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We investigate a number of measures relating partitions. One class of measures we consider are congru-
ence measures. These measures are used to calculate the similarity between two partitionings. We provide
a number of examples of this type of measure. Another class ofmeasures we investigate are prognosti-
cation measures. This type of measure, closely related to a concept of containment between partitions,
is useful in indicating how well knowledge of an objects class in one partitioning indicates its class in a
second partitioning. We apply our measures to some data mining applications. One example is in choos-
ing the appropriate level of a concept hierarchy. We also introduce a measure of the non-specificity of a
partition. This measures a feature of a partition related tothe granularity of the constituent classes of the
partition.
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1. Introduction

Partitioning of objects is a pervasive activity in the
human cognition and conceptualization. For exam-
ple a notable feature of human language is the im-
plicit partitioning. Terms like small, medium and
large essentially imply a partitioning of the objects
over which they are applied. Concepts such as cold,
warm and hot involve a partitioning of temperatures.
Humans find it easier to reason with the type of gran-
ules that result from partitioning1,2.

Modern technologies agenda to develop human
like computational intelligence requires us to have
sophisticated tools for managing objects that are par-
titions3,4,5. In addition many applications in data
mining involve the use of partitioning6,7,8. The
emerging field of granular computing9,10,11 is one
attempt to provide these tools.

Our purpose here is to investigate some measures

that can be used in relating partitions.

One class of measures are what we call congru-
ence measures. These measures are used to calcu-
late the similarity between two partitionings. For
example if we partition a set of people by education
and openness to new technology we are interested
in calculating how similar these two partitions are.
Another application is comparing the results of two
clustering algorithms. Another class of measures we
investigate are what we refer to as prognostication
measures. This type of measure, closely related to
a concept of containment between partitions, is use-
ful in indicating how well knowledge of an objects
class in one partitioning indicates its class in a sec-
ond partitioning. We also introduce a measure of the
non-specificity of a partition. This measures a fea-
ture of a partition related to the granularity or size of
the constituent classes of the partition.
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2. Comparing Partitions

AssumeX is a finite collection of objects. These
objects can be people, countries, companies or any
other class of objects. A common process performed
within many tasks in modern intelligent computa-
tional technology is partitioning these objects. We
recall this involves obtaining a collection of distinct
subsets ofX, A1, . . . ,Aq, called classes such thatAi ∩

A j = ∅ and
q⋃

j=1
A j = X. In this case each element

xk ∈ X lies in exactly one of these classes. The data
mining task of clustering12,13,14 involves a partition
of the objects. The use of concept hierarchies15 in-
volves a partition of object. The field of rough sets is
based on a partitioning16. Many other tasks involve
this type of partition operation.

Within this context it becomes interesting to
compare partitions. Thus ifP1 = 〈A1, . . . ,Aq〉 and
P2 = 〈B1, . . . ,Bp〉 are two partitions a natural ques-
tion is how similar or congruent are these two parti-
tions. A example of this arises when we cluster ob-
jects by different features and are interested whether
the resulting partitions are the same.

One goal here is to investigate and suggest a
measures of congruence between partitions. As-
sumeP is the set of all partitions over the space
X we are interested in obtaining a mapping Cong :
P×P → [0,1] indicating the degree of congruence
or similarity of two partitions. AssumeP1 andP2 are
two partitions we want this mapping to satisfy

1) Cong(P1,P2) = Cong(P2,P1)
2) Cong(P1,P1) = 1

That is we require that Cong is similarity
relationship17.

We note that we can associate with any setX two
special partitions. The first is the universal partition
where we just have one set. We shall denote this
P∗ = 〈X〉. The other special partition is the one in
which each element inX is in a distinct class. We
denote thisP∗ = 〈A1, . . . ,An〉 whereAi = {xi}. Con-
ceptually these are the very opposite partitionings,
they are the least similar of any pair of partitions
Thus another property we desire of Cong is

3) Cong(P∗,P∗) = Min[Cong(P1,P2)]

We now turn to the formulation of Cong.

3. Equivalence Class Approach to Comparing
Partitions

It is well known that any partitioning ofX can be
uniquely associated with an equivalence relation on
X. Here we shall consider the formulation of the
congruence mapping using this important connec-
tion.

We recall an equivalence relationE on X
is a mapping E : X × X → {0,1} such that
1) E(x,x) = 1 Identity
2) E(x,y) = E(y,x) Symmetry
3) E(x,z) > Miny[E(x,y),E(y,z)] Transitivity

Condition three implies that ifE(x,y) = 1 and
E(y,z) = 1 thenE(x,z) = 1.

It is well known that ifA1, . . . ,Aq is a partition-
ing of X then we can obtain an equivalence relation
E such thatE(x,y) = 1 if x and y are in the same
class andE(x,y) = 0 if they are in different classes.
Alternatively if E is an equivalence relation onX we
can obtain a partitioning by assigning elementx and
y to the same class ifE(x,y) = 1 and to different
classes ifE(x,y) = 0. From this perspective we can
associate with eachx ∈ X an equivalence classAx

such thaty∈ Ax if E(x,y) = 1.

We now note some special equivalence relations
and the associated partitioning they induce. IfE is
such thatE(x,y) = 1 for all x andy thenE partitions
X into one setA1 = X. This is the partitioning we
denoted asP∗. We denote this equivalence relation
as E∗. At the other extreme is the caseE∗ where
E∗(x,y) = 0 for x 6= y. In this case our classes are
Ai = {xi}. Here our are classes aren singleton sets.
This is the partitioning we denoted asP∗.

AssumeE1 andE2 are two equivalence relations.
We shall sayE1 ⊆ E2 if E1(x,y) 6 E2(x,y) for all
x andy. It can be shown that for any equivalence
relationE we haveE∗ ⊆ E ⊆ E∗.

We also note that ifE1 ⊆ E2 then if x andy are
in the same equivalence class is underE1 then are
also in the same class underE2. Furthermore ifE1

induces the partitioning〈A1, . . . ,Aq〉 andE2 induces
the partitioning〈B1, . . . ,Bp〉 thenq > p. That isE1

generally has more equivalence classes.

We note that if forx 6= y we indicate by〈x,y〉 an
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unordered pair,〈x,y〉 = 〈y,x〉, then if X hasn ele-

ments we have
(n

2

)
=

(n)(n−1)

2
unordered pairs.

In the following we shall useU to indicate the set of
all distinct unordered pairs fromX.

In the following we shall find it convenient at
times to expressE as a subset of the spaceU of un-
ordered pairs. Here we shall use the notationU ·E
to indicate the subset ofU related toE. In this case
U · E(〈x,y〉) = E(x,y) = E(y,x). Furthermore we

may find it useful at times to refer to
(n

2

)
as nc2

to indicate it is the combination ofn elements taken
two at a time.

We now suggest a measure of congruence be-
tween partitions which we express in terms of
their underlying equivalence relations. AssumeP1 :
〈A1, . . . ,Aq〉 andP2 : 〈B1, . . . ,Bp〉 are two partitions
of X based on the equivalence relationsE1 andE2

respectively. We define

Cong1(P1,P2) = Cong1(E1,E2)

= 1− 1(n
2

)∑
U

|U ·E1(〈x,y〉)−U ·E2(〈x,y〉)| 6= 0

Here ∑
U
|U ·E1(〈x,y〉)−U ·E2(〈x,y〉)| is the

number of pairs that have different values inE1

andE2.

We easily observe that 06 Cong1(E1,E2) 6 1. It
is also clear that Cong1(E1,E2) = Cong1(E2,E1).

Consider two relationsE1 and E2 such that
E1 = E2, that isE1(x,y) = E2(x,y) for all x andy.
Here they have the same partitions. In this case
U · E1(〈x,y〉)−U ·E2(〈x,y〉) = 0 for all 〈x,y〉 and
therefore Cong1(E1,E1) = 1. Thus if the classes
of two partitions are the same then their congru-
ence is one. We further note that ifE1 6= E2, there
exists somex and y such thatE1(x,y) 6= E2(x,y)
then∑

U
|U ·E1(〈x,y〉)−U ·E2(〈x,y〉)| 6= 0 and hence

Cong1(E1,E2) < 1. Thus Cong1(E1,E2) = 1 if and
only if E1 = E2.

Consider the equivalence relationE∗, here all
E∗(x,y) = 1. This results in a partition with one

classA1 = X. Let E be any other equivalence re-
lation, partitioning of the space. It is clear that

Cong1(E
∗,E) = 1− 1(n

2

)(#U ·E = 0)

where #U ·E = 0 is number of elements inU that
have zero membership inU ·E. From this it eas-
ily follows that if E1 and E2 are two equivalence
relations such thatE1 ⊆ E2 then Cong1(E

∗,E2) >

Cong1(E
∗,E1).

Analogously we see that withE∗ the equiva-
lence relation such thatE∗(x,y) = 0 for x 6= y then

Cong(E∗,E) = 1− 1(n
2

) (#E = 1).

From this it follows that ifE1 andE2 are such that
E1 ⊆ E2 then Cong(E∗,E2) 6 Cong(E∗,E1).

Consider the two partitionsE∗ and E∗. In this
case|U ·E∗(〈x,y〉)−U ·E∗(〈x,y〉) = 1 for all 〈x,y〉
and hence Cong1(E

∗,E∗) = 0. Thus these are the
two complete opposite partitions. We can fur-
ther see that for any other two pair of partitions
Cong1(E1,E2) > 0. Thus Cong1(E1,E2) = 1 iff
E1 = E2 and Cong1(E1,E2) = 0 iff E1 = E∗ and
E2 = E∗.

We also note here that for any partitionE al-
ways has less equivalence classes thenE∗ and more
thanE∗.

Consider two equivalence relationsE1 and E2

where E1 ⊆ E2, E1(x,y) 6 E2(x,y). Let P1 :
〈A1, . . . ,Aq〉 andP2 : 〈B1, . . . ,Bp〉 be their respective
partitionings. We observe that for anyA j there ex-
ists a Bk such thatA j ⊆ Bk. We see this as fol-
lows. Assumex andy are such thatE1(x,y) = 0 and
E2(x,y) = 1. Herex andy are in different equiva-
lence classes underE1 we denote theseAx andAy.
However underE2 they are in the same equivalence
class, we denote thisBk. Since all the elements
equivalent tox underE1 are also equivalent under
E2 and the same fory, then Bk must be such that
such thatAx ∪By ⊂ Bk. We also note in this case
q > p, the partitioningP2 has less classes then the
partitioningP1.

We can provide an alternative and sometimes
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useful expression for

∑
U

|U ·E1(〈x,y〉)−U ·E2(〈x,y〉)| .

Let G be a subset ofU defined such that

G =
(
U ·E1∩U ·E2

)
∪
(
U ·E1∩U ·E2

)

ThusG is the set of elements inU which have

U ·E1(〈x,y〉) = 1 andU ·E2(〈x,y〉) = 0
or

U ·E1(〈x,y〉) = 0 andU ·E2(〈x,y〉) = 1

It is easy to see that

Card(G) = ∑
U

|U ·E1(〈x,y〉)−U ·E2(〈x,y〉)|

hence we can express

Cong1(E1,E2) = 1− 1(n
2

) Card(G)

We further observe that if we letGa =U ·E1∩U ·E2

and Gb = U ·E1 ∩U · E1 then G = Ga ∪ Gb and
Ga∩Gb = ∅, Ga andGb are disjoint. From this it
follows that

Card(G) = Card(Ga)+Card(Gb)

This formulation will allow us to prove the follow-
ing important property about the measure Cong1.

Theorem 1. Assume E1, E2 and E3 are three equiv-
alence relations such that E1 ⊂ E2 ⊂ E3 then

Cong1(E3,E2) > Cong1(E3,E1).

Proof. First we observe that from the fact thatE1 ⊂
E2 ⊂ E3 we haveU ·E1 ⊂U ·E2 ⊂U ·E3. We shall
denoteGa = U ·E3∩U ·E2 andGb = U ·E3∩U ·E2

andHa =U ·E3∩U ·E1 andHb = U ·E3∩U ·E1. In
this case

Cong1(E3,E2) = 1− 1(n
2

) [Card(Ga)+Card(Gb)]

Cong1(E3,E1) = 1− 1(n
2

) [Card(Ha)+Card(Hb)]

hence

Cong1(E3,E2)−Cong1(E3,E1)

=
1(n
2

)
[(

Card(Ha)−Card(Ga)
)

+
(
Card(Hb)−Card(Gb)

)]

Consider now the termGb = U ·E3 ∩U · E2, it is
the elements that are inU · E2 but not in U · E3,
however sinceE2 ⊂ E3 then Gb = ∅. Similarly
Hb =U ·E3∩U ·E1 are the elements inU ·E1 that are
not inU ·E3 again sinceE1 ⊂ E2, we haveHb = ∅.
Thus

Cong1(E3,E2)−Cong1(E3,E1)

=
1(n
2

)
(
Card(Ha)−Card(Ga)

)

Consider nowHa =U ·E3∩U ·E1 andGa =U ·E3∩
U ·E2. SinceU ·E1 ⊆U ·E2 thenU ·E2 ⊆U ·E1 and
henceGa ⊆ Ha hence Card(Ha) > Card(Ga) and the
result follows. �

Consider the spaceU of unordered pairs〈x,y〉.

Consider now an
(n

2

)
-dimensional spaceZ whose

coordinates are(z1, . . . ,zm), here we letm =
(n

2

)
.

Assume a bijective mappingM associating with
each element〈x,y〉 a dimension in the spaceZ,
M : U → Z. Using this we can associate with
any equivalence relationE a vectorV · E in this
spaceZ such that theith component of the vec-
tor V ·E(zi) = U ·E(〈x,y〉) where〈x,y〉 is the pair
corresponding to the dimensionzi . More formally
V ·E(z1) = U ·E(M−1(〈x,y〉). Thus thezi coordi-
nate inV ·E takes the value one if the unordered pair
〈x,y〉 associated withzi is in E otherwise it takes the
value zero.

Consider now two equivalence relationsE1 and
E2 defined onX. We can associate with each
of these a vector as defined above, we denote
theseV · E1 and V · E2. Consider now the term

∑
〈x,y〉∈U

|U ·E1(〈x,y〉)−U ·E2(〈x,y〉)|. Letting m =
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(n
2

)
we see that this can be alternatively expressed

as
m
∑
j=1

∣∣V ·E1(zj)−V ·E2(zj)
∣∣. This alternative ex-

pression is a well-known measure of distance, a met-
ric, between the two vectors. It is an example of the
more general Minkowski metric

Lp [(a1, . . . ,am), (b1, . . . ,bm)] =

(
m

∑
i=1

|ai −bi|
p

) 1
p

for p > 0. In the case wherep = 1 this is called
city block metric. We note that if the arguments are
restricted to the unit interval then for anyp this as-
sumes its maximal value for the case whenai = 0
andbi = 1 for all i.

Thus we can view
m
∑
j=1

∣∣V ·E1(zj)−V ·E2(zj)
∣∣ as

a distance between two vectors. We denote this
L1(V ·E1,V ·E2)). It is well known that L1(V ·E1,V ·
E2) satisfies the properties of a metric.

Let E be the set of all equivalence relations on
X. Let V ·E be the set of all associated vectors as
defined above. Then Lp is a mapping

Lp : V ·E −→ V ·E −→ R

such that for anyV ·E1, V ·E2 andV ·E3 associated
with the equivalence relationsE1, E2 andE3 we have
1) Lp(V ·E1,V ·E2) = Lp(V ·E2,V ·E1) Symmetry
2) Lp(V ·E1,V ·E2) = 0 if V ·E1 = V ·E2

3) Lp(V ·E1,V ·E3) 6 Lp(V ·E1,V ·E2)
+Lp(V ·E2,V ·E3)

Furthermore since Lp(V ·E1,V ·E2) is a metric then

d(E1,E2) =
1(n
2

) Lp(V ·E1,V ·E2)

is also a metric, distance measure, however it maps
into the unit interval. From this we see that for any
p the term 1−d(E1,E2) is a similarity relation and
can be used as a measure of congruence betweenE1

andE2. Furthermore we note for the special equiv-
alence relationE∗ all the components in the vector
V ·E∗ are ones while for he special equivalence re-
lation E∗ all the components in the vectorV ·E∗ are
zeros. From this it follows that 1− d(E∗,E∗) will
have the smallest congruence for any two equiva-
lence relations.

4. Rand Index

In 18 Rand suggested an approach for comparing the
partitions that resulted from using different methods
of clustering. This is called the Rand index.

Again suppose P1 : 〈A1, . . . ,Aq〉 and P2 :
〈B1, . . . ,Bp〉 are two partitions ofX. In 19 it was
noted there are four different relationships that can

exist among any of the
(n

2

)
pairs of distinct ele-

mentsx andy of X.

1) The objectsx andy are in the same class in both
P1 andP2

2) The objectx andy are in different classes in both
P1 andP2

3) The objectsx andy are in the same class inP1 but
in different classes inP2

4) The objectsx andy are in the different classes in
P1 but in the same class inP2

If we let a = # of pairs of type 1,b = # of pairs of
type 2,c = # of pairs of type 3 andd = # of pairs of

type 4 thena+b+c+d =
(n

2

)
, the total number of

distinct pairs. Using this notation the Rand indexR
of the two partitionsP1 andP2 is

R=
a+b(n

2

) =
a+b

a+b+c+d

Let E1 and E2 be the two equivalence relations
on X defining the two partitions. LetU again be
the space of unordered distinct pairs〈x,y〉, |U | =
(n

2

)
. Let U · E1 be a subset ofU defined byU ·

E1(〈x,y〉) = E1(x,y). Similarly U ·E2 is defined as
U ·E2(〈x,y〉) = E2(x,y). We note that Card(U ·E1)
is the number of pairs elements that are in the same
class inP1. Similarly Card(U ·E2) is the number
of pairs of elements that are in the same class in
P2. FurthermoreU · E1 ∩U · E2 are all pairs that
are in the same class in both partitionings. Hence
a = Card(U ·E1∩U ·E2). On the other handU ·E1
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is the subset of pairs that are in different classes in
P1. Similarly U ·E2 is the set of pairs that in dif-
ferent classes isP2. Here thenU ·E1∩U ·E2 is the
subset of pairs that are in different classes in both
partitions. Thus we haveb = Card

(
U ·E1∩U ·E2

)
.

Using this we that we can express the Rand index as

R=
a+b(n

2

)

=
Card(U ·E1∩U ·E2)+Card(U ·E1∩U ·E2)(n

2

)

This is equivalent to the Cong1 measure.

5. An Alternative Measure of Congruence

In the preceding we have introduced a measure of
similarity, congruence, between two partitions using
the underlying equivalence relations. Here we now
consider formulating a congruence measure from
the perspective of the partitions themselves.

Assume we have two partitions of the spaceX,

P1 = A1, . . . , Aq

P2 = B1, . . . , Bp

here

X =
q⋃

j=1

A j andAi ∩A j = ∅ for i 6= j

and

X =
p⋃

j=1

B j andBi ∩B j = ∅ for i 6= j

Without loss of generality we shall assumeq= p.
If q > p we can augment the partitionP2 by adding
q− p subsets,Bp+1 = Bp+2 = · · ·= Bq = ∅. Thus in
the following we assume the two partitions have the
same number of classes,q.

We now introduce an operation called a pairing
of P1 and P2, denotedg(P1,P2), which associates
with each subsetAi of P1 a unique partnerB j from
P2. Formally if Q = {1,2, . . . ,q} then a pairing is
a mappingg : Q → Q that is bijective, one to one
and onto. Essentiallyg is a permutation ofQ. We
then have that a pairingg(P1,P2) is a collection ofq

pairs,
(
A j ,Bg( j)

)
. We shall now associate with each

pairing a score, Score(g(P1,P2)), defined as follows.
Denoting Dg. j = A j ∩Bg( j) for j = 1 to q, we obtain

Score(g(P1,P2)) =

q

∑
j=1

Card(Dg. j)

Card(X)

In the following we illustrate the process of deter-
mining Score(g(P1,P2)).

Example. Let X = {x1,x2,x3,x4,x5,x6,x7}.
AssumeP1 is A1 = {x1,x2,x3}, A2 = {x4,x5,x6} and
A3 = {x7}.
Assume P2 is B1 = {x2,x4,x6} and B2 =
{x1,x3,x5,x7}.
We first augmentP2 with B3 = ∅.

One pairing isg( j) = j in this case we get the pairs
(A1,B1), (A2,B2), (A3,B3). From this
Dg.1 = A1∩B1 = {x2}
Dg.2 = A2∩B2 = {x5}
Dg.3 = A3∩A3 = ∅

In this case Score(g(P1,P2)) =
2
7

.

Another pairing isg(1) = 3, g(2) = 1, g(3) = 2
here our pairs are
(A1,B3), (A2,B1), (A3,B2)

In this case
Dg.1 = A1B3 = ∅

Dg.2 = A2B1 = {x4,x6}
Dg.3 = A3B2 = {x7}

In this case Score(g(P1,P2)) =
3
7

.

We now shall use this to obtain a measure of con-
gruence, Cong2(P1,P2). Let G be the set of all pair-
ings,g∈ G. We define

Cong2(P1,P2) = Max
g∈G

[
Score(g(P1,P2))

]

Thus this measure of congruence is the score of the
largest pairing.

We see that for any pairingg,

0 6

q

∑
j=1

Card(Dg. j) 6 Card(X)

From this it follows that 06 Cong2(P1,P2) 6 1.
More precisely since for any two partitions we can
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always find a pairingg in which
q

∑
j=1

Card(Dg. j) > 1

we see that

1
Card(X)

6 Cong2(P1,P2) 6 1

Let us look at some special cases of the measure of
congruence. In the following we assume Card(X) =
n. First consider the case whenP1 = P2 that is

P1 : A1, A2, . . . , Aq

P2 : B1, B2, . . . , Bq

where A j = B j . We see the pairingg such that
g( j) = j has the pairs(A j ,B j) for j = 1 to q.
In this case Dg. j = A j ∩ B j = A j . We get that

q

∑
j=1

Card(Dg. j) =
q

∑
j=1

Card(A j) = n. For this g we

have g(P1,P2) =
n
n

= 1. From this we get that

Cong2(P1,P2) = Max
g∈G

[
Score(g(P1,P2))

]
= 1. Thus

if the partitions are the same the congruence is 1. It
can be shown that Cong2(P1,P2) = 1 if and only if
P1 = P2.

Consider now the situation in which one of
the partitionsP∗ is simply X the whole space, it
is the grand partition and the other partitionP =
A1, . . . ,Aq. We see here that there are onlyq distinct
pairing mappings possible. Each one corresponds to
an association ofX with one of theA j and the other
classes inP are associated with∅. For the pairing
g j that associatesX with A j we haveX∩A j = A j . In

this case we get Score(g j) =
Card(A j)

n
. Thus here

then Cong2(P
∗,P) = Max

j

[Card(A j)

n

]
. Thus for the

grand partitionP∗ its congruence with any other par-
tition is simplyMax j

[
Card(A j)

]
, its the proportion

of elements in the largest class ofP.
Consider now the case in which one partition,

P∗, is the partition consisting of classes which are
singletons,P∗ = A1, . . . ,An, whereAi = {xi}. Let
P = B1, . . . ,Bq be any arbitrary partitioning. We can
easily see that in this case Cong2(P∗,P) = q/n where
q is the number of classes inP. In the special case
whereP is P∗ we get that Cong2(P∗,P

∗) = 1/n.

6. Concept Hierarchies

An important application of partitioning is the case
of concept hierarchies. LetX be a set of objects.
A concept hierarchy is a collection of partitions,
P1, . . . ,Pr . HerePk is called thekth level partition.
The fundamental property of the concept hierarchy
is that each class (granular or cluster) in a lower level
partition is fully contained in one class of the next
higher level partitioning. The partitioning becomes
more coarse as we go up. In Fig. 1 we illustrate the
idea of a concept hierarchy.

P4 A4

P3 A31 A32

P2 A21 A22 A23

P1 A11 A12 A13 A14 A15 A16 A17

Fig. 1. Concept Hierarchy

Formally here we have a collection of partitions

P1 : A11, A12, . . . , A1q1

P2 : A21, A22, . . . , A2q2

...

Pr : Ar1, Ar2, . . . , Arqr

We note that form> k we haveqm < qk.
The fundamental property of a concept hierar-

chy is expressed in the following. Letk andm be
two levels such thatm> k, m is higher thank. For
any class in thekth level, Ak j, there exists a class
in the mth level, Ami such thatAk j ⊆ Ami. Essen-
tially here then withm> k we have for anyAmi that
Ami =

⋃

j∈Smi/k

Ak j whereSmi/k ⊆ {1, . . . ,qk}.

We note the most extreme possible upper par-
titioning is the one consisting of the whole space
while the most extreme possible lower partitioning
is the one whose classes are singletons.

We now consider the calculation of the congru-
ence between partitions in this concept hierarchy.
We let Cong2(Pk,Pm) be the congruence between
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thekth andmth level partitionings where we assume
m> k. Here again we letSmi/k be the collection of
class inPk that are contained inAmi. We now let
Max
j∈Smi/k

[
Card(Ak j)

]
= Bigmi/k, it is the cardinality of

the largest class in the partitionPk that is contained
in Ami. Using this we see that

Cong2(Pk,Pm) =
1
n

qm

∑
i=1

Bigmi/k

Thus it is the sum of the cardinalities of the largest
class inPk associated with a class ofPm.

A special case of determining congruence in con-
cept hierarchies is whenm = k + 1. Here we are
considering the similarity between adjacent parti-
tionings. In this case we can note some features
that make adjacent partitions more similar. Without
loss of generality assume the classes inPk have been
indexed such that Card(Aki) > Card(Ak j) for i < j.
Thus we index thePk in decreasing order of cardi-
nality. Consider now the construction of the parti-
tioning Pk+1 where we shall allowqk+1 categories.
We recallqk+1 < qk.

We see that we can maximize Cong2(Pk,Pk+1) by
assigning theqk+1 largest classes inPk to different
classes inPk+1. Here then we letAki ⊆ Ak+1i for
i = 1 to qk+1. Thus each of the largest classesi in
Pk should be the focus of one of the classes inPk+1.
We also observe that the congruence increases as the
size ofqk+1 increases.

7. Optimal Solution

In the general case the calculation of Cong2(P1,P2)
requires the solution of an optimization problem,
that is we must determine the pairingg that maxi-
mize the score. In the following we shall provide a
view of this optimization problems that allows for a
classical solution.

Here then we have two partitionsP1 : A1, . . . ,Aq

andP2 : B1, . . . ,Bq where we have assumed the in-
clusion of null sets if necessary. We can associate
with these two partitions the matrixN show below.
In this matrixni j = Card(Ai ∩B j), it is the number
of elements thatAi andB j have in common. We note
that the sum of the elements in thisith row is equal

to Card(Ai) while the sum of the element is thej th

column is Card(B j). The sum of all the elements in
the matrix isn, Card(X).

B1 B j Bq

A1

Ai

Aq





n11 n1q

ni j

nq1 nqq





The problem of calculating Cong2(P1,P2) can be
viewed using the perspective of the matrix. A pair-
ing g is an association of each rowAi with a unique
columnB j , each pairing results in the selection ofq
elements consisting of one from each row and one
from each column. Furthermore each pair(Ai,B j)
in a paringg has associated valueni j . The score of
the pairingg is the sum of theseq associated values.
The problem of determining Cong2(P1,P2) is then
to find the selection of theseq values that provide
the largest total. This problem is a well-known op-
timization problem in operation research, it is called
the assignment problem20. Techniques have been
developed for solving this problem. We note that ifq
is small then we can solve this problem by enumer-
ation. We note that ifg is an assignment function,
g(i) assignsBg(i) to Ai, then the score ofg equals
q

∑
i=1

nig(i).

Here we shall present a view of this optimization
problem that allows for easy solution by enumera-
tion if q is small or by use of genetic algorithms21 if
q is large.

To calculate Cong2(P1,P2) we must calculate
Maxg∈G

[
Score(g(P1,P2))

]
. Using a mappingg the

pairs are(Ai,Bg(i)) and the score is

Score(g(P1,P2)) =
q

∑
i=1

Card
[
Ai ∩Bg(i)

]
=

q

∑
i=1

nig(i)

Consider the simple assignmentg(i) = i here thenAi

andBi are assigned as pairs. In this case

Score(g(P1,P2)) =
q

∑
i=1

nii

it is the sum of the elements on the diagonal of the
matrix N.
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We note that any mappingg : Q → Q can be
viewed as a permutation of theB j . We see that for
any permutationg of 〈B1, . . . ,Bq〉 we get an inter-
change of the columns ofN. For this permutation,
however, its score can be obtained as the sum of the
elements on the main diagonal.

Thus one way to obtain the value of
Cong2(P1,P2) is the do all the possible permuta-
tion of the columns. Total up the values of the main
diagonal for each permutation. The largest of these
totals is the value of Cong2(P1,P2). In cases where
q is small this can be easily done by enumeration. In
cases whereq is large the total number of permuta-
tions, Card(G), becomes too large for enumeration.
Here we can use genetic algorithms to get an optimal
solution[5,21].

We can express this optimization problem in the
form that can be solved using a genetic algorithm.
Consider our genomes to be permutations of the
[1, 2, . . . ,q]. In the case whereq = 6 an example
of this would bêg = [2 3 4 5 6 1].

Eachĝ genome can be seen to induce a matrix
in which theith column isBĝ(i). Given a particular
genomêg our fitness function is

F =
q

∑
i=1

niĝ(i)

We can now search that the whole space of genomes
G using the established procedures for searching a
permutation space with genetic algorithms.

8. Measure of Prognostication

In the following we shall investigate a different type
of measure of the relationship between two parti-
tions. AssumeP1 andP2 are two partitions ofX,

P1 : A1, . . . , Aq

P2 : B1, . . . , Br
Here we will try to measure how well we are to able
tell what class an object is in the partitionP2 from
our knowledge of the class it is in partitionP1. This
can be seen as a kind of prognostication or predic-
tion. We call denote this measure Prog(P1,P2). As
we shall see this will not be symmetrical, that is
Prog(P1,P2) 6= Prog(P2,P1) but it will be such that
Prog(Pj ,Pj) will assume the highest value. As we

shall subsequently see this concept is closely related
to the idea of containment between the partitions. In
the following we shall assume Card(X) = n.

We first define what we shall call an association.
Let Q= {1,2, . . . ,q} and letR= {1,2, . . . , r} we de-
fine an association to be a mappingh : Q→ R. Thus
for eachi ∈ Q we geth(i) ∈ R. We note thath need
not be bijective. This fori 6= k we can haveh(i) =
h(k). Essentially this mapping associates with each
classAi in partition P1 a classB j in partition P2.
While more then oneAi can be associated with each
B j , eachAi is only associated with only oneB j . For
a givenh we define Fam( j) = {Ai | h(i) = j}, it is the
family of classes inP1 that map intoB j in partition
P2. We letH be the set of all association mappings.

We now obtain for any association mappingh a
value

Value(h) =
1
n

r

∑
j=1

Card

(
B j ∩

⋃

i∈Fam(j)

Ai

)

Using these values we, define

Prog(P1,P2) = Max
h∈H

[
Value(h)

]

Thus the degree of prognostication ofP1 for P2 is the
largest value of any association.

We now make some observations about the prop-
erties of Value(h) and Prog(P1,P2). First we observe
that for anyh, Value(h) > 0 and Value(h) 6 1. From
this we conclude that

0 6 Prog(P1,P2) 6 1.

Let us now consider some special cases ofP1 and
P2. First consider the case whereP1 = P2. In this
case we have

P1 : A1, A2, . . . , Aq

P2 : B1, B2, . . . , Bq
whereBi = Ai. Consider now the association map-
ping h(i) = i. In this case

Value(h) =
1
n

q

∑
j=1

Card(A j ∩B j) = 1

From this we can conclude that Prog(P1,P2) = 1.
Another interesting special case is whereP2 is P∗

it just consists of one setX,
P1 : A1, . . . , Aq

P2 : B1
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whereB1 = X. Here there is only one association
mapping,h(i) = 1 for all i. In this case

Value(h) =
1
n

Card

(
X∩

⋃

j=1 to q

A j

)
= 1

Thus here again we get

Prog(P,P∗) = 1.

Consider now another special case. Here we assume
P1 is P∗, eachAi = {xi} it is a singleton set andP2 is
any arbitrary partition. Thus in this case

P1 : A1, A2, . . . , An

P2 : B1, B2, . . . , Br

Consider the association mappingh(i) such that
h(i) = j wherexi ∈ B j . In this case

Value(h) =
1
n

r

∑
j=1

Card

(
B j ∩

⋃

xi∈B j

Ai

)
= 1

Again here we get Prog(P∗,P) = 1.
Actually these three preceding situations can be

seen to be special cases of a more general relation-
ship betweenP1 andP2. This relationship is a hierar-
chical or containment relationship between the two
partitions. We define this in the following. Assume

P1 : A1,A2, . . . ,Aq

P2 : B1,B2, . . . ,Br
we sayP1 ⊆ P2 if for eachAi there exists aB j such
thatAi ⊆ B j . It is clear thatr 6 q.

For the situation in whichP1 ⊆ P2 consider the
association mappingh whereh(i) = j whereAi ⊆
B j . In this case

⋃

i∈Fam( j)
Ai = B j and hence

Value(h) =
1
n

r

∑
j=1

Card

(
B j ∩

⋃

h(i)= j

Ai

)

=
1
n

r

∑
j=1

Card(B j) = 1

Thus in this case ofP1 ⊆ P2 we always get
Prog(P1,P2) = 1.

Here then we can view Prog(P1,P2) essentially
as a measure of containment of the clusterP1 in P2.

Let us look in the opposite direction. Assume are
partitions are

P1 : A1 = X
P2 : B1, . . . ,Br

In this case there existsr possible associa-
tion mappingsh1, . . . ,hr where for h j we have
h j(1) = j. For any of these mappings we have

Value(h j) =
1
n

Card(B j). Thus here Prog(P∗,P2) =

Max j
[
Card(B j)

]
, it is the proposition of the ele-

ments in the largest cluster ofP2.
Consider now the case whereP2 is singleton,

B j = {x j} andP2 is arbitrary
P1 : A1, . . . ,Aq

P2 : B1, . . . ,Bn

With some thought it can be seen there the max-
imum of Value(h) occurs for any mappingh that as-
sociatesAi with one of the setsB j whose element is
in Ai, x j ∈ Ai. In the case we get

Value(h) =
1
n

n

∑
j=1

Card

(
B j ∩

⋃

h(i)= j

Ai

)
=

q
n

Thus Prog(P1,P∗) =
q
n

.

We can provide a lower bound on Prog(P1,P2)
for any two partitionings. Again assume

P1 : A1, . . . ,Aq

P2 : B1, . . . ,Br

Consider a mappingh j such that for eachi, h j(i) = j.
Here every class inP1 is associated withB j . In this
case

Value(h j) = Card(B j ∩X)

= Card
(

B j ∩
q⋃

i=1

Ai

)
= Card(B j)

From this we can conclude that Prog(P1,P2) >

Max j
[
Card(B j)

]
.

We now shall provide a view of the situa-
tion which will greatly simplify the calculation of
Prog(P1,P2). Again assume we have two partitions
P1 : 〈A1, . . . ,Aq〉 andP2 : 〈B1, . . . ,Br〉. Consider the
matrixN shown below. In this matrix the valueni j is
the number of elementsAi andB j have in common,
that is Card(Ai ∩B j) = ni j . Here the sum of the el-
ements in theith row is Card(Ai) and the sum of the
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elements in thej th column is Card(B j).

B1 B j Br

A1

Ai

Aq




ni j





We recall that any association mappingh assigns
to each classAi in P1 a class inP2 which we denote
asBh(i). Consider now

Value(h) =
1
n

r

∑
j=1

Card

(
B j ∩

⋃

i s. t. h(i)= j

Ai

)

We observeAi ∩A j = ∅, they are disjoint, thus we
can rewrite the above as

Value(h) =
1
n

r

∑
j=1

(
∑

i s. t. h(i)= j

Card(B j ∩Ai)

)

Furthermore sinceAi is associated with only one
B j we can reformulate this as

Value(h) =
1
n

r

∑
j=1

(
∑

i s. t. h(i)= j

Card(Bh(i)∩Ai)

)

=
1
n

q

∑
i=1

Card(Bh(i) ∩Ai)

Value(h) =
1
n

q

∑
i=1

nih(i)

Thus for a givenh its Value(h) is the sum of the
nih(i). Essentially for a givenh for eachAi we select
one element inN from its corresponding row and
then add these up. From this observation the deter-
mination ofh∗ such that Val(h∗) = Maxh[Value(h)]
becomes clear. We select from each row the largest
element inN. From this we easily calculate the value
of Prog

Prog(P1,P2) =
1
n

q

∑
i=1

Max
j

[ni j ]

Thus the calculation of Prog(P1,P2) simply requires
us to determine the largest value in each row ofN.

It the following we shall letg : Q → R be the
unique association such thatnig(i) = Max j [ni j ]. We
now clearly understand the situation which we re-
fer to asP1 ⊆ P2. In this case for eachAi there ex-
ists oneB j such thatAi ⊆ B j . Let us denote this
g(i), thusAi ⊆ Bg(i). In this caseAi ∩Bg(i) = Ai and
hencenig(i) = Card(Ai) and furthermoreni j = 0 for
j 6= g(i). Thus each row has only one no-zero entry
and the value of that is Card(Ai). It is clear how we
pick these elements and this gives us Prog(P1,P2) =
1.

Thus the determination of Prog(P1,P2) can be
seen as type of assignment problem. We assign each
Ai to oneB j , the one with the maximal common el-
ements. Since we can assign multipleAi to sameB j

there is no conflict and each assignment can be done
independently. Thus this is easier than the previous
problem.

Let us defineUi = |Ai| − nig(i) = ∑
j 6=g(i)

ni j . It is

the number of elements inAi not in Bg(i). We now
see that

Prog(P1,P2) =
1
n

q

∑
i=1

nig(i)

=
1
n

q

∑
i=1

|Ai|−Ui = 1−
1
n

q

∑
i=1

Ui

it is one minus the proportion of the element not is
the assignment set.

We see the following the following theorem
holds.

Theorem 2. Prog(P1,P2) = 1 if and only if for each
Ai there exists an Bj such that Ai ⊆ B j .

Proof. This is this the necessary and sufficient for
Prog(P1,P2) = 1. �

Definition 1. AssumeP1 : 〈A1, . . . ,Aq〉 is a partition
of X. AssumeP2 : 〈B1, . . . ,Bp〉 is another partition
of X whereq > p. If for eachAi there exists aB j

such thatAi ⊆ B j then we say thatP1 is arefinement
of P2. Alternatively we sayP2 is a coarsing ofP1.

Note. Earlier we showed ifP1 is a refinement ofP2

then Prog(P1,P2) = 1.
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Theorem 3. Assume P1 is a refinement of P2. Let P3

be any arbitrary partition of X then

Prog(P1,P3) = Prog(P2,P3).

Proof. AssumeP1 : 〈A1, . . . ,Aq〉, P2 : 〈B1, . . . ,Bp〉
and P3 : 〈D1, . . . ,Dm〉. Here q > p. Let g2 be
the optimal mapping betweenP2 and P3 hence

Prog(P2,P3) =
p

∑
j=1

∣∣B j ∩Dg2( j)

∣∣. Because of the rela-

tionship betweenP1 andP2 eachB j is the union of a
subset of classes fromP1. We shall denote the subset
of these classes making upB j asC( j) and indicate
an element inC( j) asAkj . Using this notation then
B j =

⋃

kj∈C( j)
Akj

B j =

nj⋃

k=1

A jk

Using this we see that

Prog(P2,P3) =
p

∑
j=1

∣∣B j ∩Dg2( j)

∣∣

=
p

∑
j=1

(
∑

kj∈C( j)

∣∣Akj ∩Dg2( j)

∣∣
)

Let g1 be a mapping associating a class inP1

with a class inP3 such that for anyAkj we have
|Akj ∩Dg1(kj )| = Max

all Di

∣∣Aki ∩D j
∣∣. From this we have

Prog(P1,P3) =
q

∑
i=1

∣∣Ai ∩Dg1(i)

∣∣ however

q

∑
i=1

∣∣Ai ∩Dg1(i)

∣∣=
p

∑
j=1

(
∑

kj∈C( j)

∣∣Akj ∩Dg1( j)

∣∣
)

and therefore

Prog(P1,P3) =
p

∑
j=1

(
∑

kj∈C( j)

∣∣Akj ∩Dg1( j)

∣∣
)

Since
∣∣Akj ∩Dg1(kj )

∣∣ >
∣∣Akj ∩Dg2(kj )

∣∣ the result fol-
lows. �

9. Some Applications

One application of Prog(P1,P2) is to provide a mea-
sure of congruence. In particular we can define

Cong3(P1,P2) = Prog(P1,P2)∧Prog(P2,P1)

where∧ = Min.

Let us see what are the properties of this definition.
First we we see that it is symmetric

Cong3(P1,P2) = Cong3(P2,P1)

Furthermore since Prog(P1,P1) = 1 then we have
Cong3(P1,P1) = 1. We further observe that ifP1 ⊆
P2 then we showed Prog(P1,P2) = 1 and hence
Cong3(P1,P2) = Prog(P2,P1).

Consider the case whereP1 is the partition
into singleton,P∗, and P2 is the whole space,P∗.
Here Prog(P∗,P∗) = 1 while Prog(P∗,P∗) = 1/n and
hence Cong3(P∗,P

∗) = 1/n.

Another application of Prog(P1,P2) is in help-
ing build relations between variables. Again as-
sumeX is a collection of objects. LetU and V
be two attributes associated with these objects. Let
P1 : 〈A1, . . . ,Ar〉 be a partition of the objects inX
based upon the attributeU . Let P2 : 〈B1, . . . ,Bq〉 be
a partition of the object inX based upon the sec-
ond attributeV. Here we are interested being able to
determine in which class inP2 an object falls given
our knowledge of which class in the partitionP1 the
object lies. Here we want relations like

If an objects U value is in Ai then its V value is in Bj .

Here the quantity Prog(P1,P2) helps us determine
which is the best association to make. The func-
tion g that maximizes Prog(P1,P2) provides the best
association. In this case the value of Prog(P1,P2)
provides some measure of the usefulness or quality
of the relation obtained.

An important example of this problem is the
following. Assume we have some preferred parti-
tioning, P2 : 〈B1, . . . ,Br〉, of the objects inX based
upon some attributeV. Let F be a family of par-
titions of X based upon another attributeU . Here
F = {P11, . . . ,P1s} where eachP1k is a partition ofX
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based onU . That isP1k : 〈Ak1, . . . ,Akqk〉. Our objec-
tive here is to find the partition inF that gives the
best rules for the connection between theU andV
attributes. Here we must first search through each
P1k to find its best association function,gk, and ob-
tain the value for Prog(P1k,P2). Using this we then
select the partitionP1k∗ such that Prog(P1k∗ ,P2) =
Maxk∈F

[
Prog(P1k,P2)

]
. This type of problem nat-

urally arises in situations in which a decision maker
knows what action to perform if the object is in any
one of the classes ofP2, B j , but makes observations
about the objects in terms of attributeU . A typi-
cal example of this occurs in the medical domain.
In this type of problem the decision maker, doctor,
would know from his training what treatment to rec-
ommend if a patient has a particular disease. How-
ever he usually doesn’t directly observe a disease,
instead he observes measurable physical attributes
of a patient. HereU would correspond to measur-
able physical attributes of a patient and the parti-
tion P2 would correspond to different diseases. In
order to prescribe the treatment he must be able to
determine the current disease from the symptomsU .
The goal in selecting the optimal partition ofU is of
course to accurately determine the disease from the
measurements of the physical attributesU . In or-
der to accomplish this task we must enable the deci-
sion to comprehend the values of the attributes. Hu-
man comprehension of data is generally enhanced
by using granularization to view the values of the at-
tributes. For example blood pressure of 180 is better
viewed as high blood pressure. Body temperature
of 99.3 is most usefully viewed as normal. With this
understanding we see that each partition ofP1k of U
corresponds to a different granularization of the at-
tribute. We then see thatF provides a collection of
different granularizations which are comprehensible
to the decision making. Thus by initially introduc-
ing F we are essentially trying to constrain the space
in which we are looking for the optimal partition-
ing to be those which are cognitively comprehensi-
ble to the decision maker. Once having introduced
F our objective then becomes selecting from these
different comprehensible granulations the one that
leads to the most accurate determination of the dis-
ease from the systems.

The following Fig. 2 illustrates the essential fea-
tures of this paradigm.

G r a n u l a t i o n  

o f  U

Par t i t i on  P1

Se lec t i on  

o f  

A c t i o n

D e t e r m i n a t i o n  

o f  S ta te

O b s e r v a t i o n s

o f  U
C lass  i n  P2

A c t i o n

Fig. 2. Basic Paradigm

Examples of this paradigm also occur in the fi-
nancial environment. Here experts have “rules of
thumb” describing what action to take if they know
the state of the economy (recession, inflation etc.).
However they observe primary data about the econ-
omy and from this this must determine the state in
order to know what action to take.

10. Non-Specificity of the Partition

The concepts of specificity and its complement non-
specificity have been investigated in considerable
detail particularly by Yager22 and Klir23. It is
closely related to the idea of generality.

In 23 Klir discusses one measure of non-
specificity of a set. In particular ifA is a sub-
set of X then Klir’s measure of non-specificity is
log2(Card(A)). In the following we shall use|A| to
denote Card(A). WhenA is a singleton,A = {x}
we get log2(|A|) = 0. For the case whenA = X,
log2(|A|) = log2(n), where|X| = n. Since log2(|A|)
is monotonic with respect to|A| we see that

0 6 log2(|A|) 6 log2(n)

A normalized version of Klir’s measure of non-

specificity is NSK(A) =
log2(|A|)
log2(n)

. Here then for any

subsetA⊆ X we have 06 NSK(A) 6 1.
Based on Yager’s22,23,24,25 work on speci-

ficity we obtain an alternative definition for non-
specificity

NSY(A) =
|A|−1
n−1

This takes values in the unit interval. It attains its
maximal value of one for the case whenA = X and
its minimum value of zero for the case whenA is a
singleton.
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It can be seen that these definitions are cointen-
sive, they are both measures of the granularity of
the subsetA. The larger the subset the closer the
non-specificity is to one. For singletons we get a
non-specificity of zero. In using these definitions we
will only be considering non-empty sets. The choice
between these two definitions of non-specificity de-
pends is context dependent, it depends upon what
application and what features are of interest. In the
following we shall use the neutral term NS when we
have no need to distinguish between these two defi-
nitions.

For our purposes we see that the measure of non-
specificity can be used to provide a measure of gen-
erality. The larger the setA (the more non-specific)
the more general the concept the set is representing.

We now briefly consider the extension of the con-
cept of non-specificity from sets to partitions. Our
interest here is in quantifying the idea of generality.
We are interested in quantifying how general are the
classes comprising a partitioning.

AssumeP : 〈A1, . . . ,Aq〉 is a partition ofX. We
are now interested in the calculation of the non-
specificity ofP, NS(P). In the following we shall
propose such a definition. This definition will make
use of the measure of non-specificity of the individ-
ual classes inP. The definition we shall use is the
following is

NS(P) =
q

∑
i=1

|Ai|

n
NS(Ai)

We see it is a weighted average of the non-
specificities of the component classes inP. The
weights are determined by the number of elements
in the class.

We see that this definition is independent of the
indexing of the classes, each class is treated in the
same manner. We also note that it is idempotent, if
for all i, NS(Ai) = a then NS(P) = a. This if all the
classes have the same degree of non-specificity then
this is the non-specificity of the partition as a whole.
We also note that since each of NS(Ai) ∈ [0,1] then
NS(P) ∈ [0,1].

Let us look at some notable special cases. Con-
sider the case whereP = P∗, that is q = 1 and

A1 = X. We see that AS(A1) = 1 and|A1| = n and
therefore NS(P∗) = 1. Thus the non-specificity of a
partition consisting of just the whole space is one.

At the opposite extreme is the case when the
classes are just singletonsP∗, here we haven classes
with Ai = {xi}. In the case NS(Ai) = 0 and hence
from the idempotency we get NS(P) = 0.

We should note that fact that
q⋃

i=1
Ai = X places

some constraints on the possible manifestations of
NS(P).

An interesting property holds between the mea-
sures of non-specificity of two partitionsP1 andP2

whenP1 ⊆ P2.

Theorem 4. If P1 and P2 are two partitions such
that P1 ⊆ P2 then NS(P1) 6 NS(P2).

Proof. AssumeP1 : 〈A1, ...,Aq〉 andP2 : 〈B1, ...,Br 〉.
The fact thatP1 ⊆ P2 means thatr 6 q and that for
eachAi there exists a uniqueB j such thatAi ⊆ B j .
We shall let Fam( j) be the collection ofAi since that
Ai ⊆ B j . Here we have

NS(P1) =
q

∑
i=1

|Ai |

n
NS(Ai)

and

NS(P2) =
r

∑
j=1

|B j |

n
NS(B j)

We can rewrite NS(P1) as

NS(P1) =
r

∑
j=1

(
∑

i∈Fam( j)

|Ai |

n
NS(Ai)

)

We further note that ifAi ⊆ B j then NS(Ai) 6

NS(B j) and hence

NS(P1) 6

r

∑
j=1

(
∑

i∈Fam( j)

|Ai |

n
NS(B j)

)

Since B j =
⋃

i∈Fam( j)
Ai and theAi are disjoint then

|B j | = ∑
i∈Fam( j)

|Ai | hence we get desired result

NS(P1) 6

r

∑
j=1

|B j |

n
NS(B j) 6 NS(P2)

�
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Let us look at the manifestation of NS(P) for
the two cases of specificity of sets, NSY(A) and
NSK(A). For the case of NSY we get that

NSY(P) =
q

∑
i=1

ai

n
·
ai −1
n−1

whereai = |Ai|. After some algebraic manipulation
we have

NSY(P) =
1

n−1

( q

∑
i=1

a2
i

n
−

q

∑
i=1

ai

n

)

Since
q

∑
i=1

ai = n then

NSY(P) =
1

n−1

( q

∑
i=1

a2
i

n
−1

)

=
n

n−1

q

∑
i=1

a2
i

n2 −
1

n−1

q

∑
i=1

w2
i −

1
n−1

Lettingwi =
ai

n
, the proportion of elements isAi, we

get

NSY(P) =
n

n−1

n

∑
i=1

w2
i −

1
n−1

=
1

n−1

(
n

n

∑
i=1

w2
i −1

)

We further observe that ifn is large then

NSY(P) −→
n

∑
i=1

w2
i

This is a kind of variance.
For the case where we use NSK(A) we have

NSK(P) =
q

∑
i=1

ai

n
log2(ai)

log2(n)

Again letting
ai

n
= wi we get

NSK(P) =
q

∑
i=1

wi
log2(nwi)

log2(n)

=
1

log(n)

q

∑
i=1

(
wi log2(wi)+wi log2(n)

)

Since∑i wi = 1 we see

NSK(P) = 1+
1

log(n)

q

∑
i=1

wi log2(wi)

We see this as a kind of entropy.
In passing we note that an alternative al-

though less sensitive possible measure for the non-
specificity of a partition is NS(P) = Max j

[
NS(A j)

]
.

It is easy to show that this has similar properties of
the preceding although it is less sensitive.

11. An Application to Data Mining

A common task that occurs in data mining is de-
scribed in the following. LetX be a class of objects
and letP : 〈B1,B2, . . . ,Br〉 be a given partition of the
objects based upon some featureV. We call this the
target feature.

In addition assume we have a concept hierar-
chy over X based upon some other features,U .
We recall that a concept hierarchy consists of a
group of partition of increasing generality. Let
P1, . . . ,Pr be a group of partitions onX wherePi :
〈Ai1,Ai2, . . . ,Aiqi 〉. The requirement for these par-
titions to form a concept hierarchy is thatPk ⊂ Pj

for k 6= j. We refer toPi as theith level partition.
In this case the generality is increasing as the level
increases. Concept hierarchies play a fundamental
role in the way human’s conceptualize the world. A
typical example of a concept hierarchy is the fol-
lowing. LetU be the attribute corresponding to an
objects home address. A concept hierarchy would
be the following

P1 is a partition by theaddresses,
P2 is a partition byneighborhood,
P3 is a partition byCity,
P4 is a partition bystate,
P5 is a partition byRegion

Our objective here is to build rules predicting the
class inP, B j , to which an object belongs based on
its value for the featureU . In order to make these
rules human comprehensible we want to use the cat-
egories (concepts) associated with the concept hier-
archy.
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In order to accomplish this task we can consider
each level of the hierarchy,Pi. Using the methods
described earlier we can find for each level the func-
tion gi that makes the best assignment between the
classes in the partitionsPi and the target partition
P. Let us denote the value associated with each of
the as Val(gi). The larger this the better the associa-
tion. From our preceding discussion we showed that
if Pi ⊂ Pj then the respective assigning functionsgi

andg j are such that Val(gi) > Val(g j). Thus here
then the best rules are obtained using the categories
in the lowest level of the concept hierarchyP1.

However as we noted an important objective in
formulating the rules relatingU and V is human
comprehension and understanding. As reported by
Miller in his classic paper1 human information pro-
cessing capacity deteriorates if one has to manage
to many classes. Thus in order achieve our objec-
tive we have a preference for rules using fewer more
general concepts for the categories used to describe
the values of the variableU . Thus here then we pre-
fer partitions that use more general concepts. Paren-
thetically we note that an additional benefit of using
more general classes forU in formulating our rules
is that we can allow less precision in our determina-
tion of the valuesU when using the derived rules.
The need for less precision is usually more econom-
ical on resources.

As we previously noted the generality of a par-
titioning can be measured by the its non-specificity.
In addition we showed that ifPi andPj are two par-
titions such thatPi ⊂ Pj then Sp(Pi) 6 Sp(Pj). In
particular we see that generality is increased as we
go up the concept hierarchy.

We now see the fundamental conflict associated
with our task of trying to build rules to help predict
an objects class in the target partitionP based upon
an observation of itsU value. Our desire of attaining
correct prediction benefits by using as our partition-
ing for U one down the bottom of the concept hier-
archy while our desire for generalization and human
comprehension benefits by going up the concept hi-
erarchy. While we shall not pursue this further here
we believe that the measures we have introduced,
Sp(Pi) and Prog(Pi,P), can play a role in helping

adjudicating this conflict. We also note that in26 we
looked at issues closely related to this problem.

12. Weighted Categories

Consider again the task of using the categories in the
partition P1 : 〈A1, . . . ,Aq〉 to predict an objects class
in a target partitionP : 〈B1, . . . ,Br〉. In the preceding
we assumed that there are no costs in predicting an
object is in categoryBk when it is really in category
B j . In the following we shall briefly investigate the
process of determination the best assigning function
in the case when there are different payoffs associ-
ated with assigning an object to one class when it is
in another. In discussing this we shall make consid-
erable use of the matrixC below.

B1 B j Br

B1

Bk

Br




Ck/ j





In this matrixB1, . . . ,Br are the classes of the tar-
get partitionP andCk/ j is the payoff for assigning an
object to classBk when it belongs in classB j . In this
situation we assume that positive values are benefits
and negative values are costs. We also assume that
for each columnB j the payoffsCk/ j takes its maxi-
mum value fork = j, the correct identification.

In addition to this matrix we also have as in the
preceding the matrixN whereni j is the number of
objects in bothAi andB j , ni j = |Ai ∩B j |.

Let h be a mapping that assigns eachAi to a class
in P, Bh(i). The value of this mapping is

Value(h) =
q

∑
i=1

( r

∑
j=1

ni jCh(i)/ j

)

Our object is now to find the mapping h which
gives the maximal value for Value(h). As before we
denote this optimal mapping asg. Calculation of
Value(h) can be decomposed and the determination
of g(i) can be independently obtained for eachi. In
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particular for anyi, g(i) = k∗
i where

r

∑
j=1

ni jCk∗
i / j = Max

k=1 to r

[ r

∑
j=1

ni jCk/ j

]

To solve this we shall find the following notation
useful. Let R · Ai be a theith row of N. It is
an 1× r dimension vector. We shall letR· Bk be
the kth row of the matrixC. It also is an 1× r
dimension vector. We see that in vector notation

r
∑
j=1

ni jCk/ j = (R·Bk)× (R·Ai)
T. Thus to findg(i)

we fix i, R·Ai, and go through allR·Bk, k = 1 to r,
to find the the one that gives us the biggest inner
product withR·Ai.

Let us look at a special case ofCk/ j . Consider the
case whereCk/ j = 1 for j = k andCk/ j = 0 for j 6= k.

In this case for anyk we have
r
∑
j=1

ni jCk/ j = nik. Thus

here we wantg(i) = k∗ such thatnik∗ = Maxk[nik],
this was our earlier solution.

13. Conclusion

We investigated a number of measures relating par-
titions. One class of measures we considered were
congruence measures. These measures are used to
calculate the similarity between two partitionings.
We discussed a number of examples of this type
of measure. Another class of measures we inves-
tigated were prognostication measures. This type of
measure, closely related to a concept of containment
between partitions, is useful in indicating how well
knowledge of an objects class in one partitioning in-
dicates its class in a second partitioning. We applied
our measures to some data mining applications us-
ing the structure of the concept hierarchy. We also
introduced a measure of the non-specificity of a par-
tition. This measures a feature of a partition related
to the granularity or size of the constituent classes of
the partition.
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