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Abstract—Transfer functions are commonly used in the 
analysis of systems such as single-input single-output filters, 
typically within the fields of signal processing, 
communication theory, and control theory. Transfer 
function models is of considerable interest in economics, 
engineering, biology, and many other fields. Models of this 
kind can describe not only the behavior of industrial 
processes but also that of economic and business systems. 
Transfer function model building is important because it is 
only when the dynamic characteristics of a system are 
understood that intelligent direction, manipulation, and 
control of the system is possible. Engineering methods for 
estimating transfer functions are usually based on the choice 
of special inputs to the system such as step and sine wave 
inputs and “pulse” inputs. These methods have been useful 
when the system is affected by small amounts of noise but 
are less satisfactory otherwise. In this paper we show 
procedure and methods for estimating the transfer function 
parameters. 
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I. INTRODUCTION  
In engineering, a transfer function (also known as 

the system function or network function and, when plotted 
as a graph, transfer curve) is a mathematical representation 
for fit or to describe inputs and outputs of black box 
models. 

Transfer functions are commonly used in the analysis 
of systems such as single-input single-output filters, 
typically within the fields of signal processing, 
communication theory, and control theory. The term is 
often used exclusively to refer to linear, time-invariant 
systems (LTI), as covered in this article. Most real systems 
have non-linear input/output characteristics, but many 
systems, when operated within nominal parameters (not 
"over-driven") have behavior that is close enough to linear 
that LTI system theory is an acceptable representation of 
the input/output behavior. 

A topic of considerable industrial interest is the study 
of process dynamics. Such a study is made (1) to achieve 
better control of existing plants and (2) to improve the 
design of new plants. In particular, several methods have 
been proposed for estimating the transfer function of plant 
units from process records consisting of an input time 
series Xt and an output time series Yt. 

As shown in Fig .1, where the input Xt and the output 
Yt. A hypothetical impulse response function vj, j = 0, 1, 
2, . . . , which determines the transfer function for the 
system through a dynamic linear relationship between 
input Xt and output Yt of the form 

   ∑   
 
       

is also shown in the figure as a bar chart. Transfer 
function models that relate an input process Xt to an output 
process Yt are introduced in this paper and many of their 
properties are examined. 

 

 
 
Figure 1.  Input and output time series in relation to a dynamic system  

With suitable inputs and outputs, the dynamic system 
of Fig .1 might represent an industrial process, the 
economy of a country, or the behavior of a particular 
corporation or government department. 

Technically it is a representation in terms of spatial or 
temporal frequency, of the relation between the input and 
output of a linear time-invariant system with zero initial 
conditions and zero-point equilibrium. With optical 
imaging devices, for example, it is the Fourier transform of 
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the point spread function (hence a function of spatial 
frequency) i.e. the intensity distribution caused by a point 
object in the field of view. 

 

II. OUTLINE OF THE IDENTIFICATION PROCEDURE  
Suppose that the transfer function model 

    ( )     

Can be parsimoniously parameterized in the form 

      ( ) ( )                      (3) 

Where 

 ( )           
       

  

 ( )            
       

  

The identification procedure is as follows: 
1. Derive rough estimates   ̂of the impulse response 

weights vj in (2). 
2. Use the estimates   ̂ so obtained to make guesses of 

the orders r and s of the denominator and numerator 
operators in (3) and of the delay parameter b. 

3. Substitute the estimates   ̂  in the equations with 
values of r, s, and b obtained from initial estimates of the 
parameters δ and ω in (3). 

Knowing the    ̂ , values of b, r, and s may be 
determined by using the following facts established in the  
model of the form of (3) the impulse response weights vj 
consist of: 

1. b zero values v0, v1, . . . , vb−1. 
2. A further s −  r +1 values vb, vb+1, . . . , vb+s − r 

following no fixed pattern 
(no such values occur if s < r). 
3. Values vj with j ≥ b + s − r + 1 that follow the 

pattern dictated by an rth-order difference equation that has 
r starting values vb+s, . . . , vb+s−r+1. starting values vj for j 
<b will, of course, be zero. 

The basic tool that is employed here in the 
identification procedure is the cross-correlation function 
between input and output. 

When the processes are nonstationary, it is assumed 
that stationarity can be induced by suitable differencing. 
Nonstationary behavior is suspected if the estimated 
autoand cross-correlation functions of the (Xt, Yt ) series 
fail to damp out quickly. It assume that a degree of 
differencing d necessary to induce stationarity has been 
achieved when the estimated auto- and cross correlations 
rxx(k), ryy(k), and rxy(k) of xt = ∇dXt and yt = ∇dYt damp out 
quickly. In practice, d is usually 0, 1, or 2. 

Some general remarks can be made concerning the 
procedure for identifying transfer function and noise 
models that just described 

1. For many practical situations, when the effect of 
noise is appreciable, a delayed first- or second-order 
system or some simplification of it, would often provide 
as elaborate a model as could be justified for the data. In 
practice, the output Y could not be expected to follow 

exactly the pattern determined by the transfer function 
model, even if that model were entirely adequate. 
Disturbances of various kinds other than X normally 
corrupt the system.  

2. To start off the recursion we need to know certain 
initial values. This need is not, of course, a shortcoming of 
the method of calculation but comes about because with a 
transfer function model, the initial values of Y will 
depend on values of X that occurred before observation 
was begun. In practice, when the necessary initial values 
are not known, we can substitute mean values for 
unknown Y’s and X’s (zeros if these quantities are 
considered as deviations from their means). The early 
calculated values will then depend upon this choice of the 
starting values. However, for a stable system, the effect of 
this choice will be negligible after a period sufficient for 
the impulse response to become negligible.Efficient 
estimation is only possible assuming the model form to be 
known. The estimates given are in general necessarily 
inefficient therefore. They are employed at the 
identification stage because they are easily computed and 
can indicate a form of model worthy to be fitted by more 
elaborate means. 

3. Even if these were efficient estimates, the number 
required to trace out the impulse response function fully 
would typically be considerably larger than the number of 
parameters in a transfer function model. In cases where 
the δ  and ω  in an adequate transfer function model 
could be estimated accurately, nevertheless, the estimates 
of the corresponding v’s could have large variances and 
be highly correlated . 

A nonlinear least squares algorithm, analogous to that 
given for fitting the stochastic model  can be used to 
obtain the least squares estimates and their approximate 
standard errors. The algorithm will behave well when the 
sum-of-squares function is very roughly quadratic. 
However, the procedure can sometimes run into trouble, 
in particular if the parameter estimates are very highly 
correlated (if, e.g., the model approaches singularity due 
to near-common factors in the factorizations of the 
operators), or in some cases, if estimates are near a 
boundary of the permissible parameter space. In difficult 
cases the estimation situation may be clarified by plotting 
sums-of-squares contours for selected two-dimensional 
sections of the parameter space. 

As with stochastic models, the derivatives may be 
computed recursively. However, it seems simplest to work 
with a standard nonlinear least squares computer program 
in which derivatives are determined numerically and an 
option is available of “constrained iteration” to prevent 
instability 

4.Usually,  only very rough estimates are possible 
with the available data. However, some kind of 
rudimentary modeling may be possible by postulating a 
plausible but simple transfer function/noise model, fitting 
directly by the least squares procedures , and applying 
diagnostic checks leading to elaboration of the model 
when this proves necessary. 
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5. Since rather simple transfer function models of first 
or second order, with or without delay, are often adequate, 
iterative model building should begin with a fairly simple 
model, looking for further simplification if this is 
possible,and reverting to more complicated models only 
as the need is demonstrated. 

  6. When simplification by factorization is possible, but 
is overlooked, the least squares estimation procedure may 
become extremely unstable since the minimum will tend 
to lie on a line or surface in the parameter space rather 
than at a point. Conversely, instability in the solution can 
point to the possibility of simplification of the model. One 
reason for carrying out the identification procedure before 
fitting the model is to avoid redundancy or, conversely, to 
achieve parsimony in parameterization. 

III. IDENTIFICATION OF THE IMPULSE RESPONSE 
FUNCTION WITHOUT PREWHITENING 

After differencing d times, the model (3) can be written 
in the form: 

                                              ( ) 

Where  

   ∇    

   ∇    

   ∇    

are stationary processes with zero means. Then, on 
multiplying throughout in (4) by xt−k for k ≥0, we obtain 

                                                 ( ) 

assumption that xt−k is uncorrelated with nt for all k, 
taking expectations in (5) yields the set of equations 

   ( )       ( )       (   )             ( ) 

Suppose that the weights vj are effectively zero beyond 
k = K. Then the first K + 1 of the equations (6) can be 
written 

                                               ( ) 

Where 

    

[
 
 
 
   ( )

   ( )

 
   ( )]

 
 
 

         [

  

  

 
  

] 

    [

   ( )    ( )     ( )
   ( )    ( )     (   )

    
   ( )    (   )     ( )

]  

Substituting estimates cxx(k) of the autocovariance 
function of the input xt and estimates cxy(k) of the cross-
covariance function between the input xt and output yt , (7) 
provides K + 1 linear equations for the first K + 1 weights. 
However, these equations, which do not in general 
provide efficient estimates, are cumbersome to solve for 
large K and in any case require knowledge of the point K 
beyond which the vj are effectively zero. The sample 
version of equations (7) represents essentially, apart from 
“end effects,” the least squares normal equations from 
linear regression of yt on xt, xt−1, . . . , xt−K, in which it is 
assumed, implicitly, that the noise nt in (4) is not 
autocorrelated. This is one source of the inefficiency in 
this identification method, which may be called the 
regression method. This method of identification of 
impulse response functions to the case with multiple input 
processes can be generalization . 

IV. IDENTIFICATION OF TRANSFER FUNCTION MODELS 
BY PREWHITENING THE INPUT 

Considerable simplification in the identification process 
would occur if the input to the system were white noise. 
When the choice of the input is at our disposal, there is 
much to recommend such an input. When the original 
input follows some other stochastic process, simplification 
is possible by prewhitening.  

Suppose that the suitably differenced input process xt is 
stationary and is capable of representation by some 
member of the general linear class of autoregressive–
moving average models. Then, given a set of data, we can 
carry out our usual identification and estimation methods 
to obtain a model for the xt process. 

     
  ( )  ( )                          ( ) 

uncorrelated white noise series    . At the same time, 
we can obtain an estimate   

  from the sum of squares of 
the ̂ . If we now apply this same transformation to yt to 
obtain 

     
  ( )  ( )                           

then the model (4) may be written 

    ( )                                      ( ) 

where      is the transformed noise series defined by 

      
  ( )  ( )                           (  ) 

On multiplying (9) on both sides by      and taking 
expectations, we obtain 

   ( )      
                                     (  ) 

where  

   ( )            
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 is the cross covariance at lag +k between the series 
   and   . Thus 

   
   ( )

  
 

 

 in terms of the cross correlations 

   
   ( )  

  

                              (  ) 

Hence, after prewhitening the input, the cross-
correlation function between the prewhitened input and 
correspondingly transformed output is directly 
proportional to the impulse response function. We note 
that the effect of prewhitening is to convert the 
nonorthogonal set of equations (7) into the orthogonal set 
(11). 

In practice, we must substitute the theoretical cross-
correlation function    ( ) in (12) to estimates give 

 ̂  
   ( )  

  

                              (  ) 

The preliminary estimates  ̂  so obtained are again, in 
general, statistically inefficient but can provide a rough 
basis for selecting suitable operators δ(B) and ω(B) in the 
transfer function model. An additional feature of the 
prewhitening method is that because the prewhitened input 
series αt is white noise, so that    ( )    for all k _=0, 
there are considerable simplifications for var[   ( )]. In 
particular, on the assumption that the series αt and βt are 
not cross correlated, the result applies to give simply  

   ( )  (   )   
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