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Abstract

Nonlocal symmetries for exactly integrable three-field evolutionary systems have been com-
puted. Differentiation the nonlocal symmetries with respect to x gives a few hyperbolic
systems for each evolution system. Zero curvature representations for all nonlocal systems
and for some of the hyperbolic systems are constructed.

1 Introduction

It is well known that the modified Korteweg-de Vries equation (mKdV) is the symmetry of the
sine-Gordon equation [1]. And vice versa, the sine-Gordon equation considered as the nonlocal
evolution equation u; = ;! sinu is the symmetry of the mKdV equation.

In recent years interrelations between evolution and hyperbolic systems have been studied in
terms of the Lax representations. Hyperbolic systems appear in this approach as negative flows
in hierarchies of integrable evolution systems. Hereafter we call a system integrable for brevity if
it possesses a nontrivial zero curvature representation or Lax representation. There are a lot of
papers where Lax representations are constructed for several equations. Most important among
others was [2] where the general construction for Lax representation of KdV type equations was
presented. These results were published in detail in [3] where the proofs of all theorems and
many examples were presented. We also point out [4], where it was shown how one can obtain
some popular equations using the results of [2].

This investigation has been motivated by the fact that the symmetry analysis of hyperbolic
systems is an extremely difficult task as compared with the evolutionary systems. Now a lot
of integrable evolution systems are known (see [5], for example), but the list of the known
integrable hyperbolic systems is much shorter. See for example [6] — [9] and references cited
therein. Having [1] in a mind, it may be reasonable to compute nonlocal symmetries directly
for each known evolution integrable system. Some of these symmetries, considered as evolution
equations, will belong to the hierarchy of corresponding evolution integrable system as negative
flows. Differentiating any nonlocal symmetry few times with respect to x one can obtain a
local nonevolution system. By doing so one can find several nonevolution systems belonging
to hierarchy of each integrable evolution system (see (3.3), (3.4), (3.6), (3.8) and (3.10) as an
example).

Some of nonlocal symmetries may not belong to the hierarchy of the system under consider-
ation. Such irrelevant symmetries are not commutative with the higher flows of the hierarchy.
Therefore one ought to verify commutativity of nonlocal symmetries with the higher flows of
the hierarchy. The higher flows can be found by a recursion operator or by constructing a zero
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curvature representation. Another and simpler way to prove the integrability of any symmetry
u; = o0 is to construct a nontrivial zero curvature representation for it

(U, — Ve +[U, V])\UT _,=0, (1.1)

where [U,V] = UV — VU. This computation is sufficiently simple, because the matrix U is
common for all members of the hierarchy. If an evolution system is integrable and its matrix U
is known, then equation (1.1) gives a linear differential system for elements of V. This system
can be easily solved and the zero curvature representation can be obtain. If the symmetry
u; = o does not belong to the hierarchy, then system (1.1) is incompatible.

In this article we apply the discussed scheme to the integrable three-field evolutionary systems
that were obtained in our previous articles [9, 10, 11]. These results make it possible to find new
hyperbolic systems. The zero curvature representations for some of the new systems are found.

Section 2 introduces notation and basic notions. Section 3 is devoted to the nonlocal symme-
tries and corresponding hyperbolic systems. Section 4 contains zero curvature representations
for all nonlocal systems and selected hyperbolic systems.

2 Notation

Consider an evolution system with two independent ¢, x and m dependent variables u®
up = K(t,z,u,ug, ..., up), (2.1)

where K = {K%* a=1,...,m} and u = {u®, a = 1,...,m} are infinitely differentiable vector
functions; u = ug, uy = ug, up = 0*u/0x*. The set of the variables u is usually denoted as u
for brevity.

Definition 1. (see [5, 12, 13, 14]). A vector function o(¢,z,u,u,,...,ux) is said to be the
generalized symmetry of system (2.1) if it satisfies the following equation

(Dy — K)o =0, (2.2)
where
OK* . 0 0 0 &
5 =3 TPk Dem gt 3 ubig D= gk 3 (D) 50
k>0 YU a,k>0 k>0

Operation * : K — K, is called the linearization one, D, is the total differentiation operator
with respect to x, Dy is the evolutionary differentiation operator. The order of the differential
operator f, is called the order of the (vector-) function f.

A generalized symmetries o are often written as the following evolutionary systems

ur = o(t,x,u), (2.3)

where 7 is another parameter of evolution. It is possible because the compatibility condition for
equations (2.1) and (2.3) coinciding with (2.2).
Definition 2. (see [5, 12, 13, 14]). If the differentiable functions p and 6 satisfy the following
identity

Dyp(t,z,u) = D, 0(t, z,u), (2.4)

for any solution u of system (2.1), then this identity is called the local conservation law of system
(2.1). The functions p and 6 are called the conserved density and flux correspondingly. The pair
(p,0) is called the conserved current.



On nonlocal symmetries of integrable three-field evolutionary systems 591

As the operators D; and D, are commutative, the functions pg = D, f and 0y = D;f, where
f is an arbitrary function, identically satisfy (2.4). Such currents are called trivial. Conserved
densities are always defined by modulo trivial (divergent) densities.

Let (p,0) be a conserved current of a finite order. Then the following system

D,w = p(t,z,u), Dyw =0(t z, u), (2.5)

where u is a solution of system (2.1), is compatible. The solution of this system is formally
written in the form w = D;!p. One may consider w as a new dynamical variable. It is

called weakly nonlocal or quasi-local (see [15]). We will simply write “nonlocal variables” for
e

brevity. We call the nonlocal variables {w,”” = D} 1p§0)}, that are constructed by means the

local conserved currents {pgo),@(o)}, the first order nonlocal variables.

To operate with the new variables one must prolong the operators D; and D,:

9 1 _ (0)
g0’ D TP

K3 K3

DM =D, + o (2.6)

where summation over the repeated indeces is implied. The prolonged operators are commutative

D). D] = (D D)+ (Dip® ~ Do) T =0

! aw(-l)

because of (2.4) and commutatuivity D; and D,.
Now one may search nonlocal conserved currents. If there exists a nontrivial conserved

(1) )

current {p(l),H(l)} depending on t,x,u,us,...,u and w,;’, and w,; ' cannot be removed by

a gauge transformation p — p + Dg(cl) f,0 — 0+ Dgl) f, then we call the nonlocal variable
{w® = Dy 1p(D} the second order nonlocal variable and so on. The new prolongation of D;
and D, is constructed on each step

(n+1) _ ) | o) 0
ot D = D 0y

K3 3

DY) = plw +pz(") (2.7)

and each prolongation gives the commutative operators because

[0, D] = (0, D]+ (D~ D) 2
ow,
(see also [16], for example).

If equation (2.2) with the prolonged operators D; and D, possesses a solution o depending
on the nonlocal variables, then ¢ is called the nonlocal symmetry. We stress that there exist
nonintegrable nonlocal symmetries, and the best way to prove integrability a nonlocal symmetry
is constructing the zero curvature representation for it.

3 Nonlocal symmetries and hyperbolic systems

We consider here the exactly integrable evolutionary systems that are found in paper [11]. We
will cite these systems as “a”, ..., “g” in accordance with the mentioned article. For the
reader’s convenience we write the evolution system under consideration in the beginning of
each subsection 2.1 — 2.7. Then we present the nonlocal variables and nonlocal symmetries in
form (2.3). All symmetries linearly depend on arbitrary parameters ¢;. Each nonlocal system

ur = o(x,u,w,c;) can be reduced to a local form, but for some parameters we obtain very
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cumbersume local systems. We set such parameters to zero and consider simplest symmetries
only.

Besides, the order of equations that may be interesting for applications is not too high. That
is why to construct the nonlocal variables we find conserved densities of the zero and first orders
only. The chains of nonlocal variables for the systems under consideration seems to be infinite.
That is why only nonlocal variables of the first and second orders are considered here.

All nonlocal systems presented below possess zero curvature representations.

3.1 System “a”

It is an exceptional case when the third order system possesses the second order symmetry:
_ _ —m2 a9 92 — 219 -2
Ut = MgNy, Mt = Mgy mg; + MMy + MaUy, Nt = Ngx + ng; + Ny Uy MgNyg.

We consider this system instead of the original system of the third order for simplicity. This
system possesses the following 8-parametric nonlocal symmetry

Ur = c1wy + CaW2 — C4Wq + C5We + Co(W1Wg — WoW6) — CTWIW2 — CyW WA,
my = ciwy + caws + (¢4 — cowy)(wawz — wy) + cswiw3

+ c7(ws — wiws) + cg(waws — wiwa), (3.1)
mfn)

Ny = —cwa + (€3 + c4wy + cswi — cewiwy + cgws) (w3 + e~

+ we(cewz — c5) + crws,
where

D;162u+n’ wy = D—lem—2u’ ws = D;lmze—m—n’

xX
-1 -2 -1 -2 -1 2 2u—
wy = D wze™ Y ws = D twie™ M, wg = D (wze T 4 ™),

w1 =

We found the following simple local systems from (3.1).
A.1. If we adopt ¢; =0, ¢ > 3 in (3.1), then the following system follows:

Uy = cqwy + cowe, My = ciwy + 3wz, Ny = —cows + cz(wg +e "), (3.2)
This implies (v +n —m),; = cge”™ ", therefore we introduce the new variables:
1 1 1
p= g(u—l—n—m), q= 5(2u—|—m+2n), r= §(2u—2m—n).
Rewriting system (3.2) in the new variables and differentiating two of the three equations, we

obtain

Gre = 162 + a(qy + 2y — 6pa)e” Y, pr = ae’ Y, (33)
Prp = c2¢” "1 — a(2qy + 1y — Bpg)e’ Y, '

where a = ¢3/3.
A.2. One may transform system (3.2) in another manner adopting wy = p,ws = q, w3 = r
as the new variables. It follows from the definitions of the variables w;_3 that

n+2u=1Inp,, m—2u=1Ing,, n+m=1IWn(p,q.), Mz = PrGaTs.
Using these formulas one can easily odtain

Pre = De(2010 + caq + c37) + e3¢, Y, qra = qu(car — c1p — 2¢2q),

3 (3.4)
Tre = rx(CZq —C1p — 2637“) + C14q,; -
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One can perform this transformation for the general system (3.1), but one has to add to the
system four additional relations:

Wy g = Tqz, W5z = Pz, W6z = TPz + Q;la Wy o = qrpz + qqgjl'

Now we consider the case when ¢; = 0,7 > 4 and ¢4 # 0. The shifts wo — wy — c3/cq and
wsg — w3 + c2/cq remove the parameters co and c3, hence (3.1) takes the following form:

Ur = QW] — cqwy, My = crwy + cq(wows — wy), nr = cqwa(ws +e ™). (3.5)

For (3.5) two further transformations have been found.
A.3. Setting p = w3, ¢ = n+ 2u, r = wq, and taking into account the identities p, =

mge ™y = M2, w1,y = €1, wy 5 = pra, €™ = elr,, one can easily reduce equations (3.5)
to the following form:
1 1 . 3
Pra = C1T¢ - ipx%' + 5046 DTy — §C4P7“Px,
Gra = 2c1% + c4(rpy — pry) + 04(7“7“;167(1)1, (3.6)
3 1 1.
Tre = 504197"7% - 5%% + 5647“6 .

A.4. Introducing the new variable z = wse™ one can find wy from the third equation of
(3.5):
4n_ N7

zem + 1
This allows us to eliminate wy and reduce system (3.5) to the following form:

cawg = e

_ n:m
Ury = clen+2u — cyze 2u7 My = Clen—l—Qu + 7!y ’
ze™ +1
(3.7)
—n—2u n NNy
Ny = C4€ (ze" +1) — ———.
ze™ +1

Then differentiating the equation z = wse”™ we obtain the relations
Zx

Tren &= my(z+e "), zZrp =me(z+e ") +me(zr —nre "),

My =

which make it possible to to eliminate the function m from the system. To write the system
in a symmetrical form, we introduce another substitution n = In z. The result is a chiral-type
system

2u 2u

Urg = 1262 — cyze 2, zpp = 1 Fe? + 222, F Y, 200 = cuFe 2 + 23,2, F 1, (3.8)

where F' = 2z + 1. Exact integrability of this system has been proved in [9].

If weset in (3.1) ¢4 = ¢ = ¢7 = cg = 0, ¢5 # 0, then the shift wy — w; —c3/c5 removes cs; the
second shift ws — ws — ¢1/c5 implies wg — wg — ¢1/cswy and removes ¢1. These transformations
reduce system (3.1) to the following form:

Uy = CoWs + Cswg, My = cswiws, Ny = cs(wie " " — wg + wiws) — cows. (3.9)

We found two transformations to the local form for this system.
A.5. If we set p = w3, ¢ = m — 2u, r = w1, then using the relations p, = mg e~
Xt g = el W, = pry + € 9,e™T™ = elr, we reduce equation (3.9) to the form

m—n _
y T =

g 1 3
Prz = CspE€ = — prQT - ECSPTP%
Gro = C5(Tpy — pra) — 2c9e? — 2c5e7, (3.10)
3 1 _
Trx = ZC5PTTy — =Txqr + C5T€ qj

2 2
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different from (3.6).

The second possibility consists in performing the substitution z = —wze™ —e™™, z = ™
Eliminating wy with the help of the second equation (3.9): csw; = —z,e"(2z + 1)~ we obtain
system (3.8).

3.2 System “b”

U = — Uggy + 3 (MgNgy — NeMag) + 3nsMmy — 3Ming + 3ugngmy — 3 uy,

4
3 2,3 9
Mt = Magr — 3Mag(Uz + Ny — My) — 2 MyUpy — Uy + 2 uzmy + 6ugngmy

2 2 3
— 6ming + 3n;m, +my,

g = Nggr + 3Ngy (Ug + Ny — My) + 2umnx + 3uz — 6n? My + ;nxUQ
— bugnzmg + 3minm + ni
This system possesses the following 8-parametric nonlocal symmetry
Ur = clwy — Cawa + cawy + csws + 2c6we + crwr + cg(wiwy — wows),
my = crwy + caws + cawy + ¢5(ws — nxe2(nfm+u)) + c6(we — waws3)
+ c7(w7 — wawg) + cg(wiwy — wawy), (3.11)
ny = cowy + (c3 — cewa — crwg — cgwy) (w3 +e ")
+ ca(mge®™ T —wy) — cyws — cowe + cswows,
where
wy = D—l 2n+2u’ — D 1 2m 2u — D—lmze—m—n’
wy = D m2 2m—2n— 2u’ wy = D 1 2 2n 2m+2u’ we = D;1w362m72u’
wy = D 1 2 2m 2u7 wg = D:v (eQu 2m + 2w362u7m+n + w§62n+2u)7
wy = Da: l(wQeZu—m—i—n + w2w362n+2u + wleeZm—Zu).

The simple local systems that follow from (3.18) are presented below.
B.1. Adopting ¢; = 0, ¢ > 5 in (3.11) we obtain by differentiation the following hyperbolic
system:

Ury = €12 — 0o 2(M=W) | oy 2 2M=n=t) o ooy 2 2n—metu)
Mry = 0162(n+u) + cgmge” T 4 camy, gQ(m n—u)

— c5(Nge — 2mgn, + nx + 2uznz)e2(”_m+“), (3.12)
Npw = ce2 ™™ — ean,e” ™ — gyn2e2nTmE)

+ ca(myy + mi — 2Mang — meux)e2(m_”_“).

If one supposes additionally ¢4 = ¢5 = 0, then (3.11) implies (u —m+n),; = cze”™". Therefore
the substitution p=uv—m+n, ¢=u—m, r=u-+n gives a simpler system:

DPr = C3eq—r’ Tre = Cle2r + CB(QJ} - px)eq—r’ qrz = _026_2q + C3(px - rx)eq—r' (3'13)

B.2. We can rewrite system (3.13) choosing p = wy,q = we,r = ws as new unknown
functions:

= 2(c1p + c3r)ps + 2030/ Dotz 'y Gra = 2(c3T — €20)a,

Trw = (Caq — c1p — 2¢37)7z + c1\/ P2z -

(3.14)
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Then we consider system (3.11), with co = ¢4 = ¢5 = ¢s = 0 and ¢7 # 0. The shift wg — ws+a
implies wg — we + awa, wy — w7 + 2awe + a®wsa, hence we obtain cg = 0 by setting a = —cg/c7.
The second shift wg — wg + c3/c7 removes c¢3 and we obtain the simple system:

ur = cqqwi + crwy, my = cywy + cr(wy — wswg), nr = —crwg(ws +e ). (3.15)

The further transformations can be performed in two manners.
B.3. The substitution z = wse™,z = €" (see point A.4.) reduces system (3.15) to the
following form:

Urg = 1222 + 72272, z2pp = F Y2220+ 1 Fze?, Zp = F 1222, — c;Fze ™ 2Y, (3.16)

where F' = 2z + 1. Exact integrability of this system has been proved in [11].
B.4. Substitution p = ws,q = n + u,r = wg reduces system (3.15) to another form:

Pra = c1e9\/pre" — pogy + crper(p — e/ prz ),

(3.17)
Arz = 016211 — Crpar — cr(re”? prgl)z, Tre = Tz(p_lpx — 2¢7rp).
3.3 System “c”
Up = 2MgypNg — MgNgy + Mang(duy + 3my, — 3ny),
my = Merx + Ugax My — 3mxw (nx — My — ux) + gmmnax (nx - 2um)
— mi(Snz — 3ug) + mx(mi + 2u§),
Nt = Ngxx — 2uma}nx + 3”1}&: (nx — Mg — ux) + gmmna} (mm + 2um)
—n2(5my + 3ug) + ng(n2 + 2u?).
This system possesses the following 10-parametric nonlocal symmetry:
Ur = CQW1 — CoW2 + C4wy — C5W5 + 2¢6w7 + Crwig
+ cg (wg + 2we (w5 + wr) — 2w ws — 4w6) + 2c9(wowg — 2wiwe)
— QClo(wlwg — wowswyr + 2wewy — wsws),
m, = CoWs + 04(nze2”_2m_2“ — wy) — Cewy — crwig + co(wg — 2waowg)
+ (c3 + cswa + cowy + crwy + cswa(wy + wa) + cowiws ) (e + ws) (3.18)

+ c10(2wiwows — 2wawsg + w§w7 — 2wiwg + we)(e” ™" + ws)

+ c8(2wg — 2wows — wawy) + 2cpwr(we — Wows ),

ny = crwy + 3wz + cawy + cs(waws — ws) + c(wr + wiws) + crwswy
+ cs(wgwg — 2wiws — 2w + wiwaws + wg) + cg(wg — dwiwe + wlwgwg)
— C10 (2(w2w3 — w5)(w8 — w1w5) + 2’[1)6(’[1)7 + w1w3) — w%w3w7 — ’wgwg).
It is denoted here
wy = D;leQ(er“), we = DY, wg = D;lnme*m*",

xT

n—u

2(n—m— -1
(n m U)a w5:Dz wse 3

wy = D 'nke

wg = D;lwgwge”_“, wy = Dx—l(em—n—i—Zu + 62(m+u)w3)’

wg = D (wgem_”+2“ + wawsge2 M) 4 wlwge”_“),

wo = D;lwg (wQem—n—l—Zu 2(m+u) + 2w1w3en—u)

wip = D;l (62(u7n) + 2w3emfn+2u + w§e2(m+u)) )

+ wowse

)
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The simple local systems that follow from (3.18) are presented below.
C.1. Adopting ¢; = 0,7 > 4 in (3.18) we obtain by differentiation the following hyperbolic
system:

Upy = 0162(m+u) oY 647,[‘3:e2(n—m—u)7
Mry = c2e" ™" — c3mge™ ™" + 0462(n7m7u) (ni = 2mgng — 2nzuy + nxx)v (319)

Ny = cpe2mTu) 4 cange "+ C4n32662("7m7“).

If additionally ¢4 = 0 in (3.18), then (m — n + u), = cge”™". Therefore for the new unknown
functions p = m — n 4+ u,q = m + u,r = n — u the system takes a simpler form:
br = C3eiqirv rz = Clqu - C3(pz + rz)equr’ Tre = 0261" + 03((195 - pz)equr. (320)

C.2. If we set ¢4 = 0,¢5 # 0 and ¢; = 0 for ¢ > 5 in (3.18), then the shifts w3 — w3 —
ca/c5, w5 — ws — co/cswy and we — we — ¢3/c5 remove cg and c3, thus system (3.18) takes the
simple form:

Ur = cqwi — csws, My = cswale” " "M+ ws), ny = crwi + c5(waws — ws). (3.21)

The substitution z = wze™, z = ™ (see point A.4.) reduces system (3.21) to the following form:

Urp = 1226 — c5ze™, 2y = 1 FZe® + F 222, Zrp = csFe % + F 12,2, (3.22)

where F' = 2z + 1. Exact integrability of this system has been proved in [11].
C.3. For the new unknown functions p = we,q = ws,r = m + u system (3.21) has another
form:

Pre = C5PqDzy Tra = 162 + cspqe + cs(eppy e,

r -r -1 (3'23)
Gre = (c1€” + e3¢ PQu)py — QuTr — C5PqY-
3.4 System “d”
9 3 3 9 1 59
Ut = — 35 Uz + 3nzmx +3 MaxNgx — 5 MMz — 3mg;na: + = Uy, + 3 Uzr Nz M,
2 2 2 4 2
2 9 5 2
Mt = Magr — 3Mag(Ny + Uy — My) — 5 Malas + 7 UaTe = 5 Mala = uymy
+ 6uznmy + 3n920mm + mi,
3 9 5 9 5 2
Ny = Ngzg + INgz(Ny + Uy — My) + 3 Uy Ny + 1 UpNy — 3 NyMy + 3Ugny,
— bugnzmg + 3minm + ni
This system possesses the following 11-parametric nonlocal symmetry:
Uy = crwy + cawy — cqwy + 2¢5(wiwy — 2ws) + cewe + 2¢7(2wr — waws)
+ eg(wiwe — wowy) + 2c9(wiwg — wawiy) + c10(2wswa — 2wiwy + wi1)
+ 611(21111’[07 + wg — 2’[021[19),
mr; = cowsg + c3ws + c4(wrws — wy) + 05(w%w3 — 2ws) + cgwaws
+ cr(wiws — 2wawg + 2wy) + co(wiwiws + 2wig — 2wowiy) (3.24)

+ ngg(wl’wg — ’U)4) + 610w2(2w5 — w%wg) =+ cll(wlwgwg + wg — 2w2w9),

2 2 22 2
Ny = (63 + cqwy + Cswy + Cgwo + Crwy + CgWiwWo + CoW Wy — CloW] W2

fmfn)

+ cnwlw%)(wg +e — crwy + 2¢5(ws — wiwy) — cewg

— 2crwy — cgwiwg + 209(11]10 — wlwg) + 610(2’[1)11119 — w11) — 2c1jwiwy.
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It is denoted here

w; = D e™ ™ wy = De™™, wy = D tmee ™™™, wy = D, twge™ Y,
ws = D;lwlwgem_“, W = D;l (w36”+“ + e“_m), wy = D;lwg (w36”+“ + e“_m),
wg = Dty (2w16”7m + 2wiwse™ TV + wgwgemfu),
wyg = D (wle“_m + wiwse™ T + wgwgem_“),
wyp = D;lwlwg (wle“_m + wiwse T + wgwgem_“),
Wy = D;lwl (wleufm + wiwse™ T + 2w2w36m7“)
The simple local systems that follow from (3.24) are presented below.
D.1. Adopting ¢; = 0,7 > 3 in (3.24) we obtain by differentiation the following hyperbolic

system:
pr=c3e?" qrp=cre I+ c3(pr —rr)et", rrp = coe” +c3(qp — pr)et (3.25)

where p=n—m+u,g=u—m,r =u+n.
D.2. If ¢; = 0,i > 4 and ¢4 # 0 in (3.24), then the shifts w1 — wy + c3/cq, w3 — wg —
c1/¢eq, wy — wy — ¢1/cqwy remove c¢; and c3, and the system reads:

Uy = Cowy — cqwy, My = Cows + c4(wiws — wy), n, = cqwi(ws +e ™ "). (3.26)
The substitution z = wse™, z = €™ (see point A.4.) reduces this system to the following form
Ury = CoZ€" — cqze ™, 2y = coFe* + F 222y, Zrp = caFe “ + Fl2z,7,, (3.27)

where F' = 2z + 1. Exact integrability of this system has been proved in [10].
D.3. The substitution p = wi,q = ws,r = m + n reduces system (3.26) to the following
form:
Pre = CaDqPr, Gre = C2Dy " — QuTr + Ca€” Do,

e . (3.28)
re = C2€ Py + 2¢4pqy + caqpy + ca(pe™"),.

D.4. If ¢5 # 0 and ¢; = 0 for ¢ > 5 in (3.24), then the shift w; — w; — c4/(2¢5) removes cy.
Adopting also ¢y = 0 for simplicity, we obtain:
ur = cqwy + 2c5(wiwy — 2ws), M, = csws + 05(w%w3 — 2ws),
ny = —crwi + (c3 + cswi) (wze ™™ ") + 2e5(ws — wiwy).

Introducing the new unknown functions p = wi,q = ws,r = m + n one can reduce this system
to the following form:

Prz = Pz (7“7- — 03(q + 3_7") — C5p26—r + 205’[1)), Wy = PqPs, (w = w5)7
qrz = Qz(c3 + C5p2)€_r — qz7r, (3.29)
Trw =D 'patr + 25p%qx + c5p(pe™ ")z + c3(2qy — r2e”") — c3p 'pu(2g + 7).
Remark. If cg # 0 and the other ¢; = 0 for ¢ > 4 in (3.24), then there exist shifts along ws
and ws that reduce the system to the following form:

m—n)

ur = crwy + Cewg, My = Cgwaws, Ny = —ciwi + cewa(ws + e~ — CceWg.

This system is reducible to the forms (3.27) or (3.28) by the substitutions z = €,z = —wze™ —
e~™or p=—ws,q=—w3z—e """ r=m+4n correspondingly.
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2

3.5 System “e

3
Ut = Uggg — 2Uy, — OULNL My,
. 2 2 2 3
Mp = Magy + 3Magp(My — ng) — 6Min, — 6uim, + 3nim, +m;,

Ng = Mgz — IMae(Me — ng) — 6n2my — 6uzng + 3m2n, +nd.
This system possesses the following 12-parametric nonlocal symmetry:

—m-+n

Ur = crwi + cowsg + cgmze™ " + cynge + cgwg + crwr + cgwg + cowy

+ c10(wiwy — wows) + c11(wiwg — wows) + cr2(wewy — dwaws),

My = ciwy — Cowa + c3ws + 2c4wy + 2¢5(uze” ™" — ws) + 2cwi w3

— 2crwaws + cg(w3we — wsg) + co(wg — w3wy)
+ c10(waws — wig + wiwy — 2wzwiwa) + ¢11(waws + wWiwy — w3wig)

( (3.30)
+ 2¢12(2wawg — wawig — Wewzwe + WiwW3WT),

ny = ciwy — cowy + 2¢4(ue™ " — wy) + 2c5ws — cgws + wocy
+ (w3 + e_m_”) (03 + 2cgw1 — 2c7we + cgwg — Cogwy
— 2ciwiwy — criwio — 2¢12(wip + waws — wiwr))

+ c10(waws — wig + wiwy) + c11(waws + wiwg) + 4ejawaws.
It is denoted here

wy = D;1€m+n+2u’ wy = D;leeranu’ ws = D;lmzefmfn’

wy = D;luxmxem*", ws = D;lumnxe"*m,

we = Dy ' (2wse™ T 4 )| wr = D (2wge™ TR 4 672,

wg = Dy lws (w36m+”+2“ + 62“), wg = D ws (w36m+”_2“ + 6_2“),

m+n+2u m+n72u)

wig = D;l (w262“ + 2wowse + wie % + 2uwywse

The simple local systems that follow from (3.30) are presented below.
E.1. Adopting ¢; = 0,7 > 5 in (3.24) we obtain by differentiation the following hyperbolic

system:

+ g™ (Mg + mi — mgng) + cs€” " (Ngy — Mgy + ni),

m+n+2u

Mygy = C1E — cpemtnT2u

—m-—n
+ cgmge (3.31)

+ 2cqu;mee™ " + 2e5€™ T (Ugy — UMy ),

m—+n—+2u

Nyy = C1€ o 626m+n—2u —m—n

— c3ngze

+2¢4€™ ™ (Ugpy — UgNg) + 2c5Ugng e ™,

E.2. If additionally ¢4 = ¢5 = 0 in (3.31), then (n — m), = cse”™ ™. Therefore for the new
unknown functions p =n—m,q = u— %(m +n),r=u+ %(m +n) the system takes the simpler
form:

C C
br = cze?™", rz = 262672(1 + gpxeqfr’ Trx = 201€2r - 53 pleqir' (332)

E.3. If (¢, c7) # 0 and the other ¢; = 0 in (3.30), then we obtain:

ur = cgwe + crwr, mr = 2ws(cgwy — crws), n,y = 2(cgwy — C7w2)(w3 + e*m*").
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The substitution z = wse™, z = €" (see point A.4.) reduces this system to the following form:

Ure = (14 22%)(cge® + cre2Y),

Zre = F7 22,2, + 22F (cge®® — cre™2Y), (3.33)
Zop=F 1222, + 22F(cﬁe2“ — 676_2“),
where F' = 2z + 1. Exact integrability of this system has been proved in [11].
3.6 System “f”
1 3
Uy = _5 Ugzr T 5 (mxna})m - 3uxnmmx + umgv
My = Mygy + 3Mgr(My — Ng) — Ugemy — Sug>my, — 3m§nx + 3n32£mz + mi,
. 2 2 2 3
Nt = Ngzg — Mgz (Mg — Ny) — SUgeNy — Uz "Ny — 3ngmy + 3man, + nj.
This system possesses the following 11-parametric nonlocal symmetry:
Uy = crwy + cows + cawiws + csws + cg(2we + wiws — 2wiwy)
+ crwy + cgwiwy + cg(wg — 2wiwg) + crowiws + cr1(wir — 2wiwi),
my = cows + c3ws + cy(Wiwy — wy) + 2c5waws + c6(wiwg — 2wg)
+ 07(w3w5 — w7) =+ Cg(’wgwg — ’wlo) — 26911}3(’[1)%’[1)2 — 2’[1)6) (3 34)

+ 2cipws (wywe — wy) + c11 (w11 — wawy),

2
ny = cowy + ca(wiwe — wy) + cg(wiws — 2we) — crwy — cgwig
+ crnwin + (wg 4+ e ™) (3 + 2c5wa + crws + csws — 11wy

+ 209(2’[1)6 — w%wg) + 2010(11]1’[1)2 — w4)).

It is denoted here

wy = D71€72u, wy = D;leerTLJrQu’ w3 = D;lmmefmfn’ wy = l);l,w2672u7

x
ws = D;le%(l + 2wgem+”), we = D;lwlwge_%, wy = D;lwge%(l + w36m+”),
wg = D;lwle%(l + 2w36m+”), wg = D;lw%e%(l + 2w36m+”),
wip = D;lwlwgezu(l + wgem+n), wyy = D;lw%wge% (1 + wgeer").

The simple local systems that follow from (3.34) are presented below.
F.1. Adopting ¢; = 0,7 > 3 in (3.34) we obtain by differentiation the following hyperbolic
system:

- 2 - —2 2
pr=c3e l, Qrp = 2026(1+ Y —c3prel, Uy =cre” "+ C2eq+ “, (335)

where p=n—m, ¢g=n+m.
F.2. In the case ¢; = 0,7 > 4 we obtain the third order system:

2u f2u7q)

pr=cze 9, (eiq72uQTm’)x =2c4e” " —c3 (pxe

x’
_ (3.36)
[eQu(QuTJ? - qTJ?)] xT = C3 (p$e2u q)x + 204e2u+q'

Here p and ¢ are the same as in F.1.
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F.3. If one introduces the new unknown functions p = n — m,y = w1, 2 = ws, then system
(3.36) takes a simpler form:

br = 03(ymzx)_1a Yra = _Qym(cly + 2z + C4yz)v

-1 (3.37)
(Zm ZTm)z =201y + 4co2y + 4cayzy + 2042y — Papr.

F.4. If ¢4 =0, ¢; =0 for i > 5, and ¢5 # 0 in (3.34), then two shifts along wy and w3 remove
co and c3 and we obtain the following system:

ur = cqwi + cswy, My = 2cswows, Ny = 2cswa(wg +e ).

The substitution z = wse™, z = €" (see point A.4.) reduces this system to the following form

Urp = cre” 2% + c5(222 + 1)62“,
Zre = F Y222, + 2c52F e, (3.38)

Zrp = F 1222, + 2c52Fe*",

where F' = 2z + 1. Exact integrability of this system has been proved in [11].

3.7 System “g”
Ut = MgNgg + NgMygy — 4umnmmx7
My = Mygy + 3Mgr(My — Ng) — 2MpUpy — Qug>my, — 4m920nx + 3n920mz + mi,
. 2 2 2 3
Nt = Ngzg — Mgz (Mg — Ny) — 2NpUgy — Uz "Ny — Angmy + 3min, + nj.
This system possesses the following 10-parametric nonlocal symmetry:
Ur = crwi + cowy + cawy + c5(2wowy — ws) + cewe + 7 (2waws — wr)

+ 08(2w1w2 — ’wg) + cqw1 (w1w2 — ’wg)

2
+ c10(dwywawe — wowy — 2wiwr + waws — 2wews),

mr = cqwy + czws + 2cqwiws + 2cswsws + cg(wzwy — we) + cr(wsws — wr) (3.39)

+ cgwg + cg(2wg — wiwg) + 2c10 (w1 w3ws — W3W4WE + WeWs — Wi WT),

Ny = Clwy — CWe — Crwr + cgws + co(2wy — wiwsg) + 2c10(Wews — wiwy)
+ (3 + 2c4w1 + 2c5ws + cowy + crws + 2c10(wiws — wgwy)) (w3 + e,

It is denoted here

wy = Djte™t 2wy = Dite™, wy = D e (14 2wse™ "),
ws = D;lmxe_m_”, Wy = D;lwge%(l + 2w36m+”), we = D;1w362“(1 + wgem+”),

wr = D;lwgwgezu(l + wze™ M), wg = D wge™ T2 g = D lwywge™ T2

The simple local systems that follow from (3.34) are presented below.
G.1. Adopting ¢; = 0,7 > 3 in (3.39) we obtain by differentiation the following hyperbolic

system:
- 2 — 2 —4
pr = c3€ q’ Qro = 2016q+ v C3Px€ q’ Urgp = Clqur v + Ccoe u’ (340)

where p=n—m, ¢=n+m.
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G.2. If ¢, = 0,i > 4 and ¢4 # 0 in (3.39), then one can remove ¢; and c3 using the shifts
along w1 and ws. This gives the following system:

Ur = Cowy + cqwy, My = 2cqwiwz, Ny = 2cqwi(wg +e ). (3.41)
The substitution z = wse™, z = €" (see point A.4.) reduces this system to the following form:

Urp = coe M 4 cq(22Z2 + 1)62“,
Zre = F Y222, + 2c42F e, (3.42)
Zrp = F 22,2, + 2c42F %Y,

where F' = 2z + 1. Exact integrability of this system has been proved in [11].

G.3. If (¢1,¢2,c3,c8) # 0 and the other ¢; = 0 in (3.39), then introducing the new unknown
functions p = w1, ¢ = wo,r = n — m we can reduce the system to the following form:

C3Ty

Pa\/Tx’ (3.43)

T'r = C3Px\/ Yz, (pz_lpTz)x = 4c1py + 2¢2q, + 468(pQ):)3 -

(Qz_l%'a:)z = —401Pz - 4C2Qz - 8C8PQQ: - 468qu-

We prove in the next section that zero curvature representations exist for all presented above
nonlocal systems.

4 Zero curvature representations

Here we present matricies U and V' that form the zero curvature representations (1.1) for nonlocal
and selected local systems from the previous section. The matrices U from [9, 10, 11] are written
in a slightly different form for completeness. A spectral parameter is denoted as A everywhere.

A. Elements of the hierarchy of system “a” possess the zero curvature representations with
the following common matrix U:

Qx 0 My
U= —q—12 X |. (4.1)
0 1 T

where
1 1
q:§(2u+m+2n), T:§(2u—2m—n).

Performing the gauge transformation Uy = S~1(US — S,), where
S = diag {e?,e 97", e"}, we obtain a matrix which is more appropriate for system (3.1):

0 0 mge "N
Uy = | Aent2u 0 Ae2u—m
0 em72u 0

Then setting U = Up, V = V(w;) in (1.1), we solve that equation and find the components of V:

1 _
V11 = 5(06 — 268))\ 1 Clw1 — C3ws + (wg’wg — w4)(66w1 — 04)
— cswiws + cr(wiwe — ws) + cg(wiwg — waws),
1
Voo = 5(08 — 2¢6)A "L + crwy + cows — cqwy + cswe

+ 66(w1w4 — w2w6) — wq (C7w2 + ng4),
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1
Vaz = 3(08 +c6) A — cowa + ws(es + cawa) + c5(—we + wsws)
+ w206(w6 — wlwg) + ’U)5(C7 + ngg),
Vig = A (e1 + csws + c6(wa — wows) — crwa — cswy), Viz = (o7 + csws) A,
Va1 = cowr — ¢4 — cgwy, Vaz = cqws — c2 + cg(we — wawy) + wi(cr + cgws),

1
Va1 = cewiwy — €3 — cawy — cswi — cgws, V3o = (c5 — cewa) ™.

So, system (3.1) is integrable and any of its corollaries are integrable too. In particular, system
(3.3) possesses the zero curvature representation with matrix (4.1), where m, = ¢, — 2p,, and
the following matrix V:

2aqe" "1 A Tlre2atr 0
V= 0 —ae" 14 —cge 472
—3ae" 1 0 —ae" 1

B. Elements of the hierarchy of system “b” possess the zero curvature representations with
the following common matrix U:

My — Uy 1 —My -1
. 0 Uz + Ny 0 —My
U= 0 1 — Uy — Ny -1 (4.2)
)\ 0 0 Ug — My

Using it we find the zero curvature representation for (3.11) with the following matrices

0 eQufern _mxefmfn _62u72m
Un — 0 0 0 —mge” "
0= 0 e2ut2n 0 _2u—m+n |
Ae2m—2u 0 0 0

which is gauge equivalent to (4.2), and the following matrix V' = (V};):

Vi1 = cs(wg + wows) — cows — caws + crwzwe + cs(1/(2X) — waws + w3wy),
Vag = c(waws — wg) — crwy — czws + cr(wsws — wr) + cg(1/(2X) — wiwr + wswy),

Vaz = —Vao, Vag= Vi1, Via = —\"Yeg + crws + cgwiws),

n—3m-+2u

-1 -1 2 -1 2
Vis = A7 Tcgws + exnge , Via = X" (c2 — 2c6ws — crws) + A\ Teg(wg — wiwg),

—2 2
" Vag =1 + Aese” T + cg(wr — waws3),

Vo1 = —cgwowsz — Acse” ™
2 -1
Vou = Viz, Vi1 = c3 — cowa — crwg — cgwg, Vag = cae™™ + X" (c7 + cgwy),

Vg = A" (co + crws + cswiwg), Vi = cswy — Aese™, Vig = Va1, Vig = —Var.
Hence system (3.11) is integrable and any of its corollaries are integrable too. In particular,

system (3.13) possesses the zero curvature representation with matrix (4.2), where u = r + g —
p,m =1 —p,n=p—q, and the following matrix V:

0 0 0 coA"te™2
v 0 c3ed™" e 0
cged™" 0 —czed™" 0

0 czed™" 0 0
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C. Elements of the hierarchy of system “c” possess the zero curvature representations with
the following common matrix U:

0o 0 0 -1]. (4.3)

where ¢ = m + u,” = n — u. Using it we find the zero curvature representation for (3.18) with
the matrix Uy

0 0 0 Ae2(mu) 0
0 0 —enu 0 0
Uy = e—m—u 0 0 0 —enu |
0 —mge M —eTMTU 0 0
—mge M 0 0 0 0

which is gauge equivalent to (4.3), and the following matrix V:

Vig = —cshe™ ™™ — 2(cg + cowy + crowr), Via = care®™,

V13 = —Cy — 08(w1 + 2’[1)2) — 26911]1’[1)2 — 2010(’[1)11115 + worwy — wg),
2

V15 = —C3 — CRW92 — CgW1 — CTwW7 — ngg(wg + wl) — CQWo W1

— c10(2wiwows — 2wsws + wrws — 2w we + wy),
Vo1 = A Heg + cr(e™™ ™ + ws) + cgws + cowi + 2c1o(wswe — we)), Vaz =0,
Voua = Vis, Vos = —ctA ™, Vi = —A"Yeg + 2c9ws + 2c1ows),
Vag = — (7™ + w3)(c5 + cg(wr + 2wg) + 2cowiwa + 2¢10(wawr — wg + wswi))
— ¢ + cg(2ws + wr) + 2cows + 2c1pwrws,
V34 = ¢5 + cg(wr + 2wa) + 2cowiws + 2¢10(wowy — wg + wswy), Vs =0,
Vig = A1 (e ™™ + ws) (2c6 + cr(ws + € ™) + 2csws + 209w + dero(wswy — we))

— )\71(—61 + 2cgws + deqweg + 261011}52)),

Vig = —cge™ 3200, — 209 A1 — 2¢10 A e 4 w3),

Vig = =X~ e + 2cows + 2c10ws), Vo = —Acse 2™,

Vis = A (—cg — cr(e7™ ™ + w3) — wacs — cows — 2ci9(wswe — we)),

Vi = —cae” 3200, 4 2cg A1 4+ 2c10A 7 (e 4 wy),

Vss = — (7" + ws)(c5 + cg(wy + 2ws) + 2wiwacg + 2¢19(wowr — wg + wswy))

—Cy + Cg(2w5 + w7) + 2cqwsg + 2c1pwrws,
V4 = —2c8 — 2ciowy — 2wicg + Acge™™ ™, Vaz = —4ci0/(5N),
Vi1 = F + cqwy — csws + cowr — cg(—ws + 2we + 2wsw1) — co(—wy + dwiwe)

— 2/5¢10(5wrwg — Swsws + bwiw; — 3N,
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Voo = F + cowg — cgwr — crwig — Cg(2w5w2 + wawy — 2’[1)6) — 09(—w9 + ngwg)
— 2/5¢10(—bwrwe + Swrwsws + 2)\_1),

V44 = —F — ciwy + cswy — cgwy + Cg(—wg + 2’[1)6 + 2w5w1) + 09(—w9 + 4w1w6)
+ 2/5¢10 (bwrwe — bwsws + 5w§w1 + 3)\*1),
V55 =—F —cowy + ceWr + crwig + Cg(2w5’w2 + wowy — 2w6) =+ Cg(—wg + 2w8w2)

+ 2/5010(—5w7w6 + bwrwswy — 2)\71),
F = (e ™ + w3)(cs + cswa 4 cgwi + crwr 4+ cgwa(wy + wy) + cowiw?
+ c10(—2w1we — 2wswa + 2w waws + Wy + wrw3)).

This means that any local system obtained from (3.18) is integrable. In particular, system (3.20)
has the zero curvature representation with matrix (4.3) and the following matrix V:

0 0 0 0 —cze 47"
0 cze 47" 0 —cge 7T 0
V= 0 —coe” 0 0 0
1A le 0 0 0 0

0 0 —coe” 0 —cze 47T

D. Elements of the hierarchy of system “d” possess the zero curvature representations with
the following common matrix U:

“f A0 -1
-1 - 1 0

U= g : (4.4)
-m,; 0 f -1
0 0 X g

where 2f = mg + ng, 29 = ng — my + 2u,. Using it we find the zero curvature representation
for (3.24) with the matrix Uy

0 —dem 0 —entu
—eu—m 0 entu 0
UO = —m—n u—m |
—mge 0 0 —e
0 0 Aem—u 0
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which

Via
Vis
Via

Vai

Vas
Vou

Vag =

Va4

Vi =

Vi
Vs

Vit

Vao

is gauge equivalent to (4.4), and the following matrix V:

2 2
= 5(1”1010 — w1Cg — Cg) — CrWa — CoWIWz — C11WIW2,
_ 2 2 2. 2 2 2
= C3 + cqw1 + cswi + Cgwa + crw;y + cgwiwz + Cowiwy — ClpWj W2 + Cl1 Wi W3,

1
= —5)\_1(04 + 2c5wq + cgwsy + 269’[1)1’[1)% — 2cipwiwy + cnw%),

1 1 1
= 561)\_1 — 564)\_11113 + esAHwy — wiws) + 568)\_1(1116 — wows)

1
+ co(wg — wiwiws + X" lw) A7 + 5610(2101102103 — 2wy — A"HAT!

1
+ 5611)\71(21117 — w%wg),

1
—1 2 —1 2
= —\ (C5w1 — Clowi w2 + 69w1w2) — 5)\ (04 + cgwo + 611w2),

—2 2 2
= A" “(c5 4 cowy — crowa), Vai = coA™7,

1 1
62 + 5CoWs + cr(wawsg — we) + co(wIA ™ — w1 + wiwgws)

1 1 1
+ 568(101103 —wy) + 5610(2105 — wiws) + 5611(2101102103 — 2wy + A1),

1 1 1
= —501)\71 + 5)\7104103 + es A (wiws — wy) + 508)\71(102103 — wg)

1
+ coA N (wywiws — wg + weA L) — 5610)\71(2’[1)111}2’[1)3 —2wg + A7)

1
+ 5611)\71(’[1)%11}3 — 2’[1)7),

1 1 _
—5C2 ~ 5C6Ws3 + er(wg — waws) + co(wi A~ 4+ wig — wiwgws)

1 1 1
+ 568(104 — U}l’u)g) + 5610(1&1%1&13 — 2w5) + 5611()\_1 — 2wiwows + 21&)9),
=cr+ ng% + criwa,

1 1
2 2
= _506 — Ccrwg — §Csw1 — Cowiwe + 5010?111 — Cl11W1W2,
1 1
= —5Cw1 + 5oaws + caws + 504(2w1w3 — wy) + cswi (wrws — wy)

1 1
+ 566(211}2’[1)3 — w6) — ZCS()\_I — dwiwows + 2wywe + 2w2w4)

2 9 -1
+ wacr(wows — wg) — cg(wrwg — Wjwaws + wawiy — 2wy + WiwWa A )

1
— 5610(2’[0%’[02’[03 — 2wiwg + w11 — 2wows — ’wl)\il)
1
+ 5611(2’[011[1%’[03 + wg — 2wiwy — 2wowg — wg)\fl),
1 1
= 51w + 5 C2W2 — 4ty + cs(wiwy — 2ws) + 2 C6We + ¢7(2w7 — wawg)

1
+ ZCS()\_I — 2wawy + 2wiwe) + co(wiws — wowyy + wiwaA )

1 1
+ 5610(2102105 — 2wiwg + wyy — wi AL + 5011(102)\_1 — 2wowg + wg + 2wiwy),
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1 1 1
Vag = 5 C1W1 — 5 G2 — C3W3 + 564(104 — 2wiws) + cswi (wg — wiws)

1 1
+ 566(106 - 2’[1)211}3) + 168(2101106 + 2wowy — 4w wows — )\71)
+ crwa(wg — waws) + co(wiws — wiwwz + wawiy — 2wip — wiweA"")

1
+ —610(2’[1)%’[1)2’[1)3 — 2wiwg + wi1 — 2wows + ’wl)\il)

2
1
— 5611(2’[1)111}%’[1)3 + wg — 2wiwy — 2wowg + wg)\_l),
1 1 1 1
Vg = —5CW ~ 5CWs + 5Cas + ¢5(2ws — wiwy) — 5 C6We + c7(wowe — 2wr)
1
+ 168(2102104 — 2wiwe + A7) + co(wawyy — wiws + wiwe A1)
1 1
- 5610(2102105 — 2wywg +wiy +wiAY) + 5011(2102109 — 2wiwy — ws + waA ).

This means that any local system obtained from (3.24) is integrable. In particular, system
(3.25) has the zero curvature representation with matrix (4.4), where uy = gy + 72 — Pz, My =
Tz — Dz, Ne = Pz — Gz, and the following matrix V:

—%036‘1*’" 0 cged™" 0
%cl)\*le*q —%036‘1*’" 0 0
V= 0 Leger Leget= Lo \—lea
22 263 2¢1
1 1 -
—gcae” 0 0 gezed™"

E. Elements of the hierarchy of system “e” possess the zero curvature representations with
the following common matrix U:
qx 0 1 1
=2 \my; Ty 0 A

U= , (4.5)
- 1 —-r, 0
where ¢ = u — 2(m +n),r = u+ 3(m +n). Using it we find the zero curvature representation
for (3.30) with the matrix Uy
0 0 e—Zu 6m—l—n—2u
=2 mge "M 0 0 e 2
Uo = —\e2u em+n+2u 0 0 )
0 et 2mge M 0

which is gauge equivalent to (4.5), and the following matrix V:
Vg = =Vi1 = 2c0wy — caws + cg(wg — 2wswy) + c7(wy + 2wsws) + cg(2ws — wawg)
+ cowswr + c19(wig — 2wowe + 2wiwows) — icn()\_l + 8wowg — dwswip)
— c1o(ATY — wewr + 8wows — 2wzwig + 2wiwswr — 2wywsw),

Vag = — Voo = 2ciw1 + csws + C6(U)6 + 21&)1’[03) + C7(U}7 — 2’[1)311}2) + cgwswg
+ c9(2wg — wawr) — c10(wio — 2wiw7 + 2w wW2w3)

1
+ 1611()\_1 + Swiwg — 4’[1)311]10) + C12 (w6w7 — 2wswig + 2w wawy — 2w2w3w6),
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1
—1 -1
Vig = 5)\ (€3 + cswe — cogwr — cr1wig) + A7 (cewy — crwa — crpwiw2)

—1
+ c12A ™ (wywr — waws — wip),

Vig = A1 = 2e50e™ T — g — cgws + crows + criwaws + cra(dwows — wr)),

cg — criwy — 4ejpwy),

_ _ 1 _
V14:—C46 2u+2m_0562n 2u+§)\ 1(

2m
— €10 — C11W3 — 2c12w3,

Vo1 = —desduge™
Vog = 2¢1 — 405)\672u72m + 4dcgws + 26810% + 2c19 (U}7 - 2’[1)211}3) + 2611(’[09 — w%wg)

=+ 4612’[03(1[17 — 2’[021[13),

Vag = —2e5 ™ ™2 — ¢ — cgwy + crowa + cr1wows + 12 (dwaws — wy),
Va1 = —2c5 A" T2 p — cqws — crowy — Cl1wiws — Crawe,
1. _
V- 2662m+2u+ce2n+2u__)\ 1 co + 1w
32 = C4 5 5 9+ criwy),
1 1 1 1
V34 = —503 ~ W1 + crwg — 5 C8We + 50owr + crowiws + 5C11W10
+ c12(wowg + wip — wywy),
Vi = —2¢o + 4)\0562u72m — 4dcrws — 209’[1)% + 2010(11]6 — 2’[1)111]3)

2
+ 2c11 (ws — wiwy) + 4ero(2ws — waws),
n+2u—m __ )\_1(67 + cgws + cipwy + criwiws + 0121”6)’

Vig = desuge ™ + X Heyg + eriws + 2c12w3).

Vio = —2cse

This means that any local system obtained from (3.30) is integrable. In particular, system
(3.32) has the zero curvature representation with matrix (4.5), where m = (r — p — q)/2, and
the following matrix V:

—%c;;eq_r %03)\_1661_’" 0 0
v 0 %036‘1*’" 2c1€%" 0
0 0 —%636‘1*’" —%636‘14
—2c9e™ % 0 0 %c;;eq_’"

F. Elements of the hierarchy of system “f” possess the zero curvature representations with
the following common matrix U:

—Ugy — %qm -2 -1 0
1 Uy — 1 0 0
U _ T qu . , (46)
0 2Amy Uz + 5 A
2my 0 1 %qz — Uy

where ¢ = m + n. Using it we find the zero curvature representation for (3.30) with the matrix

0 _)\€2u _6m+n+2u 0
e 2 0 0 0
UO - o ) )
0 2Am e m" 0 e Y
2mge M 0 et 0
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which is gauge equivalent to (4.6), and the following matrix V:
Vio = —c1 — cqwg + 266(w4 — wlwg) — cgWy + 09(2w8 — )\71)

— ciows + 11 (2w — A ws),  Viz = e (20%) 7,

1 1 1
Vig = =503 — cswp — Sorws + ZCS()r1 — 2uws)

1
2 —1
=+ 69(w1w2 — 2’[1)6) =+ 610(w4 — wlwg) + 5011(11}9 — WA ),
—1 2 2
Vo1 = =X (65 + crws + cgwiwg — cowy + Cclpwy — cnwlwg),

1 1
Vog = —5)\_1(03 + 2cswo + C7’w5) — ZCS)\_2(1 + 2)\’[1)8)
1
+ Cg)\_l(w%wz — 2w6) + 610)\_1(11}4 — wlwg) + 5611)\_2(1111 + )\’wg),

Vou = %)\71(07 +cgwy —enwy), Vi = —2cp — 2c4w; — desws
— 2w3(c7 4 cgwy — cpiw?) 4 2w (2cqws — ¢g) — 4erowiws,
Vag = ¢4 + 2c6wy + w3 (cs — 2c11w1) — degwiws + 2c19ws,
Vag = ¢5 + crws + cswiws — w3 (co + c11ws) + crown,
Vi = -2t (C4 + 2cgwy + 2c19ws3 + wg(08 —2c1qwy) — 409w1w3),
Vio = 2)\71(66 — 2cqws3 — cnwg),
Vig = ="} (c1 + cqws + 2c6(wrwa — wa) + cswr) + coA"2(1 + 2 wg)
— croN"tws + e A2 (ws 4 2 wyg),
Vi1 = crwi + 2cows + caws + c4(2wiwa — wy) + c5(2wows + ws)
+ 2cew1 (Wywy — wy) + crwsws + cs(wiwy — (2X) " ws + waws — wip)
+ co( A twy — 2w ws + dwswg + wy — Qw%wgwg)
+ c10(wrws — 2wswy — (2)\)_1 + 2wiwows)
+ e11 (A wiwg — 2wiwig + 2wy — wswy),
Vag = —ciwy + c3ws — cqwy + ¢5(2waws — ws) + 2¢6(wiwy — 2we)
+ er(waws — 2wr) + ¢ ((2\) M ws — wiwy + wws — wig)
+ co(2wiwg 4 dwswg — wy — 2wiwowz — X" twy)
+ clo((2)\)71 — wiws — 2wswy + 2w waws)
— 611()\7111}1’[1)3 — 2wywyp + wawy),
Vag = —crwy — 2cowy — caws + c4(wy — 2wiws) — c5(2wswy + ws)
+ 2c6w1 (wy — wiwy) — e ((2N) " Lws 4+ wiwy + wawsg — wig)
— crwzws + co(2wiwg — dwswg — wy 4+ 2wiwows + X wy)
— clo((2)\)*1 + wyws — 2wswy + 2wy waws)

+ et (A wyws + 2wiwig — 2wy + waw),

Via = crwr — caws + cqwy + c5(ws — 2waws) + 2¢6 (2w — wiwy)
+ 72wy — waws) + cg((2N) " tws + wiwr — waws + wig)
+ co(wg — 2wiwg — dwswg + 2wiwows — )\_lwl)
+ cro(wiws + 2wswg + (20) 7! — 2w wows)

-1
+ 611(w3w9 - A wi1ws — 2’[1)111]10).
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This means that any local system obtained from (3.34) is integrable. In particular, system (3.35)
has the zero curvature representation with matrix (4.6), where 2m = ¢ — p, and the following
matrix V:

—%036_61 —cre 2 0 —%636_61
v 0 —%036*‘1 —%63)\*16*‘1 0
| —2cqet2u 0 Lesema 0
2 5 3€
0 0 —c AT le 2 %036_61

[IP))

G. Elements of the hierarchy of system “g” possess the zero curvature representations with
the following common matrix U:

My +np —Ng 0 0 0
0 0 -1 0 —Ny
U= 0 0 2u, A 0 . (4.7)
2 -1 0 —2u, 0
0 0 -2 0 —Mg — Ny

Using it we find the zero curvature representation for (3.39) with the matrix Uy

0 —nge M 0 0 0
0 0 —e2u 0 —nge "
Uy = 0 0 0 e 4 0
26m+n+2u _e2u 0 0 0
0 0 —2emtnt2u 0 0

which is gauge equivalent to (4.7), and the following matrix V:

Vit = —F —4cio(BA) 7, Vs = Fy —4ego(5A) 7,
Vag = —4c1o(BA) 7Y, Vaz = 6c10(BA) L — Fy,  Vig = 6¢10(50) "L + Fy,
Fi = 2(c3 + 2cawy + 2c5ws + cowa + crws + 2c10(wiws — waws)) (wg + e ™)
+ 2c1w1 — 2c6wg — 2c7w7 + 2c5ws + 2¢9(2wy — wiwsg) + 4erp(wews — wiwy),
Fy = 2c1wq + 2c0wy + 2cqwy + 2¢5(2wowy — ws) + 2cqwe
+ 2¢7(2wawe — wr) + 2c8(2wiwe — wg) + 2wicy(w1we — wg)

2
— 2¢10(Qwgws + 2wiwr — waws + wowy — dwiwaws),

1
Vig=0, Viz= —569)\_17
Vig =" (2(C1ow4 —c5)(ws + e = (e7 + 2ci0w) (w3 + e ")
— g — Qw1 — 2010w6),
Vig = (CG + crwg + 2010(11]1’[1)2 — wg)) (u)3 + e_m_”)2
+ 2(04 + cswo + Clo(wg) — w2w4)) (w3 + e—m—n)
+ ¢1 + cgwy + cg(wiwe — wg) + 2¢10(wowg — wr),

V21 = —263 — 4C4U}1 — 4C5U}8 — 26611)4 — 20711)5 — 4010(’[011[15 _ w4w8),

Vog = ot (010w4 —c5 — (C7 —+ 2w1610)(w3 + eim*n)),
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Vas = 2(c6 + crwa + 2¢io(wiwa — ws)) (w3 + e ™) + 2¢4 + 2c5wo
+ 2¢10(ws — wowy),

Vos =0, Vi1 = —2c¢ — 2wacy — 4ero(wiwy — wg),  Vag = Vay,

Vag =0, Vis=-Via, Vii=—2X""(c7+ 2ciow1),

Vig = 2)\71 ((67 + 2610’[01)(1[13 + eimin) +c5 — 010w4>,

Vi = =221 (CQ 4 2c5wa + 2c7wg + 2c8w + ng% + c10(dwiwg — wz)),
Vs1 =0, Vs = —2)\71(07 + 261011)1),
V52 = —263 - 4C4U}1 - 4C5U}8 - 206104 - 267’[1)5 - 4610(’[011[15 - U}4U}8),

Vsa = 2c6 + 2c7wa + 4cpo(wiwe — wg).

This means that any local system obtained from (3.39) is integrable. In particular, system (3.40)
has the zero curvature representation with matrix (4.7), where 2m = g — p,2n = p + ¢, and the
following matrix V:

—pr 0 0 credt2u 0
-2, 0 0 0 0
V=] 0 0 0 0 —cpedt2u
0 0 -2\ lege 0 0
0 —2p, 0 0 Dr
Conclusion

It has been proved in [9, 10, 11] that the zero curvature representations found there are nontrivial.
As all zero curvature representations presented here contain the same U-matrices by modulo of
a gauge transformation, then all zero curvature representations constructed here are nontrivial
too.

The method that is used here for constructing several exactly integrable hyperbolic systems
can be applied to other integrable evolution systems. This method of obtaining integrable
hyperbolic systems is much easier than direct classification.

If some of the hyperbolic systems presented in this paper are interesting from the application
viewpoint, their zero curvature representations can be easily found as shown.

All computations were performed with the help of package JET [17].
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