivalence
class, we denote thiBx. Since all the elements
equivalent tox underE; are also equivalent under
E, and the same foy, then By must be such that
such thatA, U By C Bx. We also note in this case
g > p, the partitioningP, has less classes then the
partitioningP;.

We can provide an alternative and sometimes
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useful expression for
ZIU E1((xy)) —U -E2((xy))] -

Let G be a subset dfl defined such that
G= (U -E1nU ~E2) U (U -E1nU ~E2)
ThusG is the set of elements ld which have

U-Ei((x,y)) =1andU -Ex((x,y)) =0
or

U-E((xY))

It is easy to see that

CardG) = g U-E1((x,y)) —U - Ex({x,))]

=0andU-Ex((x,y)) =1

hence we can express

1
n

(2)

We further observe thatifwe I&,=U -E;NU - E»

and Gy, =U-E;NU -E; thenG = GU G, and

GaNGy = @, Gy and Gy, are disjoint. From this it
follows that

CardG) =

Cong (E1,Ey) =1— CardG)

CardG,) + Card Gp)

This formulation will allow us to prove the follow-
ing important property about the measure Cong

Theorem 1. Assume E, E; and E; are three equiv-
alence relations such that;E- E, C E3z then

Cong (Es, E2) > Cong, (Es, Ey).

Proof. First we observe that from the fact tHat C
E, C Eswe havel -E; c U -Ep; C U - E3. We shall
denoteG, =U -Ez3NU -E; andG, =U -Ez3NU - E
andH; =U -Ez3NU -E; andH, =U -EzNU -Ej. In
this case

Cong (E3,Ez) =1— [Card G,) + Card Gp)]

/N
RPN Sk
N———

Cong (Es, E1) = 1 — -5 [Card Ha) + Card Hp)]

2)

V. E(Zl)

hence

Cong (Es, E2) — Cong (Es, E1)
1

= — =< [(CardH,) — Card Gy))
(2)

+ (CardHp) — Card Gp))]

Consider now the ternG, = U -E3NU - Ey, it is
the elements that are d - E; but not inU - Eg,
however sinceE, C E3 then G, = @. Similarly
Hp =U - E3NU -E; are the elements id - E; that are
not inU - Ez again sinceE; C Ep, we haveH, = @

Thus

COﬂg_(E;g, Ez) — COI’]Q_(E;;, El)
= % (CardHa) — Card Ga))
(2)

Consider nowH, =U -E3NU -E; andG, =U -E3N
U -E,. SinceU -E; CU -E> thenU -E; CU - E; and
henceG, C Hy hence CarfH,) > Card G,) and the
result follows. O

Consider the spadd of unordered pairgx,y).

Consider now ar(2> -dimensional spac& whose

. n
coordinates aréz,...,zy), here we letm = ( )

2
Assume a bijective mappin®l associating with
each elementx,y) a dimension in the spacg,
M:U — Z. Using this we can associate with
any equivalence relatiolr a vectorV - E in this
spaceZ such that thei™ component of the vec-
torV-E(z) =U-E((x,y)) where(x,y) is the pair
corresponding to the dimensia More formally
=U-E(M~1((x,y)). Thus thez coordi-
nate inV - E takes the value one if the unordered pair
(x,y) associated witlz is in E otherwise it takes the
value zero.

Consider now two equivalence relatioks and
E, defined onX. We can associate with each
of these a vector as defined above, we denote
theseV - E; andV - E,. Consider now the term

S U Ex((xy))—U-Ea({xy))|. Letting m=
(xy)eu
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<;) we see that this can be alternatively expressed

m
as y |V-Ei(z))—V-Ex(z)|. This alternative ex-
i1

pression is a well-known measure of distance, a met-
ric, between the two vectors. It is an example of the
more general Minkowski metric

Lpl(as,...,am), (b1,...,bm)] = (im _bi|p> P

for p > 0. In the case where = 1 this is called
city block metric. We note that if the arguments are
restricted to the unit interval then for amythis as-
sumes its maximal value for the case wlanr= 0
andb; = 1 for alli.

m
Thus we can viewy |V -Ei(zj) =V -Ex(z)| as
=1

a distance between two vectors. We denote this
L1(V-E1,V-Ep)). Itiswell known that sy (V -E3,V -
E,) satisfies the properties of a metric.

Let E be the set of all equivalence relations on
X. LetV -E be the set of all associated vectors as
defined above. Thengdis a mapping

LpZV-E—>V-E—>R

such that for any - E1, V - E; andV - E3 associated
with the equivalence relatiors,, E; andEz we have
1) Lp(V-EL,V-Ez) =Lp(V-E,V -E1) Symmetry
2)Lp(V-E1,V-E2) =0ifV-E1 =V -E»
3) Lp(V-Ey,V-E3) < Lp(V-EpV-Ep)
—I—Lp(V B,V - E3)
Furthermore since §(V - E1,V - E) is a metric then

1
d(E1,Ez) = < Lp(V -E1,V -Ey)

(2)

is also a metric, distance measure, however it maps
into the unit interval. From this we see that for any
p the term 1-d(Ej, E) is a similarity relation and
can be used as a measure of congruence betiageen
andE,. Furthermore we note for the special equiv-
alence relatiorE* all the components in the vector
V -E* are ones while for he special equivalence re-
lation E, all the components in the vectar- E, are
zeros. From this it follows that 4 d(E.,E*) will
have the smallest congruence for any two equiva-
lence relations.

4. Rand Index

In 18 Rand suggested an approach for comparing the
partitions that resulted from using different methods
of clustering. This is called the Rand index.

Again supposeP; : (Ag,...,Aq) and P, :
(By,...,Bp) are two partitions ofX. In1% it was
noted there are four different relationships that can

exist among any of the{2> pairs of distinct ele-

mentsx andy of X.

1) The objectsx andy are in the same class in both
P, andP>

2) The objec andy are in different classes in both
Pl and P2

3) The objectx andy are in the same class i but
in different classes i,

4) The objectx andy are in the different classes in
P, but in the same class i®»

If we let a = # of pairs of type 1b = # of pairs of
type 2,c = # of pairs of type 3 and = # of pairs of
n
2
distinct pairs. Using this notation the Rand indgx
of the two partitiond?;, andP; is

type 4 thera+b+c+d = ( ) the total number of

a+b a+b
R= (;) ~ atbtc+d

Let E; and E, be the two equivalence relations
on X defining the two partitions. Ldtl again be
the space of unordered distinct paipsy), U| =
<2) Let U - E; be a subset o) defined byU -
E1((x,y)) = E1(x,y). Similarly U - E; is defined as
U-Ex((x,y)) = E2(x,y). We note that Card) - E;)

is the number of pairs elements that are in the same
class inP,. Similarly CardU - Ey) is the number

of pairs of elements that are in the same class in
P.. FurthermoreU - E; NU - E, are all pairs that
are in the same class in both partitionings. Hence
a= CardU -E;NU -E,). On the other hant - E;
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is the subset of pairs that are in different classes in
P.. Similarly U -E; is the set of pairs that in dif-
ferent classes iB,. Here therlJ -E;NU -E; is the
subset of pairs that are in different classes in both
partitions. Thus we havie= CardU-E;NU - E).

Using this we that we can express the Rand index as

ath
n
(2)
_ CardU-E;nU -Ep) +CardU-E1NU - Ey)
= n
(2)

This is equivalent to the Copgneasure.

R:

5. An Alternative Measure of Congruence

In the preceding we have introduced a measure of
similarity, congruence, between two partitions using
the underlying equivalence relations. Here we now
consider formulating a congruence measure from
the perspective of the partitions themselves.

Assume we have two partitions of the space

P=Ay..., Ay
P =B,..., By
here
q
X =[JAjandANA; = fori#j
and =1

p
X =|JBjandBNB; = fori# j
=1

Without loss of generality we shall assue: p.
If g> p we can augment the partitid® by adding
gq— psubsetsBp,1 =Bpio=---=Bg=@. Thusin
the following we assume the two partitions have the
same number of classeas,

We now introduce an operation called a pairing
of P, and P,, denotedg(P;,P,), which associates
with each subsed; of P, a unique partneB; from
P,. Formally if Q = {1,2,...,q} then a pairing is
a mappingg : Q — Q that is bijective, one to one
and onto. Essentiallg is a permutation of). We
then have that a pairing(Py, P,) is a collection ofg

pairs, (Aj,By(j)). We shall now associate with each
pairing a score, Scofg(Py,P.)), defined as follows.
Denoting Oy j = Aj N Byj) for j = 1 toq, we obtain

Z CardDyg )

Scordg(Py,P)) = Tm

In the following we illustrate the process of deter-
mining Scorég(Py,P,)).

Example. LetX = {x1,X2, X3, X4, X5, X6, X7}
AssumeP; is A; = {x1,X2, X3}, A2 = {X4,Xs,%s} and
A3 = {X7}.
Assume P,
{Xl,X3,X5,X7}.
We first augmenP, with B; = &
One pairing igy(j) = j in this case we get the pairs
(Al, Bl), (Az, Bz), (A3, B3). From this

Dg.l =A1NB; = {Xz}

Dg.2 = A2 N Bz = {X5}

Dg_3 =AsNAz3=0

is B1 = {X,Xs,X} and By =

\lll\)

In this case Scokg(P1,P,)) =

Another pairing isg(1) = 3, g( )
here our pairs are
(A1,B3), (A2,B1), (A3,B2)
In this case
Dg.l =AB3=0
Dg2 = AoB1 = {X4,%e}
Dg3 = AsBy = {x7} .

In this case Scofg(P,P)) = 5

We now shall use this to obtain a measure of con-
gruence, CongP1,P). Let G be the set of all pair-
ings,g € G. We define

=193 =2

Cong,(P1,P2) = '\ggg( [Scordg(P1,P,))]
Thus this measure of congruence is the score of the
largest pairing.
We see that for any pairing
q
Z CardDgy ) < CardX)

From this it follows that 6< Cong,(P1, P2) < 1.
More precisely since for any two partitions we can
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q
always find a pairingy in which 3 CardDgyj) > 1
=1

we see that

CardX) < Cong(P,P) <1

Let us look at some special cases of the measure of
congruence. In the following we assume Gafil=
n. First consider the case whén= P, that is

P]_Z A]_, Az,..., Aq
P,: By, Bo,..., Bq

where Aj = Bj. We see the pairing such that
g(j) = j has the pairs(Aj,Bj) for j =1 to q.
In this case [Qj = AjNBj = A;. We get that

q
> CardDyj) =
= j

have g(P1,P,) = — = 1. From this we get that
Cong(P,P,) = Maé( [Scordg(Pi,P2))] = 1. Thus
ge

if the partitions are the same the congruence is 1. It
can be shown that Cop@P1,P,) = 1 if and only if
PL=P,.

Consider now the situation in which one of
the partitionsP* is simply X the whole space, it
is the grand partition and the other partitieh=
Aq,...,Aq. We see here that there are oglglistinct
pairing mappings possible. Each one corresponds to
an association ok with one of theA; and the other
classes irP are associated wit. For the pairing
gj that associateX with A; we haveX NA; = A;. In

q
> CardAj) = n. For thisg we
=1

S35

A.
this case we get Scdg) = Ca%”. Thus here
then Cong(P*,P) = Max {C&#{AJ)] . Thus for the
]

grand partitiorP* its congruence with any other par-
tition is simply Max; [CardA)], its the proportion
of elements in the largest classf

Consider now the case in which one partition,
P., is the partition consisting of classes which are
singletons,P. = Aq,...,As, Where A = {x}. Let
P =By,...,Bq be any arbitrary partitioning. We can
easily see that in this case Ca(B.,P) = g/nwhere
g is the number of classes 1 In the special case
whereP is P, we get that CongP,,P*) = 1/n.

6. Concept Hierarchies

An important application of partitioning is the case
of concept hierarchies. Le{t be a set of objects.
A concept hierarchy is a collection of partitions,
P.,...,P. HereRis called thek" level partition.
The fundamental property of the concept hierarchy
is that each class (granular or cluster) in a lower level
partition is fully contained in one class of the next
higher level partitioning. The partitioning becomes
more coarse as we go up. In Fig. 1 we illustrate the
idea of a concept hierarchy.

P4 Ay

P3 Az Az

P2 A21 A2z Azs

P1 | A11| A12| A1z | Awa| Aws| As| Az

Fig. 1. Concept Hierarchy
Formally here we have a collection of partitions

P A, Aro,. .., Algg,
P Ay, Azo,. .., Aog,

PI’ :Ar17 Ar27---7 qur

We note that fom > k we haveqm < Ok.

The fundamental property of a concept hierar-
chy is expressed in the following. L&tandm be
two levels such thatn > k, mis higher thark. For
any class in thek™ level, Ayj, there exists a class
in the m™" level, Ay such thatAy; C Ani. Essen-
tially here then withm > k we have for anyA,; that
Ani= U A whereSy;x € {1,...,0«}

JE€Smijk

We note the most extreme possible upper par-
titioning is the one consisting of the whole space
while the most extreme possible lower partitioning
is the one whose classes are singletons.

We now consider the calculation of the congru-
ence between partitions in this concept hierarchy.
We let Cong (R, Pn) be the congruence between
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the k" andm" level partitionings where we assume
m > k. Here again we le&y,; be the collection of
class inP that are contained id,. We now let

Msix [CardAx;)] = Bigpx. it is the cardinality of
i€Shy

the largest class in the partitidf that is contained
in Ami. Using this we see that

ZIBlgml/k

Thus it is the sum of the cardinalities of the largest
class inR, associated with a class Bf,.

A special case of determining congruence in con-
cept hierarchies is whem = k+ 1. Here we are
considering the similarity between adjacent parti-
tionings. In this case we can note some features
that make adjacent partitions more similar. Without
loss of generality assume the classeBihave been
indexed such that Café;) > CardAy;) for i < j.
Thus we index thd in decreasing order of cardi-
nality. Consider now the construction of the parti-
tioning R 1 where we shall allowgx, 1 categories.
We recallgk. 1 < Q-

We see that we can maximize Coli, P 1) by
assigning they,, 1 largest classes iR to different
classes iR, 1. Here then we le; C Ay 4 for
i =1togkr1. Thus each of the largest classas
P should be the focus of one of the classe&in.

Cong (R, Pn) =

We also observe that the congruence increases as the i=1

size ofqgy, 1 increases.

7. Optimal Solution

In the general case the calculation of Cefijy, P,)
requires the solution of an optimization problem,
that is we must determine the pairiggthat maxi-
mize the score. In the following we shall provide a
view of this optimization problems that allows for a
classical solution.

Here then we have two partitio% : Aq,...,Aq
andP, : By,...,Bq where we have assumed the in-
clusion of nuII sets if necessary. We can associate
with these two partitions the matriXx show below.

In this matrixnjj = Card Ai N B;), it is the number
of elements thad andB; have in common. We note
that the sum of the elements in thi& row is equal

to CardA;) while the sum of the element is tHé&
column is Car@Bj). The sum of all the elements in
the matrix isn, Card X).

B. B; By
A Ni1 Mg
A Nij

Aq Ng1 Ngq

The problem of calculating Cop@P;,P>) can be
viewed using the perspective of the matrix. A pair-
ing g is an association of each rofy with a unique
columnB;j, each pairing results in the selectioncgpf
elements consisting of one from each row and one
from each column. Furthermore each pgh,B;)
in a paringg has associated valug. The score of
the pairingg is the sum of thesg associated values.
The problem of determining Cop@P;,P,) is then
to find the selection of thesg values that provide
the largest total. This problem is a well-known op-
timization problem in operation research, it is called
the assignment probléfh Techniques have been
developed for solving this problem. We note thaj if
is small then we can solve this problem by enumer-
ation. We note that ify is an assignment function,

g(i) assignsBy;, to A;, then the score of equals
q

2 Mig(i)-

Here we shall present a view of this optimization
problem that allows for easy solution by enumera-
tion if g is small or by use of genetic algorithrfisif
gis large.

To calculate CongP;,P;) we must calculate
Maxge [Scordg(Py, P,))]. Using a mapping the
pairs are(Aj,By(j)) and the score is

q q
=Y CardANByi | =Y Nigi
i; [AiN By i; (i)

Consider the simple assignmegit) =i here therA;
andB; are assigned as pairs. In this case

q

Scordg(Py,P)) = .Zln“

Scorgg(P1, P2))

it is the sum of the elements on the diagonal of the
matrix N.
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We note that any mapping : Q — Q can be
viewed as a permutation of thgy. We see that for
any permutatiorg of (By,...,By) we get an inter-
change of the columns &. For this permutation,
however, its score can be obtained as the sum of the
elements on the main diagonal.

Thus one way to obtain the value of
Cong,(P1,P) is the do all the possible permuta-
tion of the columns. Total up the values of the main
diagonal for each permutation. The largest of these
totals is the value of CongP;,P,). In cases where
gis small this can be easily done by enumeration. In
cases whergq is large the total number of permuta-
tions, CardG), becomes too large for enumeration.
Here we can use genetic algorithms to get an optimal
solution[5,21].

We can express this optimization problem in the
form that can be solved using a genetic algorithm.
Consider our genomes to be permutations of the
[1,2,...,9. In the case wherg =6 an example
of this would beg=[23456 1.

Each@ genome can be seen to induce a matrix
in which thei™ column isBg(). Given a particular
genomej our fitness function is

q
F=S ng
i; igi)

We can now search that the whole space of genomes
G using the established procedures for searching a
permutation space with genetic algorithms.

8. Measure of Prognostication

In the following we shall investigate a different type
of measure of the relationship between two parti-
tions. Assumd®, andP, are two partitions ok,

Pi: A, Aq

P: By,..., B
Here we will try to measure how well we are to able
tell what class an object is in the partitiéh from
our knowledge of the class it is in partitidh. This
can be seen as a kind of prognostication or predic-
tion. We call denote this measure P(BgP,). As
we shall see this will not be symmetrical, that is
Prog P, P,) # Prog P, P1) but it will be such that
ProgP;, Pj) will assume the highest value. As we

shall subsequently see this concept is closely related
to the idea of containment between the patrtitions. In
the following we shall assume CaXi) = n.

We first define what we shall call an association.
LetQ={1,2,...,q} and letR={1,2,...,r} we de-
fine an association to be a mappimgQ — R. Thus
for eachi € Q we geth(i) € R. We note that need
not be bijective. This for # k we can haven(i) =
h(k). Essentially this mapping associates with each
classA; in partition P, a classB; in partition P».
While more then oné\ can be associated with each
Bj, eachA is only associated with only ori;. For
a givenhwe define Farfj) = {A | h(i) = j}, itis the
family of classes irP; that map intoB; in partition
P.. We letH be the set of all association mappings.

We now obtain for any association mapping
value

1 r
Value(h) = - J;Card(BJ n U A.)

ieFam(j)
Using these values we, define
ProgPy,P,) = I\h/I%x [Value(h)]
c

Thus the degree of prognosticationRyffor P, is the
largest value of any association.

We now make some observations about the prop-
erties of Valu¢h) and ProgP;, ). First we observe
that for anyh, Valug'h) > 0 and Valu¢h) < 1. From
this we conclude that

0< ProgP,P) < 1.

Let us now consider some special caseB,atind
P,. First consider the case wheRe = P>. In this
case we have

P1: Al, Az,..., Aq

P,: By, By,..., Bq
whereB; = A;. Consider now the association map-
ping h(i) =i. In this case

q
Value(h) = % Z CardAjNBj) =1
=1

From this we can conclude that P(&y,P,) = 1.
Another interesting special case is whBsés P*
it just consists of one set,
Pr: Ag,..., Aq
P B
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whereB; = X. Here there is only one association
mapping,h(i) = 1 for alli. In this case

Value(h) = %Card(Xm U A,-) =1
j=1toq

Thus here again we get
ProgP,P*) = 1.

Consider now another special case. Here we assume
Py is P*, eachA; = {x } it is a singleton set ank, is
any arbitrary partition. Thus in this case
P : Al, Az,..., An
P Bl, Bz,..., By
Consider the association mappirgi) such that
h(i) = j wherex € Bj. In this case

scdein UA)
Valueth) = = § Cardl Bin Al=1
oh) = J; j ng
Again here we get Prq@,,P) = 1.

Actually these three preceding situations can be
seen to be special cases of a more general relation-
ship betweet; andP,. This relationship is a hierar-
chical or containment relationship between the two
partitions. We define this in the following. Assume

P1: Al,Az,...,Aq

le Bl,Bz,...,Br
we sayP; C P, if for eachA; there exists @; such
thatA; C B;j. Itis clear thatr < q.

For the situation in which?, C P, consider the
association mapping whereh(i) = j whereA; C
Bj. Inthiscase |J A =Bjandhence

icFam(j)

U )

r
Value(h) = 1 Z Card BjN
= ()=

1 r
- JZlCarc(Bj) =1

Thus in this case ofPf C P, we always get
ProgPi,P,) = 1.

Here then we can view Prdg, P,) essentially
as a measure of containment of the clugein P..

Let us look in the opposite direction. Assume are
partitions are

P]_I A]_ =X

P : Bl,...,Br
In this case there existy possible associa-
tion mappingshy,...,h, where for h; we have
hj(1) = j. For any of these mappings we have

1
Valueth;) = HCarc(Bj). Thus here Pra@*,P)

Max; [CardBj)], it is the proposition of the ele-
ments in the largest cluster Bj.

Consider now the case wheR is singleton,
Bj = {x;} andP, is arbitrary

A ,Aq

P : Bl,...,Bn

With some thought it can be seen there the max-
imum of Valugh) occurs for any mapping that as-
sociatesA; with one of the set8; whose element is
in Aj, Xj € Ai. In the case we get

12 q
Value(h) = - lectard(Bj N h(iL)Jin> =

Thus ProgP;,P,) = %

We can provide a lower bound on P(&g,P,)
for any two partitionings. Again assume

P : Al, ... ,Aq

P: Bg,...,B
Consider a mappin; such that for each h; (i) = j.
Here every class iRy is associated witlB;. In this
case

Value(hj) = Card B; N X)

q
— card(B;n [ JA) = CardB))

i=1

From this we can conclude that P(&g,P,) >
Max; [CardBj)].

We now shall provide a view of the situa-
tion which will greatly simplify the calculation of
ProgPi,P,). Again assume we have two partitions
Pr:(A,...,Aq) andP, : (By,...,B). Consider the
matrix N shown below. In this matrix the valug; is
the number of element; andB; have in common,
that is CardA N Bj) = n;j. Here the sum of the el-
ements in thé" row is CardA;) and the sum of the
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elements in thg™" column is Car¢B;).

B, B B
Ay
A i
Aq

We recall that any association mappimgssigns
to each clasg\ in P; a class inP, which we denote
asByj). Consider now

U A

1 r
Value(h) = = % Card(Bj N
= is. th(i)=j

We observeA N Aj = &, they are disjoint, thus we
can rewrite the above as

Value(h) = % gl <i ) t%i):j CardB; mAi)>

Furthermore sincé is associated with only one
Bj we can reformulate this as

r

Card By NA)
Z (is. t.;(i):j " >

=

14
= H i;Carch(i) ﬂA|)

Value(h) = 1

q

1
Value(h) = n 'Zlnih(i)
i=

Thus for a givenh its Valugh) is the sum of the
Nini)- Essentially for a giveim for eachA; we select
one element irN from its corresponding row and
then add these up. From this observation the deter-
mination ofh* such that Valh*) = Maxy[Value(h)]
becomes clear. We select from each row the largest
element inN. From this we easily calculate the value
of Prog

1 q
ProgPi,P) = H_ZIMJ.aX[nij]

Thus the calculation of Pr@gy, P,) simply requires
us to determine the largest value in each rowof

11

It the following we shall letg : Q — R be the
unique association such thag, = Max;[n;j]. We
now clearly understand the situation which we re-
fer to asP; C P.. In this case for eacl there ex-
ists oneB; such thatA; C Bj. Let us denote this
g(i), thusA; C Byj). In this caseA; N By = Aj and
hencenyy) = CardAj) and furthermorey; = O for
j #9(i). Thus each row has only one no-zero entry
and the value of that is Caf&;). It is clear how we
pick these elements and this gives us PRag>) =
1.

Thus the determination of Pr@g,P.) can be
seen as type of assignment problem. We assign each
A to oneBj, the one with the maximal common el-
ements. Since we can assign multipleto sameB;
there is no conflict and each assignment can be done
independently. Thus this is easier than the previous
problem.

Let us defindJ; = |A| — Ngiy = Y Nij. It is
the number of elements iy not in éﬁ?;l) We now
see that

14
ProgP,P) = = i;nig(i)
14

=52 IAl=U :l_%ii\Ui

it is one minus the proportion of the element not is
the assignment set.

We see the following the following theorem
holds.

Theorem 2. Prog(Pi,P,) = 1if and only if for each
A there exists an Bsuch that AC B;.

Proof. This is this the necessary and sufficient for
ProgPp,P,) = 1. O

Definition 1. AssumePy: (Aq,...,Aq) is a partition
of X. AssumeP, : (By,...,Bp) is another partition
of X whereq > p. If for eachA; there exists &;
such thaty; C B; then we say tha®, is arefinement
of P,. Alternatively we sayP, is a coarsing oP;.

Note. Earlier we showed iP; is a refinement oP,
then ProgP;, P,) = 1.
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Theorem 3. Assume Pis a refinement of P Let B
be any arbitrary partition of X then

Prog(Py, Ps) = Prog(P, Ps).

Proof. AssumePy: (Aq,...,Aq), P2: (Bg,...,Bp)
and P : (D1,...,Dy). Hereq > p. Let g, be
the optimal mapping betweeR, and P; hence

ProgP,,Ps) = \BJﬂDg2 )| Because of the rela-

tionship betweerPl andP, eachB; is the union of a
subset of classes froR. We shall denote the subset
of these classes making g asC(j) and indicate
an element irC(j) asAy,. Using this notation then

Bi= U Ay

kjeC(i)

n;
Bj = |J Ak
k=1

Using this we see that

o

ProgP,Ps) = 5 |BjNDygyj)|

1

( > |Aq N Dgyj) \)
1=1 MeC())

Let g1 be a mapping associating a classAn
with a class inP; such that for anyA, we have

|Aq N Dgy k)| = I;/Illrg( |Ax, NDj|. From this we have

I
M-

q
ProgP1,P3) = 5 |AiNDg, )| however
iZ1

)‘Ak M Dyg( J)D

S An0ul=3( 3

and therefore

p
ProgPl, P3 Z (

=1

Z A ﬂng)\)

ki €C(j)

Since|Ax; NDg, k)| = |Ax N Dgy ;)| the result fol-
lows. O

9. Some Applications

One application of Pradp;, P,) is to provide a mea-
sure of congruence. In particular we can define

Congs(P1,P2) = ProgP1, P2) A Prog P, Pr)

whereA = Min.

Let us see what are the properties of this definition.
First we we see that it is symmetric

Cong;(Py, P2) = Congs(P,, Py)

Furthermore since ProB,P1) = 1 then we have
Congs(P1,P1) = 1. We further observe that B, C
P, then we showed Prdg;,P,) = 1 and hence
COI’]%(F’l7 Pz) = Prong, Pl).

Consider the case wherB, is the partition
into singleton,P,, and P, is the whole spacepR*.
Here ProgP., P*) = 1 while ProdP,,P*) = 1/nand
hence Cong(P,,P*) =1/n.

Another application of Prggh,P,) is in help-
ing build relations between variables. Again as-
sumeX is a collection of objects. Let) andV
be two attributes associated with these objects. Let
P : (Ag,...,Ar) be a partition of the objects iX
based upon the attributé. LetP,: (By,...,Bq) be
a partition of the object irX based upon the sec-
ond attribute/. Here we are interested being able to
determine in which class iR an object falls given
our knowledge of which class in the partitiéh the
object lies. Here we want relations like

If an objects U value is inAhen its V value is in B

Here the quantity Prai,P,) helps us determine
which is the best association to make. The func-
tion g that maximizes Pragp, P») provides the best
association. In this case the value of RiagP,)
provides some measure of the usefulness or quality
of the relation obtained.

An important example of this problem is the
following. Assume we have some preferred parti-
tioning, P> : (By,...,By), of the objects inX based
upon some attribut®’. Let F be a family of par-
titions of X based upon another attribute. Here
F = {Pi1,...,Pis} where eachPy is a partition ofX
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based oJ. That isPy : (A, .. .,Axg). Our objec-
tive here is to find the partition if that gives the
best rules for the connection between thendV
attributes. Here we must first search through each
Py to find its best association functiogy,, and ob-
tain the value for ProgPi, P2). Using this we then
select the partitiorPy- such that Pro@Pi,P) =
Maxcr [ProgPw,P)]. This type of problem nat-
urally arises in situations in which a decision maker
knows what action to perform if the object is in any
one of the classes &, B;, but makes observations
about the objects in terms of attribute A typi-

cal example of this occurs in the medical domain.
In this type of problem the decision maker, doctor,
would know from his training what treatment to rec-
ommend if a patient has a particular disease. How-
ever he usually doesn't directly observe a disease,
instead he observes measurable physical attributes
of a patient. Herd&J would correspond to measur-
able physical attributes of a patient and the parti-
tion P, would correspond to different diseases. In
order to prescribe the treatment he must be able to
determine the current disease from the symptoms
The goal in selecting the optimal partitiondfis of
course to accurately determine the disease from the
measurements of the physical attributés In or-

der to accomplish this task we must enable the deci-
sion to comprehend the values of the attributes. Hu-
man comprehension of data is generally enhanced
by using granularization to view the values of the at-
tributes. For example blood pressure of 180 is better
viewed as high blood pressure. Body temperature
of 99.3 is most usefully viewed as normal. With this
understanding we see that each partitiofPgfof U
corresponds to a different granularization of the at-
tribute. We then see th& provides a collection of
different granularizations which are comprehensible
to the decision making. Thus by initially introduc-
ing F we are essentially trying to constrain the space
in which we are looking for the optimal partition-
ing to be those which are cognitively comprehensi-
ble to the decision maker. Once having introduced
F our objective then becomes selecting from these
different comprehensible granulations the one that
leads to the most accurate determination of the dis-
ease from the systems.

13

The following Fig. 2 illustrates the essential fea-
tures of this paradigm.

Granulation Selection

Determination >

of U of
——| Partition P1 of State Action JAction
Observations Class in P2

of U
Fig. 2. Basic Paradigm

Examples of this paradigm also occur in the fi-
nancial environment. Here experts have “rules of
thumb” describing what action to take if they know
the state of the economy (recession, inflation etc.).
However they observe primary data about the econ-
omy and from this this must determine the state in
order to know what action to take.

10. Non-Specificity of the Partition

The concepts of specificity and its complement non-
specificity have been investigated in considerable
detail particularly by Yage?® and Klir?3, It is
closely related to the idea of generality.

In2® Klir discusses one measure of non-
specificity of a set. In particular iA is a sub-
set of X then Klir's measure of non-specificity is
log,(CardA)). In the following we shall uséA| to
denote Car@A). WhenA is a singleton,A = {x}
we get log(]A|) = 0. For the case wheA = X,
log,(|A|) = log,(n), where|X| = n. Since log(|A|)
is monotonic with respect @\ we see that

0 < logy(JA]) < logy ()

A normalized versionI of KAI\ir’s measure of non-
specificity is N (A) = M. Here then for any

log,(n)
subsetA C X we have 0< NSk (A) < 1.

Based on Yager§232425 work on speci-
ficity we obtain an alternative definition for non-
specificity

A-1
Nsy(A) =

This takes values in the unit interval. It attains its
maximal value of one for the case whan= X and

its minimum value of zero for the case wharis a
singleton.
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It can be seen that these definitions are cointen-
sive, they are both measures of the granularity of
the subsefA. The larger the subset the closer the
non-specificity is to one. For singletons we get a
non-specificity of zero. In using these definitions we
will only be considering non-empty sets. The choice
between these two definitions of non-specificity de-
pends is context dependent, it depends upon what
application and what features are of interest. In the
following we shall use the neutral term NS when we
have no need to distinguish between these two defi-
nitions.

For our purposes we see that the measure of non-
specificity can be used to provide a measure of gen-
erality. The larger the s&t (the more non-specific)
the more general the concept the set is representing.

We now briefly consider the extension of the con-
cept of non-specificity from sets to partitions. Our
interest here is in quantifying the idea of generality.
We are interested in quantifying how general are the
classes comprising a partitioning.

AssumeP : (Aq,...,Aq) is a partition ofX. We
are now interested in the calculation of the non-
specificity of P, NS(P). In the following we shall
propose such a definition. This definition will make
use of the measure of non-specificity of the individ-
ual classes ifP. The definition we shall use is the
following is

< A

NS(P) = 5 SN

We see it is a weighted average of the non-
specificities of the component classesAn The
weights are determined by the number of elements
in the class.

We see that this definition is independent of the
indexing of the classes, each class is treated in the

S(A)

A; = X. We see that AG\;) =1 and|A;| = n and
therefore N&P*) = 1. Thus the non-specificity of a
partition consisting of just the whole space is one.

At the opposite extreme is the case when the
classes are just singletoRs, here we havae classes
with Aj = {X }. In the case N&\) = 0 and hence
from the idempotency we get NB) =

We should note that fact thaU A = X places

some constraints on the pOSSIb|e manifestations of
NS(P).

An interesting property holds between the mea-
sures of non-specificity of two partitior’d and P,
whenP; C P..

Theorem 4. If P, and B are two partitions such
that R C P, then N$P;) < NSP).

Proof. AssumePy : (Aq,...,Aq) andP,: (By,...,By).
The fact thatP, € P, means that < g and that for
eachA there exists a uniquB; such thatA; C B;.
We shall let Fartij) be the collection of; since that
A; C Bj. Here we have

Ns(ey) - 5 Alns(a)
and = B,
NS(Pz) = % NS(BJ')

We can rewrite N&,) as

RAP )

We further note that ifA; C B; then NSA) <
NS(Bj) and hence

5.2, 5 me)

NS(Py)

S(P) <

same manner. We also note that it is idempotent, if ginceB; = |J A and theA are disjoint then

for all i, NS(A)) = athen N§P) = a. This if all the icFam(j)

classes have the same degree of non-specificity then |Bj|= Y |Ai| hence we get desired result
ieFam(j)

this is the non-specificity of the partition as a whole.
We also note that since each of ¥ € [0,1] then
NS(P) € [0,1].

Let us look at some notable special cases. Con-
sider the case wherP = P*, that isq= 1 and

|Bj|
T < NS(P,)

E%)
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Let us look at the manifestation of NIB) for
the two cases of specificity of sets, W) and
NSk (A). For the case of Ngwe get that

_yaa-l

NSy (P) L n n-1

whereg = |Aj|. After some algebraic manipulation

we have

NSy (P) = n%l(_i%z _i_i%>

q
Since § g =nthen
i=1

n 3a2 1 3 1
n-14n n-14" n-1

Lettingw; = % the proportion of elements /&5, we
get

We further observe that if is large then
n
NSy (P) — § w2
2"

This is a kind of variance.
For the case where we use N®) we have

NSk (P) = _ii l0g;(a)

4 n log,(n)
, .
Again Iettlngﬁ =W, we get

3 logy(nw)
NSk(P)= 3 i g m)

q
~ g &, (100 - wogs ()

Sincey;w; = 1 we see

q
NS«(P) =1+ @ ;wi log, (wi)

We see this as a kind of entropy.

In passing we note that an alternative al-
though less sensitive possible measure for the non-
specificity of a partition is N&) = Max;j [NS(A))].

It is easy to show that this has similar properties of
the preceding although it is less sensitive.

11. An Application to Data Mining

A common task that occurs in data mining is de-
scribed in the following. LeX be a class of objects
and letP: (B1,By,...,B,) be a given partition of the
objects based upon some featureWe call this the
target feature.

In addition assume we have a concept hierar-
chy over X based upon some other featurés,
We recall that a concept hierarchy consists of a
group of partition of increasing generality. Let
Pi,...,P. be a group of partitions oX whereR, :
(Ai1,Ai2,...,Aig;). The requirement for these par-
titions to form a concept hierarchy is thBt C P;
for k# j. We refer toP, as thei™ level partition.

In this case the generality is increasing as the level
increases. Concept hierarchies play a fundamental
role in the way human’s conceptualize the world. A
typical example of a concept hierarchy is the fol-
lowing. LetU be the attribute corresponding to an
objects home address. A concept hierarchy would
be the following

Py is a partition by theaddresses
P, is a partition byneighborhood
P; is a partition byCity,

P, is a partition bystate

Ps is a partition byRegion

Our objective here is to build rules predicting the
class inP, Bj, to which an object belongs based on
its value for the featur&. In order to make these
rules human comprehensible we want to use the cat-
egories (concepts) associated with the concept hier-
archy.
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In order to accomplish this task we can consider
each level of the hierarchy. Using the methods
described earlier we can find for each level the func-
tion g; that makes the best assignment between the
classes in the partitionB and the target partition
P. Let us denote the value associated with each of
the as Valg;). The larger this the better the associa-
tion. From our preceding discussion we showed that
if B C P; then the respective assigning functiams
andg; are such that Vab;) > Val(gj). Thus here
then the best rules are obtained using the categories
in the lowest level of the concept hierarcRy.

However as we noted an important objective in
formulating the rules relatingy andV is human
comprehension and understanding. As reported by
Miller in his classic papérhuman information pro-
cessing capacity deteriorates if one has to manage
to many classes. Thus in order achieve our objec-
tive we have a preference for rules using fewer more
general concepts for the categories used to describe
the values of the variabld. Thus here then we pre-
fer partitions that use more general concepts. Paren-
thetically we note that an additional benefit of using
more general classes forin formulating our rules
is that we can allow less precision in our determina-
tion of the valuedJ when using the derived rules.
The need for less precision is usually more econom-
ical on resources.

As we previously noted the generality of a par-
titioning can be measured by the its non-specificity.
In addition we showed that B andP; are two par-
titions such that? C P; then SgR) < Sp(P;). In
particular we see that generality is increased as we
go up the concept hierarchy.

We now see the fundamental conflict associated
with our task of trying to build rules to help predict
an objects class in the target partitiBrbased upon
an observation of itg value. Our desire of attaining
correct prediction benefits by using as our partition-
ing for U one down the bottom of the concept hier-
archy while our desire for generalization and human
comprehension benefits by going up the concept hi-
erarchy. While we shall not pursue this further here
we believe that the measures we have introduced,
Sp(R) and ProgR,P), can play a role in helping

adjudicating this conflict. We also note thaffrwe
looked at issues closely related to this problem.

12. Weighted Categories

Consider again the task of using the categories in the
partition Py : (Aq,...,Aq) to predict an objects class

in a target partitio? : (By,...,By). In the preceding
we assumed that there are no costs in predicting an
object is in categorBx when it is really in category
Bj. In the following we shall briefly investigate the
process of determination the best assigning function
in the case when there are different payoffs associ-
ated with assigning an object to one class when it is
in another. In discussing this we shall make consid-
erable use of the matri below.

B, B B
B

Bx Cu/j

By

In this matrixB,, ..., B, are the classes of the tar-
get partitionP andCy; is the payoff for assigning an
object to clas$ when it belongs in clasB;. In this
situation we assume that positive values are benefits
and negative values are costs. We also assume that
for each columrB; the payoffsCy/; takes its maxi-
mum value fork = j, the correct identification.

In addition to this matrix we also have as in the
preceding the matriN wheren;;j is the number of
objects in bothA; andB;j, njj = |A N Bj|.

Let h be a mapping that assigns eagho a class
in P, By The value of this mapping is

Value(h) = i_i <;nijch(i)/i>

Our object is now to find the mapping h which
gives the maximal value for Valge). As before we
denote this optimal mapping & Calculation of
Value(h) can be decomposed and the determination
of g(i) can be independently obtained for eacin
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particular for anyi, g(i) = ki where 2.

.
NijCe: ) = ;G
J; k) k Tior {Z ij k/J]

To solve this we shall find the following notation
useful. LetR-A; be a thei! row of N. It is
an 1x r dimension vector. We shall |&R- Bk be
the k" row of the matrixC. It also is an Ix r
dimension vector. We see that in vector notation 5

Z nijCy/j = (R-By) x (R-A)T. Thus to findg(i)

We fixi, R-A;, and go through alR- By, k=1 tor,
to find the the one that gives us the biggest inner
product withR- A;.

Let us look at a special case@f;;. Consider the 8.
case wher€,,; = 1 for j =kandCk/j =0 for j # k.
r
In this case for ank we have nijCy/j = Nik- Thus 9
=1

here we wang(i) = k* such thatny- = Max[ni],
this was our earlier solution.

13. Conclusion

We investigated a number of measures relating par- ;1
titions. One class of measures we considered were
congruence measures. These measures are used to
calculate the similarity between two partitionings.
We discussed a number of examples of this type

. 13
of measure. Another class of measures we inves-

tigated were prognostication measures. This type of 14.

measure, closely related to a concept of containment
between partitions, is useful in indicating how well
knowledge of an objects class in one patrtitioning in-
dicates its class in a second partitioning. We applied
our measures to some data mining applications us-
ing the structure of the concept hierarchy. We also

introduced a measure of the non-specificity of a par- 16.

tition. This measures a feature of a partition related

to the granularity or size of the constituent classes of 17.
18.

the partition.
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