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Abstract

We discuss a new technique to ω-modify real Hamiltonians so that they become
isochronous while remaining real. Although the ω-modified Hamiltonians thereby
obtained often yield, in the classical context, singular motions, we exhibit and inves-
tigate simple examples when this does not (quite) happen. We also identify quantized
versions of some of these isochronous models featuring equispaced spectra, and observe
that there are cases when in the classical context the motions run into singularities
while in the quantal context it is nevertheless justified to arrive at nonsingular models
with equispaced spectra.

1 Introduction

Recently a technique was introduced associating to a Hamiltonian another, ω-modified,
Hamiltonian, which reduces to the original one when the parameter ω vanishes, and for
ω > 0 features an open, hence fully dimensional, region in its phase space (possibly en-
compassing the entire phase space) where all its solutions are isochronous, i. e. completely
periodic with the same fixed period T = 2π/ω. [1] [2] This technique is applicable to a
large class of Hamiltonians, justifying the assertion that isochronous Hamiltonian systems
are not rare. But the ω-modified Hamiltonians it yields are complex ; and although a
real Hamiltonian producing the same dynamics can be manufactured from any (analytic)
complex Hamiltonian via a standard technique (see for instance Ref. [3]), it is generally
more complicated and it involves twice as many (real) canonical variables than those of the
original model. In the present paper we discuss an alternative technique to ω-modify real
Hamiltonians so that they become isochronous while remaining real [4]. Unfortunately the
real ω-modified Hamiltonians thereby obtained often yield, in the classical context, singu-
lar motions; but not always, indeed we exhibit and investigate below simple examples when
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this need not happen. In most of these cases we moreover investigate quantized versions
of these models, finding that, for appropriate quantization prescriptions, these quantum
models exhibit equispaced energy spectra, with the spacing ∆E generally corresponding
to the period T̃ of the corresponding classical motion via the standard formula,

∆E =
h

T̃
, (1.1)

where h ≡ 2πℏ is Planck’s constant. Remarkably, this happens even in some cases when
in the classical context the motions run generally into singularities.

The new technique is described in Section 2, and the examples are discussed in Sections
3 respectively 4 in the classical respectively quantal contexts. For simplicity the treat-
ment is restricted to systems with only one (canonical) coordinate q and correspondingly
one (canonical) momentum p – even though one of the most appealing features of these
techniques to identify isochronous systems is their applicability to problems involving an
arbitrary number of canonical variables.

Added in proofs: another, more effective and more generally applicable, technique to
modify Hamiltonians so that they become isochronous has now been found: F. Calogero
and F. Leyvraz, ”General technique to produce isochronous Hamiltonians”, J. Phys. A:
Math. Theor. 40 (2007), 12931-12944.

2 The new technique

Consider – in the classical context – a Hamiltonian H (p, q) and assume that there exists
a function τ (p, q) of the canonical variables whose Poisson bracket with this Hamiltonian
H (p, q) is unity,

[H (p, q) , τ (p, q)] = 1 . (2.1)

Here and hereafter the Poisson bracket of two functions F (p, q) and G (p, q) of the canon-
ical variables is defined as follows:

[F (p, q) , G (p, q)] =
∂F (p, q)

∂p

∂G (p, q)

∂q
− ∂G (p, q)

∂p

∂F (p, q)

∂q
. (2.2)

Since in the context of Hamiltonian dynamics the time evolution of any function F (p, q)
of the canonical variables is given by the formula

Ḟ (p, q) = [H (p, q) , F (p, q)] , (2.3)

the property (2.1) entails that the function τ (p, q) evolves under the flow due to the
Hamiltonian H (p, q) as time itself:

τ̇ (p, q) = 1 , τ (p, q) = τ0 + t . (2.4)

Here and throughout a superimposed dot denotes differentiation with respect to the vari-
able t (”time”), while clearly τ0 = τ (p0, q0) where (here and below) p0 ≡ p (0) , q0 ≡ q (0)
are the initial values of the canonical variables.
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The ”old” technique [1] [2] to generate an isochronous Hamiltonian is based on the
introduction of the ω-modified Hamiltonian

H̃ (p, q;ω) = [1 + iωτ (p, q)]H (p, q) . (2.5)

Here and hereafter i is the imaginary unit, i2 = −1, and ω is a positive constant, ω > 0,
to which we associate the period

T =
2π

ω
. (2.6)

The presence of the imaginary unit in the definition (2.5) makes the complex character of
this ω-modified Hamiltonian H̃ (p, q;ω) evident. Hence the dynamics yielded by H̃ (p, q;ω)
entails that the canonical variables p and q become complex numbers. Of course by
introducing their real and imaginary parts, say

q = x+ iy , p = px + ipy, (2.7)

one can again deal only with real variables; and it is well known (see for instance Ref. [3])
that exactly the same dynamics yielded by the complex Hamiltonian H̃ (p, q;ω) for the
two complex canonical variables p, q (hence, via (2.7), for the 4 real variables px, py, x, y) is
generally produced by the real Hamiltonian (note the minus sign in the right-hand side!)

HR (px, py, x, y;ω) = Re
[

H̃ (px − ipy, x+ iy;ω)
]

(2.8)

featuring the 4 canonical variables px, py, x, y. Note that dealing with real Hamiltonians
is generally necessary (if not sufficient) in order to get, after the transition to quantum
mechanics, Hermitian Hamiltonian operators, as required for a proper physical interpre-
tation.

The ”new” technique [4] to generate an isochronous Hamiltonian is based on the intro-
duction of the ω-modified Hamiltonian

Ȟ (p, q;ω) =
[

1 + ω2τ2 (p, q)
]

H (p, q) . (2.9)

This Hamiltonian is now generally real. In the following part of this section we show why
it is justified to expect that the dynamics yielded by this Hamiltonian is isochronous (with
period T/2, see (2.6), or possibly a small integer multiple of this basic period). Accord-
ingly, hereafter the time evolution under consideration is that yielded by the Hamiltonian
Ȟ (p, q;ω) , namely the time evolution of any function F (t) ≡ F (p, q) of the canonical
variables p ≡ p (t) and q ≡ q (t) is now characterized by the rule

Ḟ =
[

Ȟ, F
]

. (2.10)

It is then easily seen that (2.9) together with (2.1) yield

τ̇ = 1 + ω2τ2 , (2.11a)

entailing

τ [p (t) , q (t)] ≡ τ (t) =
tan [ω (t− t0)]

ω
, (2.11b)
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with t0 a real constant identified mod (T/2), in the context of the initial-value problem,
by the assignment

t0 = −arctan [ωτ (0)]

ω
≡ −arctan {ωτ [p (0) , q (0)]}

ω
. (2.11c)

Likewise (2.9) entails

Ḣ = ω2H
[

τ2,H
]

= −2ω2Hτ [H, τ ] = −2ω2Hτ, (2.12a)

hence via (2.1) and (2.11b)

Ḣ = −2ωH tan [ω (t− t0)] , (2.12b)

hence

H (t) = H (t0) cos2 [ω (t− t0)] . (2.12c)

Note the consistency of these formulas, via the trigonometric identity

cos2 (z)
[

1 + tan2 (z)
]

= 1 , (2.13)

with the time-independence of the Hamiltonian Ȟ (p, q;ω): see (2.9), (2.11b) and (2.12c).
Indeed the time evolution (2.12c) of the original, unmodified Hamiltonian H (p, q) could
have been directly obtained from the constancy of the Hamiltonian Ȟ (p, q;ω) via (2.9),
(2.11b) and (2.13).

The solution of the initial-value problem characterizing the time evolution of the canon-
ical variables p and q can then be obtained directly (i. e., bypassing the need to integrate
the Hamiltonian equations of motion) by solving for these variables the two relations

H (p, q) = H (p0, q0) cos2 [ω (t− t0)] , (2.14a)

τ (p, q) =
tan [ω (t− t0)]

ω
, (2.14b)

with

t0 = −arctan [ωτ (p0, q0)]

ω
. (2.14c)

The fact that in these relations the time dependence is periodic with period T/2 indicates
that the resulting time dependence of the canonical variables p and q shall generally also
be periodic with this period (or some multiple of it, due to the inversion) confirming the
isochronous character of the dynamics induced by the ω-modified Hamiltonian Ȟ (p, q;ω);
but the singular character of the time dependence of τ , see (2.14b), is likely to affect the
time dependence of the canonical variables, causing them to become singular. This last
phenomenon, however, does not always happen, as the specific examples discussed in the
following Section 3 demonstrate—and as was already shown by the example treated in
Ref. [4].
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3 Classical examples

In this section we treat tersely eight examples, displaying the classical dynamics yielded
by isochronous Hamiltonians Ȟ (p, q;ω) obtained by applying the trick (2.9).

3.1 Four examples

Consider the following class of Hamiltonians:

H (p, q) =
1

2

[

p

f ′ (q)

]2/k

, (3.1a)

with k an a priori arbitrary number (of course nonvanishing, k 6= 0) and f (q) an a priori
arbitrary function. Here and below primes denote, as usual, differentiations with respect
to the argument of the function they are appended to. The justification for the somewhat
peculiar notation used in this definition (3.1a) is given by the neat look of the solutions of
the equations of motion yielded by this Hamiltonian, see below (but in fact we will treat
in detail only the simple case with k = 1). This notation is also suggestive of the existence
of a canonical transformation – whose explicit determination can be left to the diligent
reader – relating this Hamiltonian to that characterizing free motion. Of course – unless
the exponent 2/k in (3.1a) is a positive integer – this time evolution can be expected to
make sense only if the canonical momentum p remains nonnegative throughout the time
evolution, p (t) ≥ 0 , and likewise the canonical coordinate q guarantees that the quantity
f ′ [q (t)] remains positive throughout the time evolution, f ′ [q (t)] > 0.

It is easily verified that a quantity τ (p, q) whose Poisson bracket with this Hamiltonian
equals unity, see (2.1), reads

τ (p, q) = kf (q)

[

p

f ′ (q)

](k−2)/k

. (3.1b)

Clearly the corresponding ω-modified Hamiltonian (2.9) reads then

Ȟ (p, q;ω) =
1

2

{

[

p

f ′ (q)

]2/k

+ k2ω2f (q)2
[

p

f ′ (q)

]2(k−1)/k
}

. (3.2a)

The alert reader will easily recognize that, by appropriate canonical transformations,
this Hamiltonian can be transformed into that of the standard linear harmonic oscillator
or into that characterizing free motion. Using this finding, or exploiting the treatment of
the preceding section, the time evolutions of the canonical variables p and q induced by
this ω-modified Hamiltonian, (3.2a), are then easily obtained. The canonical coordinate
turns out to be given by the solution of the following (non-differential) equation (entailing
the inversion of the function f (q)):

f [q (t)] = A
sin (ωt+ θ)

ω
[cos (ωt+ θ)]1−k , (3.2b)

and the corresponding canonical momentum reads

p (t) = (kA)k/(2−k) f ′ [q (t)] [cos (ωt+ θ)]k . (3.2c)
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Here (and always below) A and θ are two arbitrary constants, to be fixed by the initial
data q (0) ≡ q0, p (0) ≡ p0 in the context of the initial-value problem.

Let us now illustrate these findings by making some specific assignments of the number
k and of the function f (q) . The alert reader is welcome to try other choices.

Example 3.1.

k = 1 , f (q) = q; (3.3a)

H (p, q) =
p2

2
, Ȟ (p, q;ω) =

1

2

(

p2 + ω2q2
)

; (3.3b)

q (t) = A
sin (ωt+ θ)

ω
, p (t) = A cos (ωt+ θ) . (3.3c)

No comment.
Example 3.2.

k = 1 , f (q) = a log
(q

b

)

; (3.4a)

Ȟ (p, q;ω) =
1

2

{

(qp

a

)2
+

[

ωa log
(q

b

)]2
}

; (3.4b)

q (t) = b exp

[

A sin (ωt+ θ)

aω

]

, (3.4c)

p (t) = A
a

b
exp

[

−A sin (ωt+ θ)

aω

]

cos (ωt+ θ) . (3.4d)

Here a, b are two arbitrary (real) constants (b > 0). Clearly throughout the time evolution
q (t) is positive, q (t) > 0, while p (t) generally changes sign: and the solution is generally
nonsingular and periodic with period T , see (2.6).

Example 3.3.

k = 1 , f (q) = a log
[

β log
(q

b

)]

; (3.5a)

Ȟ (p, q;ω) =
1

2

{

[pq

a
log

(q

b

)]2
+

{

ωa log
[

β log
(q

b

)]}2
}

; (3.5b)

q (t) = b exp

{

1

β
exp

[

A sin (ωt+ θ)

aω

]}

, (3.5c)

p (t) = A
aβ

b
exp

{

− 1

β
exp

[

A sin (ωt+ θ)

aω

]}

exp

[

−A sin (ωt+ θ)

aω

]

cos (ωt+ θ) . (3.5d)

Here a, b are two arbitrary constants (b > 0), and β is an arbitrary positive number,
β > 0. Again, throughout the time evolution q (t) is positive, q (t) > 0, while p (t) generally
changes sign: and the solution is generally nonsingular and periodic with period T , see
(2.6).
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Example 3.4.

k = 1, f (q) = a
(q

a

)1/j
− c ; (3.6a)

Ȟ (p, q;ω) =
1

2

{

[

jp
( q

a

)(j−1)/j
]2

+ ω2

[

a
(q

a

)1/j
− c

]2
}

; (3.6b)

q (t) = a

[

cω +A sin (ωt+ θ)

aω

]j

, (3.6c)

p (t) =
A

j

[

cω +A sin (ωt+ θ)

aω

]1−j

cos (ωt+ θ) . (3.6d)

Here a and c are two arbitrary, but positive, constants, a > 0, c > 0, while j is an a
priori arbitrary (real and nonvanishing) number, and A2 = 2Ȟ . The solution is clearly
real, nonsingular and periodic with period T for all values of the number j provided
the initial data entail the restriction A2 < (cω)2, implying |q (t)| ≤ |a| |2c/a|j , |p (t)| <
|cω/j| |2c/a|1−j; otherwise both q(t) and p(t) become singular at the finite time t =
[−θ − arcsin (cω/A)] /ω (defined mod (T ), see (2.6)), although the singularity is only of
polar type if j is integer affecting only p (t) if j is positive, j = 2, 3, ... and only q (t) if j is
negative, j = −1,−2, ... (and obviously there is no singularity at all in the trivial case with
j = 1). Hereafter (in particular, in the discussion of the corresponding quantal models),
we limit our consideration to integer values of the parameter j. Moreover, even in this case
some difficulties may arise when j is even: then whenever q reaches a vanishing value there
is a square-root ambiguity in q1/j that makes the Hamiltonian Ȟ (p, q;ω) multivalued (the
appropriate assignment might or might not involve a change of sign); hence in this case
a possible multivaluedness of the Hamiltonian Ȟ (p, q;ω) as a function of q (see (3.6b))
should be reckoned with. This might be a source of difficulty, albeit only in the quantal
context, see below: in the classical context the Hamiltonian Ȟ (p, q;ω) is of course constant
throughout the time evolution, and q (t) does not vanish – nor diverge – if A2 < (cω)2 ,
see (3.6c). Note moreover that no multivaluedness of the Hamiltonian may occur if j is
an odd integer, since in the real domain the root of q1/j is then unambiguous, having the
same sign as q itself.

This ends our display of examples based on the ansatz (3.1a). Note that we did not
manufacture any example yielding nonsingular solutions with k 6= 1.

3.2 Three other examples

Other examples obtain from the Hamiltonian

H =
1

2
f (q) exp (2ap) (3.7a)

with a an arbitrary positive constant, a > 0, and f (q) an a priori arbitrary function.
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It is easily verified that a quantity τ (p, q) whose Poisson bracket with this Hamiltonian
equals unity, see (2.1), reads now as follows:

τ (p, q) =
q + c

af (q)
exp (−2ap) , (3.7b)

with c an arbitrary constant. Hence the corresponding ω-modified Hamiltonian (2.9) now
reads

Ȟ (p, q;ω) =
1

2

[

f (q) exp (2ap) +
ω2 (q + c)2

a2f (q)
exp (−2ap)

]

. (3.8a)

Again, the alert reader will easily recognize that, by appropriate canonical transfor-
mations, this Hamiltonian can be transformed into that of the standard linear harmonic
oscillator, or into that yielding free motion. Using this finding, or exploiting the treatment
of the preceding section, the time evolutions of the canonical variables p and q induced by
this ω-modified Hamiltonian, (3.8a), are easily obtained:

q (t) = −c+A
σ (ωt+ θ) sin [2 (ωt+ θ)]

2ω
, (3.8b)

p (t) =
1

2a
log

{

A cos2 (ωt+ θ)

af [q (t)]

}

. (3.8c)

Here A = 2aȞ and θ = −ωt0 are fixed by the initial data, while the constant σ in the
right-hand side of (3.8b) is a sign, σ = ±1, that we introduce at this stage to take account
of the possibility – discussed below – that a change of sign occur where p (t) is singular
(see (3.8c) and below). These formulas indicate that, for a large class of assignments of
the function f (q) the two canonical variables q (t), p (t) are periodic with period T̃ = T/2,
see (2.6); but the canonical momentum p (t) becomes generally singular at a finite time
(i. e., whenever t = t0 +T/4 mod (T/2)), and there is no assignment (of course, it should
be independent of the initial data) of the function f (q) to cure this defect. Note that, on
the other hand, the canonical coordinate q(t) is well defined throughout its time evolution,
see (3.8b).

The fact that, for generic initial data, the solution of this problem becomes singular at
a finite time is a serious drawback to assign to it any physical relevance: there is indeed
an intrinsic ambiguity on how to continue the solution for the canonical momentum p (t)
beyond the singularity – an ambiguity that is also reflected in the presence of the (possibly
time dependent) sign σ in the nonsingular expression (3.8b) of the canonical coordinate
q (t). To clarify the matter we now analyze two simple cases: they are quite special, but
also interesting for their quantal treatment provided in the next section.

Example 3.5.

f (q) = b (q + c) , (3.9a)

entailing that the ω-modified Hamiltonian (3.8a) reads

Ȟ (p, q;ω) =
b (q + c)

2

[

exp (2ap) +
( ω

ab

)2
exp (−2ap)

]

. (3.9b)
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A naive treatment based on (3.8b) and (3.8c) would yield the solution

p (t) =
1

2a
log

{

ω cot (ωt+ θ)

ab

}

(3.9c)

with (3.8b), which is however unacceptable since it entails not only that the canonical
momentum p (t) has a singularity (it blows up) whenever t = −θ/ω mod (T/4), but that
it even loses the property to be real for −θ/ω − T/4 < t < −θ/ω mod (T/2), see (3.9c).
One might try to cure this lack of reality by replacing (3.9c) with

p (t) =
1

4a
log

{

ω2 cot2 (ωt+ θ)

a2b2

}

, (3.9d)

but this formula is actually inconsistent with the equation of motion entailed by the
Hamiltonian (3.9b),

ṗ (t) = − b
2

[

exp (2ap) +
( ω

ab

)2
exp (−2ap)

]

< 0 , (3.9e)

as it is plain from this formula that, as long as p (t) is real, it should be a decreasing
function of time; while according to (3.9d) p (t) diverges to negative infinity whenever
− (θ/ω) + T/4 mod (T/2) but to positive infinity whenever t = −θ/ω mod (T/2). This
indicates that a more appropriate prescription must be introduced to continue the function
p (t) beyond the points t = −θ/ω mod (T/4) where it blows up; of course a prescription
that maintains the reality of p (t) as well as the validity of the equation of motion (3.9e) at
all other times. Such a continuation is yielded by the requirement that the Hamiltonian
Ȟ (p, q;ω) maintain its value across the singularity, reading as follows:

q(t) = −c+A
|sin 2(ωt + θ)|

2ω
(3.10a)

where again A = 2aȞ (and we did set σ (x) =sign(x) , see (3.8b)), and

p (t) =
1

2a
log

ω

ab
+

1

2a
arcsinh [cot 2(ωt + θ)] . (3.10b)

Let us re-emphasize that the canonical coordinate q (t) (see (3.10a)) is a continuous func-
tion of time and does satisfy its Hamiltonian equation of motion at all times except for
those special values at which p (t) blows up. Likewise, apart from the jump from −∞ to
∞ at the singular times t = −θ/ω mod (T/4), the canonical momentum p(t) is always
monotonically decreasing, as was to be expected from the equation of motion (3.9e), which
is indeed satisfied at all times except those at which the jumps occur. Note moreover the
neat form of the solution (3.10b), with the only singularities being now the jumps due to
the singularities of the cotangent function.

Of course the arguments that have led us to this solution have required some appeal to
”physical commonsense”, without which no unique prescription could be given to continue
the solution of the Hamiltonian ODEs beyond the points at which their solution become
singular.

Finally let us point out that both q(t) and p(t) are periodic with period T/4, see (3.10).
In the following section we shall see that an appropriate quantal treatment of this problem
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is – somewhat remarkably – devoid of difficulties and that it yields an equispaced spectrum
with spacing 4ℏω, consistently, via (2.6), with (1.1).

Example 3.6.

f (q) = Ω2 (q + c)2 , (3.11a)

entailing that the ω-modified Hamiltonian (3.8a) reads

Ȟ (p, q;ω) =
1

2

[

Ω2 (q + c)2 exp (2ap) +
( ω

aΩ

)2
exp (−2ap)

]

, (3.11b)

and the corresponding classical solution reads

p (t) =
1

2a
log

{

ω2

A2Ω2 sin2 (ωt+ θ)

}

, (3.11c)

again with (3.8b) where however now σ = 1 for all time. Clearly this solution (3.11c) is
again periodic with period T/2 = π/ω, but p (t) again blows up (now always to positive
infinity) whenever t = − (θ/ω) mod (T/2).

As in the previous case, this solution has in fact entailed the assignment of an appropri-
ate prescription – consistent with the fact that both q (t) and p (t) remain real throughout
the time evolution, that they satisfy the Hamiltonian equations of motion at all times
(of course except those at which singularities occur), and that the Hamiltonian remains
constant across these singularities. In the following section we find that – again somewhat
remarkably – with an appropriate prescription the quantized version of this model encoun-
ters no problems and yields an equispaced spectrum with spacing 2ℏω, again consistent
with (1.1) via (2.6).

Example 3.7. To discuss a third variant we now generalize the Hamiltonian (3.8a) by
using the following expression of τ rather than (3.7b),

τ (p, q) =
q + c

af (q)
exp (−2ap) +K , (3.12)

with K an a priori arbitrary constant. This clearly still satisfies (2.1) and yields a more
general expression for Ȟ (p, q;ω) than (3.8a), namely

Ȟ (p, q;ω) =
(1 + ω2K2)f(q)

2
e2ap +

ω2(q + c)2

2a2f(q)
e−2ap +

ω2K

a
(q + c) , (3.13a)

which shall of course also be isochronous. If we now assume the following imaginary values
for the parameters K and a,

K = i
coshχ

ω
, a = iα , (3.13b)

where χ and α are two arbitrary real numbers, and make the following choice for f(q),

f(q) =
ω

α sinhχ
(q + c) , (3.13c)

then the Hamiltonian Ȟ (p, q;ω) is given by the following real expression:

Ȟ (p, q;ω) =
ω

α
(q + c) (coshχ− sinhχ cos 2αp) . (3.13d)
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This is indeed isochronous, but in a somewhat peculiar sense, since the equation of motion
for p reads

ṗ = −ω
α

[cosh (χ) − sinh (χ) cos (2αp)] < 0 , (3.13e)

so that p(t) is a monotonically decreasing function on the real line. The equations of
motion are easily solved to yield

q(t) = [q(0) + c]
exp (χ) cos2 [ω (t+ t0)] + exp (−χ) sin2 [ω (t+ t0)]

exp (χ) cos2 (ωt0) + exp (−χ) sin2 (ωt0)
− c , (3.13f)

p(t) = − 1

α
arctan {exp (−χ) tan [ω (t+ t0)]} , (3.13g)

t0 = − 1

ω
arctan {exp (χ) tan [αp(0)]} . (3.13h)

It is thus seen that

q(t+
T

2
) = q(t) , p(t+

T

2
) = p(t) − π

α
. (3.13i)

If we therefore take p as an angular variable of period π/α, then the isochrony (with
period T/2, see (2.6)) is restored.

Note that in this case no singularity difficulty arose. And another aspect highlighting
the interest of this Hamiltonian model is its quantization, see the following section.

3.3 One more example

Example 3.8. Another possibility is to take as point of departure the Hamiltonian of the
standard Harmonic oscillator (with circular frequency Ω),

H (p, q) =
1

2

(

p2 + Ω2q2
)

. (3.14)

It is then easily seen that a quantity τ (p, q) consistent with (2.1) reads

τ (p, q) =
1

Ω
arctan

(

Ωq

p

)

, (3.15)

yielding the ω-modified Hamiltonian

Ȟ (p, q;ω) =
1

2

(

p2 + Ω2q2
)

{

1 +

[

ω

Ω
arctan

(

Ωq

p

)]2
}

. (3.16a)

Via the treatment of the preceding section the time evolutions of the canonical variables
p and q induced by this ω-modified Hamiltonian are then easily obtained:

q (t) =
A

Ω
sin

[

Ω tan (ωt+ θ)

ω

]

cos (ωt+ θ) , (3.16b)
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p (t) = A cos

[

Ω tan (ωt+ θ)

ω

]

cos (ωt+ θ) . (3.16c)

Clearly this remarkable time evolution is periodic with period T , see (2.6), and it is
nonsingular in the sense that q (t) and p (t) have always well defined, finite values; however,
while they both vanish for t = −θ/ω + π/ (2ω) mod (π/ω), their time derivatives diverge
in an oscillatory manner at these times.

This solution suggests – as the diligent reader will easily verify – that the following
transformation from the coordinates q, p to the coordinates x, y,

q =
y

Ω
sin

(

Ωx

y

)

, p = y cos

(

Ωx

y

)

, (3.17a)

is canonical and reduces the ω-modified Hamiltonian (3.16a) to the standard Hamilto-
nian characterizing the linear harmonic oscillator,

Ĥ (y, x;ω) =
1

2

(

y2 + ω2x2
)

; (3.17b)

and it is of course well known that, by the additional, quite analogous, canonical trans-
formation

x =
η

ω
sin

(

ωξ

η

)

, y = η cos

(

ωξ

η

)

, (3.17c)

this Hamiltonian becomes that describing free motion,

h (η, ξ) =
1

2
η2 . (3.17d)

Of course each of these Hamiltonians must be complemented by an appropriate specifi-
cation of the phase space topology, for instance whether the canonical variable must be
considered a Cartesian coordinate ranging from −∞ to +∞, a radial coordinate ranging
from 0 to ∞ or an angle coordinate ranging from 0 to 2π and requiring that all physically
significant quantities (and, in the quantal context, that the eigenfunctions or at least their
moduli) be periodic in that variable with period 2π.

4 Quantal examples

As we have seen, each of the Hamiltonians of the examples displayed in the preceding
Section 3 can be transformed via appropriate canonical transformations into that char-
acterizing the standard linear harmonic oscillator with circular frequency ω (see (3.17b))
respectively into that characterizing free motion (see (3.17d)). (Indeed, this possibility
is a standard result in classical mechanics, associated with the existence of a canonical
transformation from the original canonical variables to action-angle variables). Thus if
the quantization of any one of these models were effected after performing such canoni-
cal transformations its energy spectrum would obviously turn out to be equispaced with
spacing ℏω = h/T respectively continuous – provided in both cases the quantization
problem were treated in the ”natural” phase space associated to the transformed Hamil-
tonians, namely the entire real axis for the coordinate (of course the outcome is different
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for different phase space assignments, see for instance [10]). But the quantization should
actually be performed on the original Hamiltonian, without firstly subjecting it to any
canonical transformation: and there is then no guarantee that by quantizing a classically
isochronous system one obtains a quantal Hamiltonian yielding an equispaced spectrum,
see indeed counterexamples in [5] [6] [7] [8] and below. However a natural hunch is that
there generally exist an appropriate application of the quantization procedure – in par-
ticular, taking care appropriately of the ordering issue intrinsic in it – such that any (or
at least ”almost” any) classically isochronous Hamiltonian – which should of course be
real to begin with – yield a quantal Hamiltonian operator that is Hermitian (or, more
precisely, self-adjoint : see below) and features an equispaced spectrum; at least whenever
the isochronous behavior holds, in the classical context, in the entire ”natural” phase
space (possibly up to a lower-dimensional phase space sector characterized by singular
solutions). It is therefore of interest—as we do in this section—to explore such examples;
indeed by studying analogous cases interesting features of the quantization process have
already been brought to light in the past, see for instance Ref. [5] [6] [7].

Hence in this section we examine in a quantal context the examples treated in the
classical context in the preceding section, although we do not treat each of them with the
same thoroughness.

4.1 Four examples

Let us begin by providing a quantal treatment of the Hamiltonian (3.2a) with k = 1,
without committing ourselves for the moment to any special assignment of the function
f(q).

To this end we set

q =⇒ z , p =⇒ −iℏ d

dz
, (4.1)

and associate to the classical Hamiltonian (3.2a) with k = 1 the following Hermitian
operator:

ȞQ = −ℏ
2

2

[

ρ
d

dz

1

f ′(z)2
d

dz
+ (σ − ρ)

1

f ′(z)

d2

dz2

1

f ′(z)

+
1 − σ

2

(

1

f ′(z)2
d2

dz2
+

d2

dz2

1

f ′(z)2

)]

+
ω2f(z)2

2
, (4.2)

where ρ and σ are two a priori arbitrary (real) parameters, introduced to take into some
account the ordering ambiguity; in particular the Weyl prescription (see for instance Sec-
tion 5.2 of Ref. [9], or the Appendix of [5]) would assign the values ρ = σ = 1/2. The
corresponding stationary Schrödinger equation then reads

ȞQψn = Enψn , (4.3)

with the energy eigenvalues En determined by the requirement that the corresponding
eigenfunctions ψn ≡ ψn (z) be normalizable.

We now define a new ”space” variable x, and new eigenfunctions ϕn ≡ ϕn(x), by setting

x = f(z) , ϕn(x) =
[

f ′ (z)
]

−1/2
ψn(z) . (4.4)
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Thereby the Schrödinger equation (4.3) takes the form

H̄ϕn = Enϕn , (4.5a)

with the new operator H̄ defined as follows:

H̄ =
1

2

(

−ℏ
2 d

2

dx2
+ ω2x2

)

+ VQ(x) , (4.5b)

where the ”quantum potential” VQ(x) is given by the formula

VQ(x) =
ℏ

2

2[f ′(z)]4

{(

2ρ+ σ − 7

4

)

[f ′′(z)]2 +

(

1

2
− ρ

)

f ′′′(z)f ′(z)

}

. (4.5c)

Here, of course, every occurrence of z should be replaced by its expression in terms of x
(see (4.4)).

Note that the only place where the ordering prescription – namely, the values assigned
to the two parameters ρ and σ – play any role is in this definition of the ”quantum
potential” VQ(x). Clearly a convenient assignment of these parameters is

ρ =
1

2
, σ =

3

4
, (4.6)

yielding an altogether vanishing VQ(x). Then the Schrödinger equation (4.5) can be solved
in the standard manner, yielding for our Schrödinger equation (4.3) the following eigen-
values and eigenfunctions:

En = ℏω

(

n+
1

2

)

, ψn(z) =
[

f ′(z)
]1/2

Hn

[

ωf(z)√
ℏ

]

exp

{

− [ωf (z)]2

2ℏ

}

. (4.7)

Here and below Hn(x) denotes the standard Hermite polynomial [13] of degree n. This
assumes, of course, that these eigenfunctions ψn(z) are normalizable. At the formal level,
this does not depend on the choice of the function f(q): indeed, as it is readily verified
by change of variables in the relevant integrals, the scalar product of the eigenfunctions
ψn(z) is formally identical to those of the functions ϕn(x) (see (4.4)). The only non-trivial
issue concerns the range of variation of the two variables x and z: whenever it entails that
x runs over the entire real line, all the above statements are correct.

There is moreover a (special) case in which the ”quantum potential” VQ(x) plays only
a trivial role (because it becomes constant) irrespective of the values of the parameters ρ
and σ: this happens if

f (z) = a log
(z

b

)

, (4.8a)

yielding

VQ (x) =
ℏ

2

8a2
(4σ − 3) . (4.8b)

And finally another case yielding a Schrödinger equation (4.5) generally associated with
an equispaced spectrum obtains for

f (z) = azγ , (4.9a)
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with γ an arbitrary (real) number, yielding

VQ (x) =
ℏ

2 (γ − 1)

2γ2x2

[(

ρ+ σ − 5

4

)

γ − σ +
3

4

]

=
ℏ

2λ

x2
. (4.9b)

This quantum potential vanishes not only for the assignment (4.6), but also if γ =
(3 − 4σ) / (5 − 4ρ− 4σ) (and as well in the trivial γ = 1 case), implying λ = 0. Moreover,
even when λ does not vanish (but provided it is not too negative, λ > −1/4), the resulting
Hamiltonian has an equispaced energy spectrum (see (4.5)) with spacing 2 ℏ ω, consistently
with the fact that, in the classical context, the motions yielded by the Hamiltonian (4.5b)
with the positive potential (4.9b) take place only on the – positive or negative – semiline
and are periodic with period T/2 = π/ω. On the other hand, if the Hamiltonian is defined
on the whole real line −∞ < x < ∞, then in the quantal context each state is doubly
degenerate, since the sign of the eigenfunction can be chosen at will on either half-line.

Let us now review how these findings apply, by discussing specifically the examples
3.1-4 obtained from the Hamiltonian (3.2a) with k = 1 via specific assignments of the
functions f (q) .

Clearly no comment is needed on example 3.1.
To quantize the ω-modified Hamiltonian (3.4b) of example 3.2 we replace via the stan-

dard quantization prescription (4.1) this Hamiltonian with the Hermitian operator

ȞQ =
1

2

{

−
(

ℏ

a

)2 [

z2 d
2

dz2
+ 2z

d

dz
+ 1 − σ

]

+
[

ωa log
(z

b

)]2
}

, (4.10a)

where σ is as above (see (4.2)) and ρ has disappeared. Recall that these parameters (see
(4.2)) are introduced to take some account of the ordering freedom in the transition from
the classical to the quantal context. After changing from the z variable to the x variable
via the transformation (4.4) with

x = a

√

ω

ℏ
ln

(z

b

)

, (4.10b)

the corresponding stationary Schrödinger equation (4.5a) reads (see (4.5))

ℏ

(

− d2

dx2
+ x2

)

ϕn (x) +
ℏ2

8a2
(4σ − 3)ϕn(x) = Enϕn(x) , (4.10c)

with the energy eigenvalues En determined by the requirement that the corresponding
eigenfunctions ψn (z) be normalizable in the interval 0 ≤ z < ∞. Since x runs over the
entire real axis as z goes from 0 to ∞ (we are of course assuming that b is positive),
the corresponding functions ϕn(x) (see (4.4)) are given by the usual eigenfunctions of the
harmonic oscillator and the energy spectrum reads

En = ℏω

(

n+
1

2

)

+
ℏ

2

8a2
(4σ − 3) , (4.10d)

with the corresponding eigenfunctions reading

ψn (z) = z−1/2Hn(x) exp

(

−x
2

2

)

, x =

(

ωa2

ℏ

)1/2

log
(z

b

)

, (4.10e)
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up to a normalization factor. Note that these eigenfunctions vanish both at z = 0 and, of
course, as z → ∞; and the corresponding energy spectrum is of course equispaced, indeed
consistently with (1.1).

Likewise, to quantize the ω-modified Hamiltonian (3.5b) of example 3.3 we replace via
(4.1) this Hamiltonian with the Hermitian operator

ȞQ = −1

2

(

ℏ

a

)2 {

z2 log2
(z

b

) d2

dz2
+ 2z log

(z

b

) [

1 + log
(z

b

)] d

dz

+ (σ − ρ) log
(z

b

)

+ (1 − σ)
[

log2
(z

b

)

+ 3 log
(z

b

)

+ 1
]}

+
1

2

{

ωa log
[

β log
(z

b

)]}2
, (4.11a)

where ρ and σ are as above (see (4.2)). Recall that these parameters (see (4.2)) are
introduced to take some account of the ordering freedom in the transition from the classical
to the quantal context. Again it can be mapped by the transformation (4.4) with

x = a

√

ω

ℏ
log

[

β log
(z

b

)]

(4.11b)

into the harmonic oscillator Hamiltonian. Here the range of values of z goes from b to ∞,
and correspondingly the variable x ranges over the entire real axis, −∞ < x < ∞. The
eigenfunctions ϕn (x) of the transformed problem are therefore the standard eigenfunctions
of the harmonic oscillator and the eigenfunctions ψn(z) of the original Schrödinger equation
read, up to a normalization factor,

ψn (z) =
[

z log
(z

b

)]

−1/2
Hn(x) exp

(

−x
2

2

)

. (4.11c)

Again, these eigenfunctions vanish both at z = b and as z → ∞, and they are indeed
normalizable (in the interval b ≤ z < ∞ – as the alert reader will easily verify). The
spectrum is clearly equispaced :

En = ℏω

(

n+
1

2

)

, n = 0, 1, 2, ... , (4.11d)

indeed consistently with (1.1).
Next, to quantize the ω-modified Hamiltonian (3.6b) of example 3.4 we replace via

(4.1) this Hamiltonian with the Hermitian operator

ȞQ = −1

2
(jℏ)2

(z

a

)2(j−1)/j
{

d2

dz2
+ 2

(

j − 1

jz

)

d

dz

+
(j − 1) [(1 − σ) (j − 2) − (σ − ρ) (j − 1)]

j2z2

}

+
1

2
ω2a2

[

(z

a

)1/j
− c

a

]2

, (4.12a)

where ρ and σ are as above, see (4.2). The transformation (4.4) now reads

ψn (z) = z(1−j)/(2j)ϕn (x) , x = a

√

ω

ℏ

[

(z

a

)1/j
− c

a

]

. (4.12b)
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There remains to discuss the range of z, and hence of x. If the integer j is odd, then q(t)
(see (3.6c)) ranges over the entire real axis, and thus so do z and x, irrespective of the
sign of j. If, on the other hand, j is even, the Hamiltonian is multivalued and one needs
to follow the correct branch, as discussed above in the classical context. While one could
try and do something analogous in the quantum case, this would carry us too far from the
main line of our work; for related work, however, see for example [11]. Hence hereafter j
is an odd integer.

The eigenvalue equation then reads (see (4.5b) and (4.5c))

−ϕ′′

n (x) +
λ

(x+ x̄)2
ϕn (x) + x2ϕn (x) = 2ηnϕn (x) , (4.12c)

with

x̄ =

(

ωc2

ℏ

)1/2

, En = ℏωηn , λ = 2 (j − 1)

[(

σ − 3

4

)

j − ρ− σ +
5

4

]

ℏω . (4.12d)

It is now plain that, for the assignment (4.6), λ vanishes, λ = 0 (see (4.12d)), and clearly
this entails (see (4.12c)) that the formula

ψn (z) = z(1−j)/(2j) exp

(

−1

2
x2

)

Hn (x) , x = a

√

ω

ℏ

[

(z

a

)1/j
− c

a

]

, (4.12e)

provides a normalizable solution (in the interval 0 ≤ z < ∞) of our Schrödinger equation
(4.10c); and of course the corresponding energy eigenvalues yield the equispaced spectrum
of the standard linear harmonic oscillator,

En = ℏω

(

n+
1

2

)

, n = 0, 1, 2... . (4.12f)

This is a somewhat surprising result, since for arbitrary odd integer j the corresponding
classical problem features a sector of its phase space where the time evolution runs into
a singularity: when j is positive only the momentum p (t) blows up, while the coordinate
q(t) always remains finite, whereas for j < 0 the opposite happens.

Note moreover that, if λ 6= 0, then the spectrum is only equispaced if x̄ = 0 (i. e., if
c = 0, see (4.12d)): in this case, the spacing is 2 ℏ ω, but each state is doubly degenerate,
as stated above. On the other hand, if x̄ 6= 0, then the spectrum only becomes equispaced
asymptotically, as n→ ∞, again with spacing 2 ℏ ω.

Moreover, if the constant c vanishes, c = 0 (entailing x̄ = 0, see (4.12d)) – in which case
the time evolution of the classical problem always runs into a singularity, for any initial
data – the quantal problem nevertheless admits a well defined normalizable eigensolution
in the interval 0 ≤ z < ∞ provided j is an odd integer and λ > −1/4 (see (4.12b)
and (4.12c)), to which there corresponds, up to a common shift of all the eigenvalues,
an equispaced spectrum with spacing 2 ℏ ω. Note that this spacing is just what one
expects from the classical behavior, see (1.1) and the treatment of this example 3.4 in the
preceding section.
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4.2 Three examples

Let us now turn to the quantization of the three models detailed in the preceding section
as examples 3.5, 3.6 and 3.7 ; while the quantization of the model of example 3.8 is
sufficiently complicated to require an ad hoc treatment, to be given in a separate paper.

To quantize the Hamiltonian (3.9b) of example 3.5 we now set

q =⇒ iℏ
d

dz
, p =⇒ z , (4.13)

which corresponds to the usual rule up to a Fourier transformation of the eigenfunctions.
We thereby transform the Hamiltonian (3.9b) into the Hermitian first-order differential
operator (in momentum space)

ȞQ =
b

2

[

exp (az)

(

iℏ
d

dz
+ c

)

exp (az) +
( ω

ab

)2
exp (−az)

(

iℏ
d

dz
+ c

)

exp (−az)
]

=
b

2

{

exp (2az)

[

iℏ

(

d

dz
+ a

)

+ c

]

+
( ω

ab

)2
exp (−2az)

[

iℏ

(

d

dz
− a

)

+ c

]}

.

(4.14a)

The corresponding stationary Schrödinger equation (in momentum space) reads

b

{[

exp (2az) +
( ω

ab

)2
exp (−2az)

]

[

iℏψ′ (z) + cψ (z)
]

+iℏa

[

exp (2az) −
( ω

ab

)2
exp (−2az)

]

ψ (z)

}

= 2Eψ (z) , (4.14b)

with the energy eigenvalue E to be determined by the requirement that the corresponding
eigenfunction ψ (z) be normalizable and univalent in the interval −∞ < z < ∞. This
first-order ODE is easily integrated, yielding, up to a normalization constant,

ψE(z) = exp

(

icz

ℏ

)[

exp (2az) +
( ω

ab

)2
exp (−2az)

]

−1/2

·

· exp

{

E

iωℏ
arctan

[

ab

ω
exp (2az)

]}

. (4.14c)

This eigenfunction is clearly normalizable (on the entire real axis, −∞ < z < +∞; recall
that now the variable z corresponds to the classical canonical momentum p, see (4.13)),
since it is nonsingular in that entire interval and its modulus vanishes asymptotically,
at both ends, proportionally to exp (− |az|). Note that this happens without entailing
any restriction on the energy eigenvalues E. But such restrictions – yielding a discrete
equispaced energy spectrum – are caused by the additional requirements implied by the
following discussion.

A somewhat heuristic approach might be based on revisiting the corresponding classical
problem and recalling that, in that context, one concluded that the momentum variable
p (t) has a time evolution – see (3.8c) – entailing that it travels over and over across the
entire real axis from +∞ to −∞, implying that the expression exp(2ap) travel, during
the time evolution, over and over throughout the positive real axis, from +∞ to 0. This
suggests that, in the quantal context, one should correspondingly require the eigenfunction,
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see (4.14c), to be univalent when the quantity exp (2az) goes through an analogous ordeal,
namely it traverses over and over the positive real axis an arbitrary number of times.
Because of the corresponding mod (π/2) shift of the arctangent function (see the right-
hand side of (4.14c)), such a requirement would force the energy eigenvalues En to belong
to the equispaced spectrum

En = 4ℏωn , n = 0,±1,±2, ... . (4.14d)

Note that this energy spectrum is indeed consistent via (1.1) with the periodicity T̃ = T/4
of the solution of this model in the classical context, see example 3.5 in the preceding
section.

Another, more rigorous, argument – actually corresponding to a more rigorous treat-
ment of this problem in the quantal context – assumes the variable z to span just once
the real z axis, so that one can limit consideration to the principal determination of the
arctangent function (when its argument ranges between infinity and zero, see (4.14c)),
eliminating thereby any ambiguity about the univalence of these eigenfunctions. But one
then notes that the requirement that must be imposed on this quantal problem is not only
that its eigenfunctions be normalizable: they must belong to a space within which the
operator ȞQ is self-adjoint.

The simplest way to enforce this requirement is to require that the Hilbert-space scalar
product of two of these eigenfunctions vanish when the corresponding energy eigenvalues
are different, namely that

∞
∫

0

dz [ψE(z)]∗ ψE′(z) = 0 whenever E 6= E′ , (4.15a)

i. e., via (4.14c),

∞
∫

0

dz

[

exp (2az) +
( ω

ab

)2
exp (−2az)

]

−1

exp

{

i (E −E′)

ωℏ
arctan

[

ab

ω
exp (2az)

]}

= 0 whenever E 6= E′ . (4.15b)

The integral in the left-hand side of this formula can be easily performed, yielding the
formula

b [exp (i∆π) − 1]

4iω∆
= 0 whenever E 6= E′ , (4.15c)

with

∆ =
E − E′

2ℏω
. (4.15d)

And this yields clearly the energy spectrum

En = 4nℏω + E0 , n = 0,±1,±2, ... . (4.15e)

And let us also mention that the same outcome obtains if a self-adjoint extension of
the Hamiltonian operator ȞQ, see (4.14a), were performed via the standard ”deficiency in-
dices” procedure (see for instance [12]). Indeed the freedom in the choice of E0 corresponds
to the fact that a one-parameter class of self-adjoint extensions of ȞQ exists.
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Note that – somewhat surprisingly – the singularities of the classical motion do not
show up disturbingly in the quantal context; and let us also re-emphasize the consistency
(via (2.6)) of this result with (1.1).

Finally note that the solution (4.14c) can be rewritten in the following rather neat
manner:

ψn (z) = exp

(

icz

ℏ

)

v [T2n (u) − iv exp (az)U2n−1 (u)] , (4.15f)

v =

[

exp (2az) +
( ω

ab

)2
exp (−2az)

]

−1/2

, u =
ωv exp (−az)

ab
, (4.15g)

where Tn (u) respectively Un (u) are Chebyshev polynomials of the first respectively second
kind (see for instance [13]).

Next, to quantize the Hamiltonian (3.11b) of example 3.6 of the preceding section,
we use again the prescription (4.13) with the specific ordering assignment yielding the
following Hermitian operator (again of course in momentum space):

ȞQ =
1

2

[

Ω2 exp (az)

(

c+ iℏ
d

dz

)2

exp (az) +
( ω

aΩ

)2
exp (−2az)

]

. (4.16a)

It can then be verified that the corresponding Schrödinger equation (in momentum space),

Ω2 exp (2az)
[

−ℏ
2ψ′′ (z) + 2iℏ (c+ iℏa)ψ′ (z) + (c+ iℏa)2 ψ (z)

]

+
( ω

aΩ

)2
exp (−2az)ψ (z) = 2Eψ (z) , (4.16b)

can be reduced via the position

ψ (z) = exp
[(

−a+ i
c

ℏ

)

z
]

exp
(

−x
2

)

ϕ (x) , (4.17a)

x =
( ω

ℏa2Ω2

)

exp (−2az) , (4.17b)

to the confluent hypergeometric equation [14]

xϕ′′ (x) + (β − x)ϕ′ (x) − αϕ (x) = 0 , (4.17c)

with

α =
1

2
(1 − η) , β = 1 , E = ℏωη . (4.17d)

It is now easily seen that the requirement that the eigenfunction (4.17) be normalizable is
not sufficient to identify uniquely a corresponding solution of the confluent hypergeometric
equation; indeed it is easily seen [14] that any solution of the confluent hypergeometric
equation (4.17c) with β = 1, when inserted in the ansatz (4.17), yields a function ψ (z)
which is normalizable over the entire real axis, −∞ < z < ∞ (for any sign of the real
constant a) if

η = ηn = 2n+ 1 , (4.18)
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while for arbitrary η the solution

ϕ (x) = exp
(

−x
2

)

U

(

1 − η

2
, 1, x

)

(4.19)

is also normalizable. Here U (α, 1, x) is the second (”logarithmic”) solution of the confluent
hypergeometric equation ODE with β = 1, see [14]. The point is that one must again
introduce the stronger requirement that the eigenfunction ψ (z) belong to a functional
space in which the operator (4.16a) is self-adjoint. This amounts to the requirement that,
when the norm of the operator ĤQ, see (4.16a), is written out,

(

ψ, ĤQψ
)

=

∫ +∞

−∞

dz ψ∗ (z) ĤQψ (z) , (4.20)

in the integral appearing in the right-hand side integrations by parts should be allowed
without running into divergences. It is then easily seen (using standard properties of the
confluent hypergeometric function [14]; or inferring them directly from (4.17c)) that this
requirement excludes the logarithmic solution U (α, 1, x) of the confluent hypergeometric
equation and restrict the other solution via the requirement (4.18), implying that

ϕn (x) = Ln (x) , (4.21a)

so that the eigenfunctions read

ψn (z) = exp
[(

−a+ i
c

ℏ

)

z
]

exp
(

−x
2

)

Ln (x) , n = 0, 1, 2, ... , (4.22a)

where Ln (x) is the standard Laguerre polynomial [13] of order n. The fact that these
eigenfunctions are nonsingular, univalent and normalizable over the entire real axis, −∞ <
z <∞ (for any sign of the real constant a) is plain (although the requirement that these
properties hold was in fact not sufficient to identify these eigenfunctions). And of course
the corresponding energy spectrum is (see the last of the formulas (4.17d) and (4.18))

En = (2n+ 1) ℏω , n = 0, 1, 2, ... . (4.22b)

It is therefore equispaced with spacing 2ℏω, consistently via (1.1) with the periodicity with
period T̃ = T/2 of the corresponding classical problem, see example 3.6 in the preceding
section. And note – once more – that the quantal problem does not seem to be affected
at all by the singular character of the motions in the corresponding classical problem.

We finally turn to example 3.7 of the preceding section, which has some peculiar fea-
tures. Firstly we treat it using again the quantization prescription (4.13). It then yields
the following Hermitian operator (in momentum space)

ȞQ =
ω

α

{

cosh (χ)

(

c+ iℏ
d

dz

)

−sinh (χ)

2

[(

c+ iℏ
d

dz

)

cos (2αz) + cos (2αz)

(

c+ iℏ
d

dz

)]}

, (4.23a)

where, for simplicity, we restricted consideration to just one specific ordering. This gives
as stationary Schrödinger equation (in momentum space) the following first-order linear
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ODE:

ω

α
[cosh (χ) − sinh (χ) cos (2αz)]

(

c+ iℏ
d

dz

)

ψ (z)

+iℏω sinh (χ) sin (2αz)ψ (z) = Eψ (z) . (4.23b)

Proceeding formally, that is, disregarding issues concerning the range of z and the possible
multivaluedness of ψ(z), one gets

ψ(z) = [cosh (χ) − sinh (χ) cos (2αz)]−1/2 ·

· exp
(

−cz
iℏ

)

exp

{

E

iℏω
arctan [exp (χ) tan (αz)]

}

. (4.23c)

Let us now consider the restrictions to be imposed on E by the requirement that ψ(z)
be univalent. Here we must distinguish two cases, as usual for systems where one of the
variables (in this case z) has a discrete translation symmetry.

Firstly, we may assume that z runs over the entire real line. In this case E can take
arbitrary values and one obtains from (4.23c) the relation

ψ
(

z +
π

α

)

= exp

[

− π

iℏ

(

c

α
+
E

ω

)]

ψ(z) . (4.23d)

Therefore the eigenfunction ψ(z) behaves as a Bloch wave function under translations by
π/α.

If, on the other hand, z is assumed to be an angular variable with range π/α, then the
requirement ψ (z + π/α) = ψ(z) yields the quantization condition

En = 2nℏω − cω

α
, n = 0,±1,±2, ... , (4.23e)

so that the corresponding eigenfunctions read

ψn(z) = [cosh (χ) − sinh (χ) cos (2αz)]−1/2 ·

· exp

{

(

− c

iℏ

)

(

z − arctan [exp (χ) tan (αz)]

α

)}

·

· exp {−2in arctan [exp (χ) tan (αz)]} . (4.23f)

Note that in this case, which, as pointed out above (see example 3.7 in the preceding
section), is the only one that, in the classical context, is truly isochronous, one has the
expected equispaced spectrum, with the correct spacing 2ℏω, see (1.1), since the period T̃
of the corresponding classical motion is T/2 = π/ω.

Let us finally point out that, if one uses the “standard” quantization rule

q =⇒ x , p =⇒ −iℏ d

dx
, (4.24a)

(see (4.1), and notice the merely notational change of independent variable) instead of
its momentum momentum space counterpart (4.13), then the Schrödinger equation, using
the same ordering rule as before, reads as follows:

ω

α
(x+ c)

{

cosh (χ)ϕ(x) − sinhχ

2
[ϕ(x+ 2αℏ) + ϕ(x− 2αℏ)]

}

−ℏω

2
sinh (χ) [ϕ(x+ 2αℏ) − ϕ(x− 2αℏ)] = Eϕ(x) , (4.24b)
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where we now use the notation ϕ (x) for the eigenfunction in x-space. And of course
this three-term recursion relation, supplemented by the appropriate boundary conditions,
shall yield the same energy spectrum (4.23e), with the eigenfunctions ϕn(x) being just the
Fourier transforms of the eigenfunctions ψn (z) , see (4.23f),

ϕn(x) =

∫ π/α

0
dz exp

(

ixz

ℏ

)

ψn (z) . (4.24c)

4.3 Singularities of the classical motion that do not affect the corre-

sponding quantal problem

Finally, let us make two heuristic comments concerning the fact we observed in some of
the examples discussed above, namely that some systems yielding motions running into
singularities in a finite time when considered in the classical context do not seem to be
plagued by any corresponding difficulty when treated in a quantal context: in particular,
no disturbing effects surfaced regarding the existence, smoothness and univalence of the
corresponding quantum wave functions.

In the first place this can be attributed to the general – if admittedly vague – notion
that PDEs tend to smooth out singularities more than ODEs; and to the fact that the
transition from quantum mechanics to classical mechanics entails a limit (ℏ → 0) that is
notoriously singular, thereby explaining why problems featuring no singular phenomena
when treated in a quantal context may instead give rise to such difficulties when treated
in a classical context.

Secondly, let us consider the semiclassical approximation for the wave function at energy
E of the type of systems we have been considering here. It is given by

ψE(x) =

(

dSE(x)

dx

)

−1/2

exp

[

i

ℏ
SE(x)

]

, (4.25a)

where SE(x) is the action at the point x along an orbit having energy E, evaluated from
some given initial point x0:

SE(x) =

∫ x

x0

dx′ pE(x′) , (4.25b)

where pE(x) denotes the momentum corresponding to the energy E and the coordinate
x, and the integration is of course along the orbit. The approximate WKB quantization
condition then follows straightforwardly, for closed orbits, from the requirement of uni-
valence of this approximate wave function ψE(x). It is straightforward to check that in
all the cases discussed above this integral (4.25b) converges. This is a consequence for
isochronous systems of the general property

d

dE

∮

SE(x)dx = T (E) , (4.25c)

where the integral is now extended over the (closed: forth and back) trajectory of a
periodic orbit, T (E) is the period of this orbit and E its energy. Since for an isochronous
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system T (E) is always finite indeed constant, the action integral (4.25b) can never diverge.
The semiclassical approximation of ψE(x) is therefore smooth, apart from divergences
of the prefactor, which are generally well-known to disappear in an exact (rather than
semiclassical) treatment. This can therefore be seen as another heuristic justification of
the fact that the exact wave functions of isochronous systems will not be singular even
when singularities plague the corresponding classical motions, as indeed found in some of
the examples treated above.

Acknowledgments. We wish to acknowledge with thanks the hospitality extended to one
of us (FC) by the Centro Internacional de Ciencias in Cuernavaca, and to the other one
of us (FL) by the Physics Department of the University of Roma ”La Sapienza”, which
was instrumental to develop the ideas and carry out the research reported in this paper.
FL also wishes to acknowledge the financial support of the following projects: CONACyT
44020 and DGAPA IN112307.

References

[1] Calogero F and Leyvraz F, Isochronous and partially-isochronous Hamiltonian
systems are not rare, J. Math. Phys. 47 (2006), 042901:1-23 .

[2] Calogero F, Isochronous systems, Oxford University Press, Oxford (in press).

[3] Calogero F, Classical many-body problems amenable to exact treatments, Lecture
Notes in Physics Monograph m 66, Springer, 2001.

[4] Calogero F and Leyvraz F, Isochronous version of the Hamiltonian describing
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