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Abstract

We propose a general scheme for separation of variables in the integrable Hamilto-
nian systems on orbits of the loop algebra s[(2,C) x P(A, A~1). In particular, we illus-
trate the scheme by application to modified Korteweg—de Vries (MKdV), sin(sinh)-
Gordon, nonlinear Schrédinger, and Heisenberg magnetic equations.

Introduction

Let us make a brief review of the problem.

After the fundamental paper [23], B. Dubrovin (see [8]) proposed a separation of vari-
ables for finite gap KdV system. B. Dubrovin shows that the poles of an appropriately
normalized Baker—Akhiezer function for the auxiliary linear spectral problem are the
separation variables. The new variables evolve on a hyperelliptic Riemannian surface R
of genus g. The genus coincides with the number of degrees of freedom of the finite gap
phase space.

In the papers [14,18,20,25] a separation of variables is realized for sin-Gordon equation,
nonlinear Schrodinger equation, and the classic Thirring model. The case of sin-Gordon
equation appears to be completely similar to the KdV system. However, the cases of
nonlinear Schrodinger equation and Thirring model have a distinction: the number of
degrees of freedom is greater by one than the genus of the corresponding spectral curve.
Here the papers [14, 18, 25] suggest the separation of variables on a reduced phase space.
Later, the complex Liouville torus of nonlinear Schrodinger equation was proven to be the
generalized Jacobian of a singular Riemannian surface (see [24]).

The ideas of the early papers on the integration of finite gap systems were generalized
by E. Sklyanin [27,28] and partly extended to the quantum integrable models [29, 30].

At the beginning of the 90s a new technique of separation of variables appeared that
effectively uses bi-hamiltonian, or multi-hamiltonian, properties of integrable systems,
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see [3,5-7] and [10-12,22]. The main result in this direction is the diagonalization of
recursive Nijenhuis operator. In the papers [11,22] the method is applied to KdV and
Boussinesq hierarchies, and classical finite-dimensional systems.

The papers [9,31,32] investigate the connection between the problem of separation of
variables and the parametrization of compact tori by symmetric products of Riemannian
surfaces. According to [31,32], if a change of variables reduces Liouville 1-form to a sum
of meromorphic differentials on the corresponding Riemannian surface, then we say that
the new variables are the separation variables.

We propose a method of separation of variables for integrable Hamiltonian systems that
is connected with the orbit structure of affine Lie algebras. The fact that finite gap phase
space of an integrable soliton hierarchy has an orbital structure was established in [15,16].!
The Hamiltonian systems in question obey the equations of Lax type, and hence the
separation variables are points on the corresponding spectral curve. Note that such systems
are multi-Hamiltonian, which connects our results with the results of [10-12,22].

In Sections 1 and 3 we reproduce the key results from [15,16] about finite gap phase
spaces for integrable equations as orbits of loop algebra. We illustrate our scheme by
the examples of modified Korteweg-de Vries (MKdV) system, sin(sinh)-Gordon equation,
nonlinear Schrodinger equation, and Heisenberg magnetic chain.

This paper is organized as follows. Sections 1 and 2 are devoted to MKdV system and
sin(sinh)-Gordon equation. In Section 1 we construct adjoint Poisson spaces and define
the orbits regarded as phase spaces for MKdV system and sin(sinh)-Gordon equation.
The construction is discussed in more detail in [4]. In Section 2 we describe the scheme
for separation of variables and illustrate it by application to MKdV system and sin(sinh)-
Gordon equation. We show that the separation of variables is achieved on both orbits
simultaneously. In Sections 3 we construct adjoint Poisson spaces and define the orbits
regarded as phase spaces for nonlinear Schrédinger equation and Heisenberg magnetic
chain. In Sections 4 and 5 we similarly consider separation of variables for nonlinear
Schrédinger equation and Heisenberg magnetic chain, accordingly.

Acknowledgements. The authors are grateful to participants of the scientific seminar
‘Integrable Hamiltonian Systems and Solitons’ T. Skrypnyk, D. Leikin, N. Yorgov for useful
remarks and discussions.

1 Phase spaces for MKdV system and sin-Gordon equation
as orbits in s[(2,C) @ P(\, A1)

First, let us recall some constructions from [15,16]. Take the algebra s((2,C) with the
basis

1

Lo 0 1 0 0
H=2 X = Y = .

(0 —%>’ (0 0)’ (1 0>

'The results of [15, 16] are partially covered by [13]. However the authors of [13] took no notice of
the remarkable duality between pairs of soliton equations: MKdV and sin-Gordon equations, KdV and
Liouville equations, nonlinear Schrodinger and Heisenberg magnetic equations, etc. The duality is evident
if one uses the orbital approach. The pairs of dual equations have common Liouville torus and separation
variables. Sometimes, there exists a gauge equivalence between the equations of a pair, and the equivalence
extends to the total infinite phase space [26].
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Suppose P(\, A71) is the algebra of Laurent polynomials in A\. Denote by g the algebra
5l(2,C) ® P(A\,A71). Then

H2m _ )\mH, X2m+1 _ )\mX

)

y2mtl — \mHly (1.1)

is a basis in g.
Consider the operator

d
:2 —_— N
d )\d)\—i-adH,

we call it the operator of principal grading. It is easy to prove that the basis elements (1.1)
are the eigenvectors of d. We call the eigenvalues of d the degrees. The superscripts in the
lefthand sides of (1.1) indicate the corresponding principal degrees of the basis elements.
By g;, | € Z, denote an eigenspace of principal degree [. It is evident that

go2m = SpanC{H2m}7 g2m+1 = SpaﬂC{X2m+17 YQm“}-

Decompose g into two subalgebras

§+:Z% 5—22917 g=g++0-.
1>0 1<0

Further, consider the ad-invariant bilinear forms
(AN, B\))p =res A * T Tr AN)B(A), A(\), B\ €g, keZ. (1.2)
We use the forms to define the spaces dual to g4 and g_.

Example 1. Let k = —1. We have

@) =d++91, @)= (1.3)
1<—2

where (g—)* and (g+)* contain only the nonzero functionals on g.

Example 2. Let k = N > 0. Then

(9-)" = Z 90 (84)" = Z g

I>2N+1 I<2N

Fix N > 0. Consider M¥*+1 C g, where an element fi(\) € MN*! has the form

(e BV
”(A)_('W\) —a(A))
with

N+1 N+1

N
a(X) =Y ANagm, BN =D A" 1, YN =D N1
m=0 m=0 m=0

We call MN*! the N-gap sector of g, or shortly the finite gap sector.



356 J Bernatska and P Holod

Because the factor-algebra g_/ Zlgd ~N_4 81 acts effectively on M N+1 - the coadjoint
action of g_ with respect to the form ( , )_1 is well defined on MY+, The same is true
for the coadjoint action of g, with respect to the form ( , )x, indeed, the factor-algebra
0+/ D 1>an 42 G acts effectively on MN+L

Let C(MN*1) be the space of smooth functions on MY+, For all fy, fo € C(MN+!)
define the first Lie-Poisson bracket by the formula

af1 0
Giph= Y X on "), (1.4

m,n=0 a,b=1

where
w (1) = (AN, (2.1 2 ),
Z"=H™, Zyt=Y™ Z3t=X",
pml = apy, Um?2 = Bm, Hm3 = Ym.-
With the same notation, define the second Lie-Poisson bracket by the formula

al af o
fk=Y 33 ggn(majj % (15)

m,n=0 a,b=1

where
i (N) = (BN, 12, N, 2, "N )
One can see that the functions Son41 and vany1 annihilate the bracket (1.4)

{Bony1, f}1=0, {Yoni1, f11=0  forall feC(MNTY).

Thus, we can assume without loss of generality that

Ban+1 = Yan+1 = const (1.6)

and restrict the bracket (1.4) to the subspace MYt c MN*! with the constraints (1.6),

con

clearly, dim MY+ = 3(N +1). The first Lie-Poisson bracket is nondegenerate on M/ +1.

con
We use the set yo,-1, Bom_1, Qom, m = 0, 1, ..., N, as coordinate functions in MN+1.
We call the fixed coordinates Bon41, von+1 the external parameters.
We see that, on one hand, MY+ c (g_)* with respect to (, )_1, see Example 1, and,

on the other hand, MY+ c (g, )* with respect to { , ), see Example 2

con
In addition to the brackets (1.4) and (1.5), one can define N intermediate brackets with

the Poisson tensors

(k) = (AN, [Z, ™ 2, k=0,...,N —1. (1.7)

a

Now, consider the ad*-invariant function

I\ = —det i(A) = hoya A 4+ hg + - + honp APV L
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Then we have

hy= > (com@on +Y2m-18n-1), v=-1,0,...,2N+1. (1.8)

m+n=v
The Kostant-Adler scheme [1] implies the following assertions.

Proposition 1. All functions h,, v = —1,0, ..., 2N + 1 determined by (1.8) mutually
commute with respect to the brackets (1.4), (1.5), and the intermediate brackets with the
Poisson tensors (1.7).

Proposition 2. The functions h,, v = N,..., 2N, are functionally independent and
annihilate the bracket (1.4).

Consider the algebraic variety O C MXNI' defined by the set of equations h, = c,,
v=N,...,2N, where ¢, are arbitrary fired complex numbers. O is an orbit of coadjoint

action of the subalgebra §_ and dim O = 2(N + 1).

Proposition 3. The functions h,, v = —1,..., N — 1, are functionally independent and
annihilate the bracket (1.5).

Consider the algebraic variety OY C MXNI' defined by the set of equations h, = c,,
v =—1,...,N — 1, where c, are arbitrary fived complex numbers. O is an orbit of

coadjoint action of the subalgebra g4 and dim O = 2(N +1).

It is obvious that the orbits (’){V and (’)év are the symplectic leaves with respect to the
first and the second Lie-Poisson brackets, accordingly.
Further, the functions h_1, hg, ..., hy—_1, regarded as Hamiltonians with respect to

the first Lie-Poisson bracket, generate non-trivial flows on MY +!

O _ (0 1 ——1,0,...,N—1 1.9

aTV_{va V}17 v=-—1LU, ... - 4. ()
The equations (1.9) can be written with the help of the second Lie-Poisson bracket and
the functions hy, ..., hony regarded as Hamiltonians. Namely (see [16]), one has

{Mgw hV}l = _{M?nv hu+N+1}2-

Proposition 4. The system (1.9) reduced to the orbit O} is equivalent to the finite gap
complex MKdV hierarchy.

The system (1.9) reduced to the orbit OF is equivalent to finite gap sin(sinh)-Gordon
equation.

Below we give the outline of the proof which may be found in full detail in [4].
First, rewrite (1.9) in matrix form

I

87—1/ - [thl/-f—N-f—lvﬁ()‘)] = [ﬁ()\),Vlh,/], (110)

where

N
oh oh
72m72 —2m—1 —2m—1
) 2y OBy ,
= <8a2m 0B2m—1 0vom—1 )

3

N
Z( 72m+2N+ Oh Y72m+2N+1+ Oh X2m+2N+1).
Oanom, 8ﬁmel 8’YQmA

m=0
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The hamiltonian flows along 7, and 7., commute, which implies the compatibility condition
in the form of zero curvature equations. In particular, assigning 7y_1 = z, Tny_2 = t, we
obtain
OVahan  OVahan—1
ot ox

+ [Vahan, Vohon—1] =0,

where

aN  Pont1
h p—
Vahan ()"YQNJrl —OéQN> ’

_ aaN—2 + Aoy Ban—1 + ANBan+1
Vohon_1 = .

AMen—1+ A2%Nn41 —(can—2 + AaaN)
Recall that Baopny1 and yon41 are the fixed external parameters.
The reduction of (1.9) onto the orbit OV gives the equation

Oagn _ Oagn-—2
= 1.11
ot or (1.11)
equivalent to MKdV equation with respect to the function asn(z,t) = u(x,t). Indeed,

reducing the equation (1.9) as v = N — 1 to the orbit O} we obtain

1 8&2]\7
= - — a2y |, 1.12
Ban—1 an (621\/ O o 2N> (1.12a)
1 8&2]\7
1= — — a2 1.12b
Y2N-1 2on i1 (62N + Iz o 2N> ) ( )
1 62042]\[
o = — 203 2 . 1.12
QN —2 s ( 52 adan + CzNa2N> (1.12c)

It is readily seen that combining (1.11) and (1.12c) we get the complex MKdV equation.
Two real subalgebras su(2) and su(1,1) = sl(2,R) of s((2,C) give rise to two real MKdV
equations (the so-called £MKdAV).

In the same time, the reduction of (1.9) onto the orbit O leads to sin(sinh)-Gordon
equation. Let O U g_; be the base for the orbit @Y. The 1-parameter subgroup Gy =
exp go parametrizes the base in a natural way

Y-1=+h_1e", fo1=+h_1e"

Then the equations (1.9) imply

10
=—- — 1.13
BN =5 (1.13)
where x = 7y_1 as above; the corresponding flow is called stationary. The Hamiltonian

hy gives rise to an evolutionary flow. In the case of the subalgebra s[(2,R) we have

6%? = 28yn411/h_1 sinhu. (1.14)
Combining (1.13) and (1.14) we obtain sinh-Gordon equation.

In the case of the subalgebra su(2) we have to assign ag, = iagm, azn € R, and
Yom—1 = —5,,_1, therefore Boni1 = vany1 = b, y—1 = —ire', B_1 = —ire™*. Then we
come to sin-Gordon equation

02u
otox

= 4rbsinu.
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2 Separation of variables for MKdV and sin(sinh)-Gordon
equation

Definition 1. Suppose we have the variables (Ag, wy), k =1,..., N + 1, such that
(i) they are quasi-canonically conjugate, that is
ks wits = f(Ak)oke, Ak Aih = {wg, wi b1 = 0,
where f()) is an arbitrary smooth function;

(ii) they reduce Liouville 1-form? to a sum of meromorphic differentials on the corre-
sponding Riemannian surface.

We call (A\g,wy), k=1,...,N + 1, separation variables.

Consider the orbit O, dim O = 2(N + 1). One can parameterize the orbit using
any subset of 2(N + 1) variables from {a2m,, Bom—1,Y2m-1}, m = 0,1,..., N. The most
natural way to obtain the parameterization is to eliminate one of the subsets {f2;,—1} or
{7¥2m-1}. The reason for this is the nilpotency of the basis elements that correspond to
the subsets.

Note that the correspondence between the elimination variables, which we chose to
parameterize the orbit, and the nilpotent elements of the basis of the algebra is a crucial
feature of our scheme and applies to all examples.

We chose to parameterize the orbit (’){V by the variables {~vo;,—1, @2}, m =0,1,..., N,
that is we eliminate the set {(32;,—1}. From the orbit equations we find

N+1
Bom—1 = Z(FJF);,L;(CNJrj —Anyj), m=0,... N+1, cons1 = Pony172en+1, (2.1)
§=0
where
_’YzN+1 Y2N-1 .- 4! V-1 1
0 VoN+1 - -- 3 71
=1 : Do : and A, = ) aomag.
0 0 ceo J2N41  V2N-1 OZTYZJ’V
L 0 0 e 0 ’)/QN+1_
Now, using the parameterization (2.1), we find expressions for the Hamiltonians h_1, hg,
) hN—l
N+1
hp_1 = Z F F+ mj CN+J ANJrj) +A,—1, n=0,...N, (2.2)
m,j=0
where
N 0 0 0
94! Y-1 0 O
I~ = ,
Y2N-1 V2N-3 .- -1 0

2We call Q Liouville 1-form if dQ = w, where w is a symplectic 2-form.
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Note that the expressions (2.2) are linear in ¢,, v = N,...,2N + 1.

Clearly, one can obtain an analogous parametrization of the orbit O by the set
{()égm,’YQm,l}, m = O, e ,N.

To proceed we need to define the characteristic polynomial

Q(3,\) = det(u(X) — 5 I),

where I denotes 2 x 2 identity matrix. By the substitution s = wA~! the equation
Q(32,\) = 0 becomes transformed into the standard equation of a hyperelliptic curve of
genus N + 1

P(w, ) = N2Q(wA™1,\) = w2 — Mh_1 4+ hoA + - - - + han 11 AV T2) = 0. (2.3)

Recall that on the orbit O we have h, = ¢,, v = N, ..., 2N. Denote by (wy, \z) a
root of P(w, A) on the orbit, that is

w2 = Mg (h—1 +hoXs + - An_1 A +en Ay T en i AN T2+ ean A2V (2.4)

We proceed to show that the set {(wg, A\g)}, kK =1,..., N+1, defines another parametriza-
tion of the orbit OI¥. We have to find the explicit relation between the sets {(w1, A1), ...,

(wN+1a )\N+1)} and {a()a a2,y ..., QN V=171 772]\771}-
Solving (2.4) for the Hamiltonians h_1, hg, ..., hy_1 one gets

1
h_1= W[Wl (42) — en Wi (AT — s — oy W (AP 2]
1
ho = W[WQ (%2) — enWo(AVF) — o — o W (AP H2))] (2.5)
....... PR
hy-—1 = W[WNJA (%2) — en Wt (AN = o = v W (A2

where W = [[(\; — A;) is Vandermonde determinant of A1, Ao, ..., An41. By Wi(f(A, w))
we denote the determinant of Vandermonde matrix with the i-th column replaced by
(FOww1)y- -y FON11, wnt1))

On the orbit the formulas (2.2) and (2.5) define the same set of functions. We see that
both (2.2) and (2.5) are linear in ¢,, v = N, ..., 2N + 1. As {¢,} is the set of independent
parameters one can equate the corresponding terms. Namely, we get

Yom-1 __ Winpr (V) m=0 . N
VoN+1 w ’ ’

This implies that the set {\x} is, in fact, the set of roots of the polynomial (X))

7(Ae) =0,
while the variables {wy} satisfy the equalities

w2 = M2 (@2(A) — (M) B(Ak)) = Ak202(A),  k=1,...,N+1
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Theorem 1. Suppose the orbit (’){V has the coordinates (om, Yom—1), m = 0,1,..., N,
as above. Then the new coordinates (A, wy), k =1,..., N + 1, defined by the formulas

v(Ag) =0, wi = eApa(Ag), where €2 =1, (2.6)
have the following properties:
(1) a pair (wg, Ag) is a root of the characteristic polynomial (2.3).

(2) a pair (Mg, wy) is quasi-canonically conjugate with respect to the first Lie-Poisson
bracket (1.4):

At =0, {Awh =e oy,  {wk,wih =0; (2.7)
(3) the corresponding Liouville 1-form is

Q=) A wy dg.
k

Proof. (1) The assertion is a direct consequence of (2.3) and (2.6).
(2) It is evident that

{ Ak, Aivh = 0.

Indeed, since A\, k =1, ..., N 4+ 1, depend only on v2,,—1, m = 0, ..., N, and 79,1
mutually commute, A\; also mutually commute.
Let us calculate the bracket of A\ and wy

o 6)\k 8wl 6)\k 8wl
{)\lﬁ wl}l B Z <672m—1 ao@n ao@n 8'72771—1) {72m_1’ O@n}l-

m,n

From (2.6) we have

O\ O\ Al 0
I _, b Ok T eartt, (2.8)
Doy, Ovam—1 ¥ (Ak) Dy,

Further {v2m-1,2,}1 = —Y2(m4n)41 When m +n < N and {y2m-1,02,}1 = 0 when

m +n > N. Thus, we obtain

Z 5)\m)\n+1,)/2m n)+1
mimen (mtm)+ e Y(A) —v(Ag)

)\ ,w = g
P, wihy v (k) Y(Ak) A= Ak

As k # 1 it is evident that {Ag,w;}1 = 0 while y(\;) = v(Ax) = 0. As k =1 we get

. e y(N) =)
A, W = lim = e\g.
(e N=de Y (k) A= Ay :

Thus,

{ Mo wih = el
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Let us calculate the bracket of wy and w;

o 8wk awl 8wk awl
{wlﬁ wl}l B Z (8727111 ao@n 8a2TL a’Y2ml> {72771—17 a2n}1-

m,n
From (2.6) follows that

O
0Yom—1 ’

8wk
0v2m—1

= ¢ [a(Ar) + A’ (Ag)]

then, using (2.8), we obtain

ALl (M) + M (M) Ak [a(N) + >\l0/(>\l)]> Y(A) = v(A\)

{wi, wih = ( 'Y/()‘k) N ’Y/()\l) Al — Ak

hence
{wg,w }1 = 0.
(3) From (2.7) it follows that Liouville 1-form on the orbit O is

Q=) X wpd
k

The reduction to Liouville torus is done by fixing the values of Hamiltonians h_1,

ho, ..., hn—1. On the torus wy is the algebraic function of Ay due to(2.3). After the
reduction the form €2_; becomes a sum of meromorphic differentials on the Riemann
surface P(w, \) = 0. |

The next theorem is proven similarly.

Theorem 2. Suppose the orbit (’)é\f has the coordinates (am, Yom—1), m = 0,1,...,N.
Then the new coordinates (Mg, wy), k=1,..., N + 1, defined by the formulas

v(Ag) =0, wi = eApa(Ag), where e2=1,
have the following properties:
(1) a pair (wg, \g) is a root of the characteristic polynomial (2.3);

(2) a pair (A\g,wy) is quasi-canonically conjugate with respect to the second Lie-Poisson
bracket (1.5):

{Ak, At =0, {Npswita = —eAY 25y, {wy, w2 = 0; (2.9)

(3) the corresponding Liouwville 1-form is

Oy == en, W Pwpd
k
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Let us summarize our scheme of obtaining the separation variables. First, we param-
eterize the orbit by eliminating a subset of group coordinates corresponding to nilpotent
basis elements. Next, we restrict the curve P(w,\) =0 onto the orbit, where P(w, \) is
the characteristic polynomial

P(w,\) = det(p(A) —w-I),

I is identity matrix. We use the set {Ag,wi}, k =1,..., N + 1, where P(wg, \x) = 0, to
define another parametrization of the orbit. Then, we equate expressions for Hamiltonians
in the coordinates of two parameterizations of the orbit in order to obtain the link between
the two sets of orbit coordinates. Finally, the set {\x, wy} is the set of separation variables.

Further, in Sections 4 and 5 we apply the scheme to nonlinear Schrédinger equation
and Heisenberg magnetic chain.

3 Phase spaces for nonlinear Schrodinger equation and
Heisenberg magnetic chain as orbits in s[(2,C) ® P(z, 2z}

Here we use the construction from Section 1 with homogeneous grading. That is,
xt= x, vl =Y, H' =H (3.1)

be the basis in g ~ s[(2,C) @ P(z,271).

Note the well-known fact that the Lie algebra from Sections 1-2 can be realized as the
subalgebra of sl(2,C) ® P(z,27!) invariant with respect to an automorphism of order 2,
see [17], [19], [21].

By g;, | € Z, denote an eigenspace of homogeneous degree [. It is evident that

g = spanC{Xl, Y, Hl}.
Decompose g into two subalgebras

E+ZZQZ, Ag/f:zgla g=g++9-.
1>0 1<0

Use the same ad-invariant bilinear forms (1.2) to define the spaces dual to g4 and g_.
Fix N > 0. Consider M¥*+! C g, where an element fi(z) € MN+! has the form

1(2) —al(2)
with
N+1 N+1 N+1
a(N) = Z 2"y, B(z) = Z 2" By, v(z) = Z 2™ Y.
m=0 m=0 m=0

As above, we call MV the N-gap sector of g, or shortly the finite gap sector.
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For all fi, fo € C(MN*1) define two Lie-Poisson brackets

N+1
mn 8f1 af2
{fl)f2}1 = m;:()abzl?) ab (_1)811,%8—% (32)
and
N+1
df1 0fs
- mn (N 4 1) 2L 22 _
{f17f2}2 m;()abzlg ab ( + )8N?nalug7 (3 3)
where

n(—1) = (), [Za ™, 2, ),
(N + 1) = (), [Z, ™V Z N v,

Z{n =H™, Z;n =Y™ Zgn =X™,
ml = o, Hm2 = B, Hm3 = Ym-

One can see that MN*1 C (g_)* with respect to ( , )_; and, in the same time,
MNF C (g4)* with respect to (, ni1.
Next, introduce the ad*-invariant function

I(Z) = —detﬁ(z) =hyo+hiz+---+ h2N+22’2N+27

where

hy=">_ (Gmon+Ymba), v=01,...,2N+2. (3.4)

m-+n=v

One can easily prove that the functions ani1, Snv+1, Yn+1 annihilate the bracket (3.2).
In order to obtain nonlinear Schrédinger equation we have to assign

BN+1=IN+1 =0, ant1 = const # 0. (3.5)

After the restriction of the bracket (3.2) to the subspace MY+ ¢ MYN*! with the con-

con

strains (3.5) we get dim MY ! = 3(N +1). The bracket (3.2) is nondegenerate on M2 1.
We use the set Yy, Om, m, m =0,1,... N as coordinate functions in Mggl We call the
fixed coordinate apn 41 the external parameter.

On the other hand, the functions ant1, By+1, YN+1 commute with all Hamiltonians h,,
v=N-+2N+3,...,2N +2, with respect to the bracket (3.3) and give rise to nontrivial
flows on MNF1 therefore are Hamiltonians. That is, the bracket (3.3) is considered on
MNFL dim MN*! = 3(N + 2), and the set Y, Bm, @m, m = 0,1,... N + 1 serve as
coordinate functions in MNT1,

The following assertions are immediately derived from the Kostant-Adler scheme [1].

Proposition 5. All functions h,, v = 0,1,...,2N + 2 determined by (3.4) mutually
commute with respect to the brackets (3.2) and (3.3).
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Proposition 6. The functions h,, v = N +1,...,2N 4+ 1 are functionally independent
and annihilate the bracket (3.2).

Consider the algebraic variety OF C MN+1 defined by the set of equation h, = c,,
v=N-+1,...,2N + 1, where ¢, are arbitrary fized complex numbers. ON is an orbit of

coadjoint action of the subalgebra g_ and dim O = 2(N +1).

Proposition 7. The functions h,, v = 0,...,N + 1 are functionally independent and
annihilate the bracket (3.3).
Consider the algebraic variety (’)éV'H C MNTL defined by the set of equation h, = c,,

v =20,...,N + 1, where ¢, are arbitrary fized complex numbers. Oévﬂ is an orbit of
coadjoint action of the subalgebra gy and dim O ' = 2(N 4 2).
Further, the functions hg, hq, ...,y regarded as Hamiltonians with respect to the
bracket (3.2) give rise to nontrivial flows on M2
oul
87_7: ={ud hy}1, v=0,1,...N. (3.6)
The functions hy o, ..., honyo regarded as Hamiltonians with respect to the bracket (3.3)
give rise to nontrivial flows on MN+1
8 a
?gme:—{M%JM+N+ﬂQ, v=0,1,...N. (3.7)
Tv

Proposition 8. The system (3.6) reduced to the orbit O is equivalent to finite gap
nonlinear Schrodinger equation.

The system (3.7) reduced to the orbit Oéwl is equivalent to finite gap Heisenberg mag-
netic chain.

Here we give the outline of the proof.
Consider the orbit OY. Rewrite (3.6) in matrix form. In particular, assigning 7y = ,
TnN_1 = t, we obtain

onu(z N ~
) _ (), k] = (Vahar i, 2] (3.80)
ou(z N ~
lg(T) = [li(2), Vihn_1] = [Va2hon, i(2)], (3.8b)
where
Vo _ (zoeny1 +oan BN
272N+l YN —(zaony1 +an) )’
Vohon — 220N 11 + zan + an_1 20N + Bn-1
22N YN +IN-1 —(22an41 4 zay +an-1))

We use the real subalgebra su(2) of sl(2,C), that is assign o, = iam, Ym = F0;,, then
the compatibility condition for (3.8) gives

OBy _ 02Bn

24 -9 2 _928xh
iaN+1=5, 920 BN BN Bnhan,
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which coincides with nonlinear Schrédinger equation with respect to the function Sy (x,t) =
¢($,t) as aN4+1 = %, hN =anN = 0,

oy 02
“or T 0a2

Consider the orbit (’)éV'H. Note, that dim (’)éV'H = 2(N + 2) and the set hyi2, hyys,
..., hanyo is insufficient to provide Liouville integrability. Since the functions apny1,
On+1, and vy 41 are in involution with the set hyto, An+s, ..., honyt+o with respect to the
bracket (3.3) one can take any of them as an extra Hamiltonian. Here we chose any;.

Rewrite (3.7) in matrix form. In particular, by assigning 742 = x and 7n4+3 = t we
obtain

+ 2, e2=1.

) — [Vahw 2, A(2)] = [7(2), Viho), (3.9
) — (Wahiss, ) = [3(2), V), (3.90)

where

Viho = 2! (ao Bo >

Yo —Qp
Vihy = 2! <Oé1 B ) 42 <Oéo Bo ) .
71 —aq Y1 —Qq

Let us replace the coordinates au,, Bm, Ym, m = 0,1,..., N + 1, according to the
formulas

Oy = U, 3, Bm = tml — ipm?2, Ym = —Hml — iptm2.
Then
{18 Y2 = Eijkbignin—N—1-

Introduce the vector notation g, = (tm1, #2m, 43m)t, m = 0,1,..., N + 1. Now the
orbit Oév *1 is determined by the equations

(l’l’Ovu’O) = —Cp,
2(po, p1) = —cu,

where (-, -) denotes the dot product. The equations (3.9) are written in the form

Opm
o 2[po, m+1], (3.10a)
0 m
% = 2[“1’ llferl] + 2[“05 ﬂm+2]a (310b)

where [, -] denotes the cross product.
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By reduction of (3.10) to the orbit O ™ we obtain

1 Opo L
M1 = 20 Mo, Or QCONO-

Taking into account the compatibility condition

Opo _ Om
ot ox’
we get
omg 1 Puo| | a dmo
- - -~ _— . 11
ot 2co [,uo, 0x2 2co Ox (3.11)

When ¢; = 0, the equation (3.11) becomes the well-known classic Heisenberg magnetic
equation, also called isotropic Landau-Livshits equation.

4 Separation of variables for nonlinear Schrodinger equa-
tion

Consider the orbit O}, dim O = 2(N + 1). The most natural way to parameterize the
orbit, which we already noted in Section 2, is to eliminate the subset {5} (or {vm}),
m = 0,1,...,N + 1. Then, roots of v(\) (or 5(\)) give a half of separation variables.
This way is applied in [18]. However, in the case of nonlinear Schrodinger equation the
finite gap phase space is determined by the constrains (3.5). That is, the polynomials 3(\)
and «y(A) have the order N, therefore the set of roots is insufficient to parameterize the
orbit O.

In order to solve this problem we change coordinates. We use coordinates as in [24].

Let
(W) =) () +

be the basis in s[(2,C). It is easily shown that [T, S] = S, [T, R] = —R, [S, R] = 2T. Then
" =2"T, R™ =2"R, S =2z"8.

is a basis in g ~ sl(2,C) @ P(z,21). An element 7i(z) € MN*+! has the form



368

J Bernatska and P Holod
Note that t,,, 7, Sm, m =0,1,

..., N + 1 are defined by the formulas:
tm = (1(2), 77" N1 = (2), T-™ N v,

rm = (A(2), RN 1 = (i(z), RV Yy, (4.2)
S = (), STy = ((2), SN

m=0,1,...,N + 1.
With the new coordinates MY+ is defined by constrains

TN+1 = SN41 = v/Can12 # 0.
One can see that the subsets {r,,} and {s,}, m = 0,1,

tN+1 — Oa

..., N + 1 have nilpotent
corresponding basis elements. For the reason we chose one of these subsets, namely {r,,}

here, to parameterize the orbit (’){V . From the orbit equations we find
N+1

rm =Y (ST)hcini = Bjgng1), m=0,...,N+1, conpo=rypasnst, (4.3)
=0

where
SN+1 SN S1 50
0 SN4+1 - S9 S1
+ . . . .
ST = : : . : : and B, = g tmtn.
m-+n=v,
0 0 oo SN+41 SN 0<m,n<N
| 0 0 e 0 SN+1_

Using the parameterization (4.3), we find the expressions for the Hamiltonians hg, h1,
N+1

ahN
_ - +y—1 _
hy, = Z Snm(s )mj (CJ+N+1 - BJ+N+1) + Bp, n=0,...N, (4'4)
mj=0
where
S0 0 0 0
51 S0 0 O
ST = .
SN SN-1 S0 0

To proceed we define the characteristic polynomial

P(w, z) = det(p(z) —w - I). (4.5)
The equation P(w, z) = 0 has a form of the standard equation of a hyperelliptic curve of
genus N + 1

P(w,z) = w2 — (ho 4+ h1z + -+ - + han 222V F2) = 0.

(4.6)
On the orbit O we have h, = c,, v = N +1,...,2N + 1. Denote by (wg, zx) a root
of P(w, z) on the orbit, that is

w2 = ho + hizp + - - hNZ]JCV + CN+1ZIJ€V 1 =+ 02N+22’£N+2. (4.7)
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We proceed to show that the set {(wg,zr)}, & = 0,1,...,N + 1 defines another pa-
rameterization of the orbit O. We have to find the explicit relation between the sets

{(wl, Zl), RN (wN+1, ZN+1)} and {to,tl, ey tN, 80,81, - - ,SN}.
Solving (4.7) for Hamiltonians hg, hy,...,hx one gets

1
ho = = [Wi (w2) — en Wi (2N 1) — - = con 2 Wi (22VF2)]
hy = W[WQ (w2) — en 1 Wa (2N ) — o — oy W (2V12)) (4.8)
....... T
hn = W[WN—H (w2) — en 1 W1 (V) — - — oy W1 (22 2],

where W and W;(f(z,w)) denote the same as in (2.5).

On the orbit O} the formulas (4.4) and (4.8) define the same set of functions. We see
that both (4.4) and (4.8) are linear in ¢,, v = N +1,...,2N + 2. As {¢,} is the set of
independent parameters one can equate the corresponding terms. Namely, we obtain

SN+1 W ) ) ) )

This implies that the set {zx} is the set of roots of the polynomial s(z)
s(zk) =0,

while the variables {wy} satisfy the equalities
w2y, = t2(zx) + s(zk)r(zk) = t2(2), kE=1,...,N+1.

Theorem 3. Suppose the orbit OF has the coordinates (tp,sm), m = 0,1,...,N, as
above. Then the new coordinates (zg,wg), k=1,...,N + 1, defined by the formulas

s(zx) = 0, wy, = et(zk), where €2 =1, (4.9)
have the following properties:
(1) a pair (wg, z) is a root of the characteristic polynomial (4.6).
(2) a pair (zk, wg) is canonically conjugate with respect to the Lie-Poisson bracket (3.2):
{zk,z1}1 =0, {zk, wi }1 = by, {wg, w }1 = 0; (4.10)

(3) the corresponding Liouville 1-form is

O = Z cwy dzy,.
k

Proof. (1) The assertion is a direct consequence of (4.6) and (4.9).
(2) It is evident that

{zr,21}1 =0,
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since zx, k =1,..., N +1 depend only on s,,,, m =0,1,..., N and s,, mutually commute.
Let us calculate the brackets {z;,w;}1 and {wg,w; }1. From (4.9) we have

0z

8Zk _ azk ZIT awl n 8wl oz
N OSm

hads? e, RN Z =t it S !
Oty, ’ OSm s'(zx)’ Oty, =4 OSm et(21)

Further {s,,tn}1 = —Sm4n when m +n < N and {s;,,t,}1 = 0 when m +n > N. Thus,
we obtain

e s(a) —s(z) oot — (TR ) s(z) — s(=)
Lz wih = s'(zk)  z—2 {wk, wih (5’(zk) 5’(zl)> 2 —2
Thus,
{zr,wih = 0y, {wr,wih = 0.

(3) From (4.10) it follows that Liouville 1-form on the orbit O} is

Q,1 = Z EWE dzk.
k

The reduction to Liouville torus is done by fixing the values of Hamiltonians hg, by, ...,
hx. On the torus wy, is the algebraic function of z; due to (4.6). After the reduction the
form ©_; becomes a sum of meromorphic differentials on the Riemann surface P(w, z) = 0.

|

Given a set of pairs (zx,wg), k = 1,..., N 4+ 1, one can find the set (¢, Sm), m =
0,..., N, such that the equations (4.9) are satisfied. Thus, we can define a homomorphism
C2N+2 L ol (4.11)

that takes the set of pairs (z,wy), k = 1,..., N + 1, to a point of the orbit OY. Since
the orbit O} is topologically trivial, this implies that the map (4.11) is global.

After the reduction (4.11) turns into the map that takes the (N +1)th symmetric power
of Riemann surface to Loiuville torus:

Sym{R x R x --- x R} s TNTL,

5 Separation of variables for Heisenberg magnetic chain

Consider the orbit O 2, dim O = 2(N + 2). We chose to parameterize the orbit
Oé\f” by the variables {~,,,an}, m =0,1,..., N + 1, that is we eliminate the set {3,,},
which corresponding basis elements are nilpotent.

From the orbit equation we find

B = () bej— 4, m=0,...N+1, (5.1)
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where
i Yo 0 ce 0 0 i
Y1 Y0 ce 0 0
=] : Do and  A,= > apmon.
YN IN-1 .-~ % O ongﬁ:Lg:KfM
LYN+1 YN - Y1 70

Now, using the parameterization (5.1), we find expressions for the Hamiltonians Ay 2,
hn3, -5 hanyo

N+1
Pt N+1 = Z F:{m(I‘_);é(c] - AJ) +Apiny1, n=1...N+1, (52)
m,j=0
where
0 W1 - 72 m
f+ _ 0 0 e Y3 Y2
0 0 e 0 YN+1

Note that the expressions (5.2) are linear in ¢,, v = N,...,2N + 1.

To proceed we use the same characteristic polynomial (4.5)

On the orbit Oévﬂ we have h,, v =0,1,..., N+1. Denote by (wy, zx) a root of P(w, z)
on the orbit, that is

N+1 N—+2 2N+2
wk2:co+clzk+---cN+1zk+ +hN+QZk+ +"'h2N+22k +2, (5.3)

The set {(wg,2x)}, & = 0,1,..., N + 1 is insufficient to parameterize (’)éV'H. Let us fix

an+1 and vy regarded as Hamiltonians and consider below the reduced orbit Oé\f,:dl. If
we find an explicit relation between the sets {(w1, 21), ..., (WN+1, 2nv+1)} and {ap, a1, .. .,
QanN, Y0, M, -+, YN} we show that the set {(wg,2x)}, £ =0,1,..., N + 1 defines another
parameterization of the orbit Ogjdl.

Theorem 4. Suppose the orbit (’)é\;:dl has the coordinates (cup,ym), m = 0,1,...,N, as

above. Then the new coordinates (zg,wy), k=1,...,N + 1, defined by the formulas
v(zk) =0, wy = ea(z), where €2 =1, (5.4)
have the following properties:
(1) a pair (wg, zx) is a root of the characteristic polynomial (4.6).

(2) a pair (zx,wy) is quasi-canonically conjugate with respect to the Lie-Poisson bracket
(3.3):

{21, 2132 =0, {2k wi}e = —e2) T261, {wy, wi}2 = 0; (5.5)
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(3) the corresponding Liouwville 1-form is

Oy = — Z 5zk_(N+2)wk dzy.
k

Proof. (1) The assertion is a direct consequence of (4.6) and (5.4).
(2) It is evident that

{Zk, 21}2 = 0,

since zx, k =1,...,N+1 depend only on ~,,, m =0,1,..., N and ~,, mutually commute.
Let us calculate the brackets {z,w; }2 and {wg,w;}2. From (5.4) we have
8Zk 8Zk len awl 8wl azl

= O = — _— = n _— = / .
Oay, ’ OV v (z)’ Oay, SE OV =@ (Zl)a'ym

Further {v,,an}t2 = —Ymin-~n—1 when m+n < N+ 1 and {7y, @ }2 = 0 when m+n >
N + 1. Thus, we obtain

N+2 N+2
{2, wi}o = Lz la) = s )
’ v (2k) 2p — 21 ’
{wg, wi}2 = ( R ) 2 o(a) = 7 ()
’ Y(z) V(=) 2L — 2 ’
whence
{2k wite = —20 204, {wg, wi}2 = 0.

(3) From (5.4) it follows that Liouville 1-form on the orbit (’)é\i :dl is

Ong1 = — Zezk_(NH)wk dzp.
k

The reduction to Liouville torus is done by fixing the values of Hamiltonians hg, h1, ...,
hx. On the torus wy, is the algebraic function of z; due to (4.6). After the reduction the
form ©_; becomes a sum of meromorphic differentials on the Riemann surface P(w, z) = 0.

|

Remark 1. When yy11 = 0, ayy1 # 0 one can replace qyy,, Bm, Ym bY tm, SmsTm, M =
0,1,..., N, according to (4.2). In this case the new coordinates (zx,wy), k =1,...,N+1,
defined by the formulas

s(z) =0, wy, = et(zr), where £2 =1. (5.6)
and have the same properties as in Theorem 4.

The results of Theorem 3 and 4 can be summarized as follows. Liouville tori for the
nonlinear Schrodinger equation and Heisenberg magnetic chain have the same number of
parameterizing variables z; and each variable belongs to the hyperelliptic curve (4.6) of
genus g = N + 1. In other words, the common Liouville torus is the Jacobi variety of the
curve (4.6).
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