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Abstract

We propose a general scheme for separation of variables in the integrable Hamilto-
nian systems on orbits of the loop algebra sl(2,C)×P(λ, λ−1). In particular, we illus-
trate the scheme by application to modified Korteweg—de Vries (MKdV), sin(sinh)-
Gordon, nonlinear Schrödinger, and Heisenberg magnetic equations.

Introduction

Let us make a brief review of the problem.

After the fundamental paper [23], B. Dubrovin (see [8]) proposed a separation of vari-
ables for finite gap KdV system. B. Dubrovin shows that the poles of an appropriately
normalized Baker—Akhiezer function for the auxiliary linear spectral problem are the
separation variables. The new variables evolve on a hyperelliptic Riemannian surface R
of genus g. The genus coincides with the number of degrees of freedom of the finite gap
phase space.

In the papers [14,18,20,25] a separation of variables is realized for sin-Gordon equation,
nonlinear Schrödinger equation, and the classic Thirring model. The case of sin-Gordon
equation appears to be completely similar to the KdV system. However, the cases of
nonlinear Schrödinger equation and Thirring model have a distinction: the number of
degrees of freedom is greater by one than the genus of the corresponding spectral curve.
Here the papers [14, 18, 25] suggest the separation of variables on a reduced phase space.
Later, the complex Liouville torus of nonlinear Schrödinger equation was proven to be the
generalized Jacobian of a singular Riemannian surface (see [24]).

The ideas of the early papers on the integration of finite gap systems were generalized
by E. Sklyanin [27,28] and partly extended to the quantum integrable models [29,30].

At the beginning of the 90s a new technique of separation of variables appeared that
effectively uses bi-hamiltonian, or multi-hamiltonian, properties of integrable systems,
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see [3, 5–7] and [10–12, 22]. The main result in this direction is the diagonalization of
recursive Nijenhuis operator. In the papers [11, 22] the method is applied to KdV and
Boussinesq hierarchies, and classical finite-dimensional systems.

The papers [9, 31, 32] investigate the connection between the problem of separation of
variables and the parametrization of compact tori by symmetric products of Riemannian
surfaces. According to [31,32], if a change of variables reduces Liouville 1-form to a sum
of meromorphic differentials on the corresponding Riemannian surface, then we say that
the new variables are the separation variables.

We propose a method of separation of variables for integrable Hamiltonian systems that
is connected with the orbit structure of affine Lie algebras. The fact that finite gap phase
space of an integrable soliton hierarchy has an orbital structure was established in [15,16].1

The Hamiltonian systems in question obey the equations of Lax type, and hence the
separation variables are points on the corresponding spectral curve. Note that such systems
are multi-Hamiltonian, which connects our results with the results of [10–12,22].

In Sections 1 and 3 we reproduce the key results from [15, 16] about finite gap phase
spaces for integrable equations as orbits of loop algebra. We illustrate our scheme by
the examples of modified Korteweg-de Vries (MKdV) system, sin(sinh)-Gordon equation,
nonlinear Schrödinger equation, and Heisenberg magnetic chain.

This paper is organized as follows. Sections 1 and 2 are devoted to MKdV system and
sin(sinh)-Gordon equation. In Section 1 we construct adjoint Poisson spaces and define
the orbits regarded as phase spaces for MKdV system and sin(sinh)-Gordon equation.
The construction is discussed in more detail in [4]. In Section 2 we describe the scheme
for separation of variables and illustrate it by application to MKdV system and sin(sinh)-
Gordon equation. We show that the separation of variables is achieved on both orbits
simultaneously. In Sections 3 we construct adjoint Poisson spaces and define the orbits
regarded as phase spaces for nonlinear Schrödinger equation and Heisenberg magnetic
chain. In Sections 4 and 5 we similarly consider separation of variables for nonlinear
Schrödinger equation and Heisenberg magnetic chain, accordingly.

Acknowledgements. The authors are grateful to participants of the scientific seminar
‘Integrable Hamiltonian Systems and Solitons’ T. Skrypnyk, D. Leikin, N. Yorgov for useful
remarks and discussions.

1 Phase spaces for MKdV system and sin-Gordon equation

as orbits in sl(2, C) ⊗P(λ, λ−1)

First, let us recall some constructions from [15, 16]. Take the algebra sl(2,C) with the
basis

H =

(
1
2 0
0 −1

2

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
.

1The results of [15, 16] are partially covered by [13]. However the authors of [13] took no notice of
the remarkable duality between pairs of soliton equations: MKdV and sin-Gordon equations, KdV and
Liouville equations, nonlinear Schrödinger and Heisenberg magnetic equations, etc. The duality is evident
if one uses the orbital approach. The pairs of dual equations have common Liouville torus and separation
variables. Sometimes, there exists a gauge equivalence between the equations of a pair, and the equivalence
extends to the total infinite phase space [26].
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Suppose P(λ, λ−1) is the algebra of Laurent polynomials in λ. Denote by g̃ the algebra
sl(2,C) ⊗ P(λ, λ−1). Then

H2m = λmH, X2m+1 = λmX, Y 2m+1 = λm+1Y (1.1)

is a basis in g̃.
Consider the operator

d = 2λ
d

dλ
+ adH ;

we call it the operator of principal grading. It is easy to prove that the basis elements (1.1)
are the eigenvectors of d. We call the eigenvalues of d the degrees. The superscripts in the
lefthand sides of (1.1) indicate the corresponding principal degrees of the basis elements.
By gl, l ∈ Z, denote an eigenspace of principal degree l. It is evident that

g2m = spanC{H2m}, g2m+1 = spanC{X2m+1, Y 2m+1}.

Decompose g̃ into two subalgebras

g̃+ =
∑

l>0

gl, g̃− =
∑

l<0

gl, g̃ = g̃+ + g̃−.

Further, consider the ad-invariant bilinear forms

〈A(λ), B(λ)〉k = resλ−k−1 TrA(λ)B(λ), A(λ), B(λ) ∈ g̃, k ∈ Z . (1.2)

We use the forms to define the spaces dual to g̃+ and g̃−.

Example 1. Let k = −1. We have

(g̃−)∗ = g̃+ + g−1, (g̃+)∗ =
∑

l6−2

gl, (1.3)

where (g̃−)∗ and (g̃+)∗ contain only the nonzero functionals on g̃±.

Example 2. Let k = N > 0. Then

(g̃−)∗ =
∑

l>2N+1

gl, (g̃+)∗ =
∑

l62N

gl.

Fix N > 0. Consider MN+1 ⊂ g̃, where an element µ̂(λ) ∈MN+1 has the form

µ̂(λ) =

(
α(λ) β(λ)
γ(λ) −α(λ)

)

with

α(λ) =
N∑

m=0

λmα2m, β(λ) =
N+1∑

m=0

λm−1β2m−1, γ(λ) =
N+1∑

m=0

λmγ2m−1.

We call MN+1 the N -gap sector of g̃, or shortly the finite gap sector.
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Because the factor-algebra g̃−/
∑

l6−2N−4 gl acts effectively on MN+1, the coadjoint

action of g̃− with respect to the form 〈 , 〉−1 is well defined on MN+1. The same is true
for the coadjoint action of g̃+ with respect to the form 〈 , 〉N , indeed, the factor-algebra
g̃+/

∑
l>2N+2 gl acts effectively on MN+1.

Let C(MN+1) be the space of smooth functions on MN+1. For all f1, f2 ∈ C(MN+1)
define the first Lie-Poisson bracket by the formula

{f1, f2}1 =

N∑

m,n=0

∑

a,b=1

3Pmn
ab (−1)

∂f1

∂µa
m

∂f2

∂µb
n

, (1.4)

where

Pmn
ab (−1) = 〈µ̂(λ), [Z−m−1

a , Z−n−1
b

]〉−1,

Zm
1 = Hm, Zm

2 = Y m, Zm
3 = Xm,

µm1 = αm, µm2 = βm, µm3 = γm.

With the same notation, define the second Lie-Poisson bracket by the formula

{f1, f2}2 =

N∑

m,n=0

∑

a,b=1

3Pmn
ab (N)

∂f1

∂µa
m

∂f2

∂µb
n

, (1.5)

where

Pmn
ab (N) = 〈µ̂(λ), [Z−m+N

a , Z−n+N
b

]〉N .

One can see that the functions β2N+1 and γ2N+1 annihilate the bracket (1.4)

{β2N+1, f}1 =0, {γ2N+1, f}1 = 0 for all f ∈ C(MN+1).

Thus, we can assume without loss of generality that

β2N+1 = γ2N+1 = const (1.6)

and restrict the bracket (1.4) to the subspace MN+1
con ⊂ MN+1 with the constraints (1.6),

clearly, dimMN+1
con = 3(N + 1). The first Lie-Poisson bracket is nondegenerate on MN+1

con .
We use the set γ2m−1, β2m−1, α2m, m = 0, 1, . . . , N , as coordinate functions in MN+1

con .
We call the fixed coordinates β2N+1, γ2N+1 the external parameters.

We see that, on one hand, MN+1
con ⊂ (g̃−)∗ with respect to 〈 , 〉−1, see Example 1, and,

on the other hand, MN+1
con ⊂ (g̃+)∗ with respect to 〈 , 〉N , see Example 2.

In addition to the brackets (1.4) and (1.5), one can define N intermediate brackets with
the Poisson tensors

Pmn
ab (k) = 〈µ̂(λ), [Z−m+k

a , Z−n+k
b ]〉k, k = 0, . . . , N − 1. (1.7)

Now, consider the ad∗-invariant function

I(λ) = − det µ̃(λ) = h−1λ
−1 + h0 + · · · + h2N+1λ

2N+1.
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Then we have

hν =
∑

m+n=ν

(α2mα2n + γ2m−1β2n−1) , ν = −1, 0, . . . , 2N + 1. (1.8)

The Kostant-Adler scheme [1] implies the following assertions.

Proposition 1. All functions hν, ν = −1, 0, . . . , 2N + 1 determined by (1.8) mutually
commute with respect to the brackets (1.4), (1.5), and the intermediate brackets with the
Poisson tensors (1.7).

Proposition 2. The functions hν , ν = N, . . . , 2N , are functionally independent and
annihilate the bracket (1.4).

Consider the algebraic variety ON
1 ⊂ MN+1

con defined by the set of equations hν = cν ,
ν = N, . . . , 2N , where cν are arbitrary fixed complex numbers. ON

1 is an orbit of coadjoint
action of the subalgebra g̃− and dimON

1 = 2(N + 1).

Proposition 3. The functions hν, ν = −1, . . . , N − 1, are functionally independent and
annihilate the bracket (1.5).

Consider the algebraic variety ON
2 ⊂ MN+1

con defined by the set of equations hν = cν ,
ν = −1, . . . , N − 1, where cν are arbitrary fixed complex numbers. ON

2 is an orbit of
coadjoint action of the subalgebra g̃+ and dimON

2 = 2(N + 1).

It is obvious that the orbits ON
1 and ON

2 are the symplectic leaves with respect to the
first and the second Lie-Poisson brackets, accordingly.

Further, the functions h−1, h0, . . . , hN−1, regarded as Hamiltonians with respect to
the first Lie-Poisson bracket, generate non-trivial flows on MN+1

con

∂µa
m

∂τν
= {µa

m, hν}1, ν = −1, 0, . . . , N − 1. (1.9)

The equations (1.9) can be written with the help of the second Lie-Poisson bracket and
the functions hN , . . . , h2N regarded as Hamiltonians. Namely (see [16]), one has

{µa
m, hν}1 = −{µa

m, hν+N+1}2.

Proposition 4. The system (1.9) reduced to the orbit ON
1 is equivalent to the finite gap

complex MKdV hierarchy.
The system (1.9) reduced to the orbit ON

2 is equivalent to finite gap sin(sinh)-Gordon
equation.

Below we give the outline of the proof which may be found in full detail in [4].
First, rewrite (1.9) in matrix form

∂µ̂(λ)

∂τν
= [∇2hν+N+1, µ̂(λ)] = [µ̂(λ),∇1hν ], (1.10)

where

∇1h =
N∑

m=0

(
∂h

∂α2m

H−2m−2 +
∂h

∂β2m−1
Y −2m−1 +

∂h

∂γ2m−1
X−2m−1

)
,

∇2h =

N∑

m=0

(
∂h

∂α2m

H−2m+2N +
∂h

∂β2m−1
Y −2m+2N+1 +

∂h

∂γ2m−1
X−2m+2N+1

)
.
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The hamiltonian flows along τν and τν′ commute, which implies the compatibility condition
in the form of zero curvature equations. In particular, assigning τN−1 = x, τN−2 = t, we
obtain

∂∇2h2N

∂t
− ∂∇2h2N−1

∂x
+ [∇2h2N ,∇2h2N−1] = 0,

where

∇2h2N =

(
α2N β2N+1

λγ2N+1 −α2N

)
,

∇2h2N−1 =

(
α2N−2 + λα2N β2N−1 + λβ2N+1

λγ2N−1 + λ2γ2N+1 −(α2N−2 + λα2N)

)
.

Recall that β2N+1 and γ2N+1 are the fixed external parameters.
The reduction of (1.9) onto the orbit ON

1 gives the equation

∂α2N

∂t
=
∂α2N−2

∂x
, (1.11)

equivalent to MKdV equation with respect to the function α2N (x, t) = u(x, t). Indeed,
reducing the equation (1.9) as ν = N − 1 to the orbit ON

1 we obtain

β2N−1 =
1

2β2N+1

(
c2N − ∂α2N

∂x
− α22N

)
, (1.12a)

γ2N−1 =
1

2β2N+1

(
c2N +

∂α2N

∂x
− α22N

)
, (1.12b)

α2N−2 =
1

4β2N+1

(
∂2α2N

∂x2
− 2α32N + 2c2Nα2N

)
. (1.12c)

It is readily seen that combining (1.11) and (1.12c) we get the complex MKdV equation.
Two real subalgebras su(2) and su(1, 1) ∼= sl(2,R) of sl(2,C) give rise to two real MKdV
equations (the so-called ±MKdV).

In the same time, the reduction of (1.9) onto the orbit ON
2 leads to sin(sinh)-Gordon

equation. Let ON
2 ∪ g−1 be the base for the orbit ON

2 . The 1-parameter subgroup G0 =
exp g0 parametrizes the base in a natural way

γ−1 =
√
h−1 e

u, β−1 =
√
h−1 e

−u.

Then the equations (1.9) imply

α2N =
1

2

∂

∂x
u, (1.13)

where x ≡ τN−1 as above; the corresponding flow is called stationary. The Hamiltonian
hN gives rise to an evolutionary flow. In the case of the subalgebra sl(2,R) we have

∂α2N

∂t
= 2β2N+1

√
h−1 sinhu. (1.14)

Combining (1.13) and (1.14) we obtain sinh-Gordon equation.
In the case of the subalgebra su(2) we have to assign α2m = ia2m, a2m ∈ R, and

γ2m−1 = −β∗2m−1, therefore β2N+1 = γ2N+1 = ib, γ−1 = −ireiu, β−1 = −ire−iu. Then we
come to sin-Gordon equation

∂2u

∂t∂x
= 4rb sinu.
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2 Separation of variables for MKdV and sin(sinh)-Gordon

equation

Definition 1. Suppose we have the variables (λk, wk), k = 1, . . . , N + 1, such that

(i) they are quasi-canonically conjugate, that is

{λk, wl}1 = f(λk)δkl, {λk, λl}1 = {wk, wl}1 = 0,

where f(λ) is an arbitrary smooth function;

(ii) they reduce Liouville 1-form2 to a sum of meromorphic differentials on the corre-
sponding Riemannian surface.

We call (λk, wk), k = 1, . . . , N + 1, separation variables.

Consider the orbit ON
1 , dimON

1 = 2(N + 1). One can parameterize the orbit using
any subset of 2(N + 1) variables from {α2m, β2m−1, γ2m−1}, m = 0, 1, . . . , N . The most
natural way to obtain the parameterization is to eliminate one of the subsets {β2m−1} or
{γ2m−1}. The reason for this is the nilpotency of the basis elements that correspond to
the subsets.

Note that the correspondence between the elimination variables, which we chose to
parameterize the orbit, and the nilpotent elements of the basis of the algebra is a crucial
feature of our scheme and applies to all examples.

We chose to parameterize the orbit ON
1 by the variables {γ2m−1, α2m}, m = 0, 1, . . . , N ,

that is we eliminate the set {β2m−1}. From the orbit equations we find

β2m−1 =

N+1∑

j=0

(Γ+)−1
mj(cN+j −AN+j), m = 0, . . . N + 1, c2N+1 = β2N+1γ2N+1, (2.1)

where

Γ+ =




γ2N+1 γ2N−1 . . . γ1 γ−1

0 γ2N+1 . . . γ3 γ1
...

...
. . .

...
...

0 0 . . . γ2N+1 γ2N−1

0 0 . . . 0 γ2N+1




and Aν =
∑

m+n=ν,
06m,n6N

α2mα2n.

Now, using the parameterization (2.1), we find expressions for the Hamiltonians h−1, h0,
. . ., hN−1

hn−1 =

N+1∑

m,j=0

Γ−
nm(Γ+)−1

mj(cN+j −AN+j) +An−1, n = 0, . . . N, (2.2)

where

Γ− =




γ−1 0 . . . 0 0
γ1 γ−1 . . . 0 0
...

...
. . .

...
...

γ2N−1 γ2N−3 . . . γ−1 0


 .

2We call Ω Liouville 1-form if dΩ = ω, where ω is a symplectic 2-form.
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Note that the expressions (2.2) are linear in cν , ν = N, . . . , 2N + 1.

Clearly, one can obtain an analogous parametrization of the orbit ON
2 by the set

{α2m, γ2m−1}, m = 0, . . . , N .

To proceed we need to define the characteristic polynomial

Q(κ, λ) = det
(
µ(λ) − κ · I

)
,

where I denotes 2 × 2 identity matrix. By the substitution κ = wλ−1 the equation
Q(κ, λ) = 0 becomes transformed into the standard equation of a hyperelliptic curve of
genus N + 1

P (w, λ) = λ2Q(wλ−1, λ) = w2 − λ(h−1 + h0λ+ · · · + h2N+1λ
2N+2) = 0. (2.3)

Recall that on the orbit ON
1 we have hν = cν , ν = N , . . . , 2N . Denote by (wk, λk) a

root of P (w, λ) on the orbit, that is

wk2 = λk(h−1 +h0λk + · · ·hN−1λ
N
k + cNλ

N+1
k + cN+1λ

N+2
k + · · ·+ c2N+1λ

2N+2
k ). (2.4)

We proceed to show that the set {(wk, λk)}, k = 1, . . . , N+1, defines another parametriza-
tion of the orbit ON

1 . We have to find the explicit relation between the sets {(w1, λ1), . . . ,
(wN+1, λN+1)} and {α0, α2, . . . , α2N , γ−1, γ1, . . . , γ2N−1}.

Solving (2.4) for the Hamiltonians h−1, h0, . . . , hN−1 one gets

h−1 =
1

W
[W1

(
w2
λ

)
− cNW1(λ

N+1) − · · · − c2N+1W1(λ
2N+2)]

h0 =
1

W
[W2

(
w2
λ

)
− cNW2(λ

N+1) − · · · − c2N+1W2(λ
2N+2)]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

hN−1 =
1

W
[WN+1

(
w2
λ

)
− cNWN+1(λ

N+1) − · · · − c2N+1WN+1(λ
2N+2)].

(2.5)

where W =
∏

(λi −λj) is Vandermonde determinant of λ1, λ2, . . . , λN+1. By Wi(f(λ,w))
we denote the determinant of Vandermonde matrix with the i-th column replaced by(
f(λ1, w1), . . . , f(λN+1, wN+1)

)t
.

On the orbit the formulas (2.2) and (2.5) define the same set of functions. We see that
both (2.2) and (2.5) are linear in cν , ν = N, . . . , 2N + 1. As {cν} is the set of independent
parameters one can equate the corresponding terms. Namely, we get

γ2m−1

γ2N+1
= −Wm+1(λ

N+1)

W
, m = 0, . . . N.

This implies that the set {λk} is, in fact, the set of roots of the polynomial γ(λ)

γ(λk) = 0,

while the variables {wk} satisfy the equalities

wk2 = λk2 (α2(λk) − γ(λk)β(λk)) = λk2α2(λk), k = 1, . . . , N + 1.
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Theorem 1. Suppose the orbit ON
1 has the coordinates (α2m, γ2m−1), m = 0, 1, . . . , N ,

as above. Then the new coordinates (λk, wk), k = 1, . . . , N + 1, defined by the formulas

γ(λk) = 0, wk = ελkα(λk), where ε2 = 1, (2.6)

have the following properties:

(1) a pair (wk, λk) is a root of the characteristic polynomial (2.3).

(2) a pair (λk, wk) is quasi-canonically conjugate with respect to the first Lie-Poisson
bracket (1.4):

{λk, λl}1 = 0, {λk, wl}1 = ελkδkl, {wk, wl}1 = 0; (2.7)

(3) the corresponding Liouville 1-form is

Ω−1 =
∑

k

λ−1
k
wk dλk.

Proof. (1) The assertion is a direct consequence of (2.3) and (2.6).
(2) It is evident that

{λk, λl}1 = 0.

Indeed, since λk, k = 1, . . . , N + 1, depend only on γ2m−1, m = 0, . . . , N , and γ2m−1

mutually commute, λk also mutually commute.
Let us calculate the bracket of λk and wl

{λk, wl}1 =
∑

m,n

(
∂λk

∂γ2m−1

∂wl

∂α2n

− ∂λk

∂α2n

∂wl

∂γ2m−1

)
{γ2m−1, α2n}1.

From (2.6) we have

∂λk

∂α2n

= 0,
∂λk

∂γ2m−1
= − λm

k

γ′(λk)
,

∂wl

∂α2n

= ελn+1
l . (2.8)

Further {γ2m−1, α2n}1 = −γ2(m+n)+1 when m + n < N and {γ2m−1, α2n}1 = 0 when
m+ n > N . Thus, we obtain

{λk, wl}1 =

∑
m+n<N

ελm
k λ

n+1
l γ2(m+n)+1

γ′(λk)
=

ελl

γ′(λk)

γ(λl) − γ(λk)

λl − λk

.

As k 6= l it is evident that {λk, wl}1 = 0 while γ(λl) = γ(λk) = 0. As k = l we get

{λk, wk}1 = lim
λl→λk

ελl

γ′(λk)

γ(λl) − γ(λk)

λl − λk

= ελk.

Thus,

{λk, wl}1 = ελkδkl.
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Let us calculate the bracket of wk and wl

{wk, wl}1 =
∑

m,n

(
∂wk

∂γ2m−1

∂wl

∂α2n

− ∂wk

∂α2n

∂wl

∂γ2m−1

)
{γ2m−1, α2n}1.

From (2.6) follows that

∂wk

∂γ2m−1
= ε

[
α(λk) + λkα

′(λk)
] ∂λk

∂γ2m−1
,

then, using (2.8), we obtain

{wk, wl}1 =

(
λl [α(λk) + λkα

′(λk)]

γ′(λk)
− λk [α(λl) + λlα

′(λl)]

γ′(λl)

)
γ(λl) − γ(λk)

λl − λk

,

hence

{wk, wl}1 = 0.

(3) From (2.7) it follows that Liouville 1-form on the orbit ON
1 is

Ω−1 =
∑

k

ελ−1
k wk dλk.

The reduction to Liouville torus is done by fixing the values of Hamiltonians h−1,
h0, . . . , hN−1. On the torus wk is the algebraic function of λk due to(2.3). After the
reduction the form Ω−1 becomes a sum of meromorphic differentials on the Riemann
surface P (w, λ) = 0. �

The next theorem is proven similarly.

Theorem 2. Suppose the orbit ON
2 has the coordinates (α2m, γ2m−1), m = 0, 1, . . . , N .

Then the new coordinates (λk, wk), k = 1, . . . , N + 1, defined by the formulas

γ(λk) = 0, wk = ελkα(λk), where ε2 = 1,

have the following properties:

(1) a pair (wk, λk) is a root of the characteristic polynomial (2.3);

(2) a pair (λk, wk) is quasi-canonically conjugate with respect to the second Lie-Poisson
bracket (1.5):

{λk, λl}2 = 0, {λk, wl}2 = −ελN+2
k

δkl, {wk, wl}2 = 0; (2.9)

(3) the corresponding Liouville 1-form is

ΩN = −
∑

k

ελ
−(N+2)
k

wk dλk.
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Let us summarize our scheme of obtaining the separation variables. First, we param-
eterize the orbit by eliminating a subset of group coordinates corresponding to nilpotent
basis elements. Next, we restrict the curve P (w, λ)= 0 onto the orbit, where P (w, λ) is
the characteristic polynomial

P (w, λ) = det
(
µ(λ) − w · I

)
,

I is identity matrix. We use the set {λk, wk}, k = 1, . . . , N + 1, where P (wk, λk) = 0, to
define another parametrization of the orbit. Then, we equate expressions for Hamiltonians
in the coordinates of two parameterizations of the orbit in order to obtain the link between
the two sets of orbit coordinates. Finally, the set {λk, wk} is the set of separation variables.

Further, in Sections 4 and 5 we apply the scheme to nonlinear Schrödinger equation
and Heisenberg magnetic chain.

3 Phase spaces for nonlinear Schrödinger equation and

Heisenberg magnetic chain as orbits in sl(2, C) ⊗P(z, z−1)

Here we use the construction from Section 1 with homogeneous grading. That is,

X l = zlX, Y l = zlY, H l = zlH (3.1)

be the basis in g̃ ≃ sl(2,C)
⊗P(z, z−1).

Note the well-known fact that the Lie algebra from Sections 1–2 can be realized as the
subalgebra of sl(2,C) ⊗ P(z, z−1) invariant with respect to an automorphism of order 2,
see [17], [19], [21].

By gl, l ∈ Z, denote an eigenspace of homogeneous degree l. It is evident that

gl = spanC{X l, Y l, H l}.

Decompose g̃ into two subalgebras

g̃+ =
∑

l>0

gl, g̃− =
∑

l<0

gl, g̃ = g̃+ + g̃−.

Use the same ad-invariant bilinear forms (1.2) to define the spaces dual to g̃+ and g̃−.

Fix N > 0. Consider MN+1 ⊂ g̃, where an element µ̂(z) ∈MN+1 has the form

µ̂(z) =

(
α(z) β(z)
γ(z) −α(z)

)

with

α(λ) =
N+1∑

m=0

zmαm, β(z) =
N+1∑

m=0

zmβm, γ(z) =
N+1∑

m=0

zmγm.

As above, we call MN+1 the N -gap sector of g̃, or shortly the finite gap sector.
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For all f1, f2 ∈ C(MN+1) define two Lie-Poisson brackets

{f1, f2}1 =

N+1∑

m,n=0

∑

a,b=1

3Pmn
ab (−1)

∂f1

∂µa
m

∂f2

∂µb
n

(3.2)

and

{f1, f2}2 =
N+1∑

m,n=0

∑

a,b=1

3Pmn
ab (N + 1)

∂f1

∂µa
m

∂f2

∂µb
n

, (3.3)

where

Pmn
ab (−1) = 〈µ̂(z), [Z−m−1

a , Z−n−1
b ]〉−1,

Pmn
ab (N + 1) = 〈µ̂(z), [Z−m+N+1

a , Z−n+N+1
b

]〉N+1,

Zm
1 = Hm, Zm

2 = Y m, Zm
3 = Xm,

µm1 = αm, µm2 = βm, µm3 = γm.

One can see that MN+1 ⊂ (g̃−)∗ with respect to 〈 , 〉−1 and, in the same time,
MN+1 ⊂ (g̃+)∗ with respect to 〈 , 〉N+1.

Next, introduce the ad∗-invariant function

I(z) = − det µ̃(z) = h0 + h1z + · · · + h2N+2z
2N+2,

where

hν =
∑

m+n=ν

(αmαn + γmβn) , ν = 0, 1, . . . , 2N + 2. (3.4)

One can easily prove that the functions αN+1, βN+1, γN+1 annihilate the bracket (3.2).
In order to obtain nonlinear Schrödinger equation we have to assign

βN+1 = γN+1 = 0, αN+1 = const 6= 0. (3.5)

After the restriction of the bracket (3.2) to the subspace MN+1
con ⊂ MN+1 with the con-

strains (3.5) we get dimMN+1
con = 3(N +1). The bracket (3.2) is nondegenerate on MN+1

con .
We use the set γm, βm, αm, m = 0, 1, . . . N as coordinate functions in MN+1

con . We call the
fixed coordinate αN+1 the external parameter.

On the other hand, the functions αN+1, βN+1, γN+1 commute with all Hamiltonians hν ,
ν = N + 2, N + 3, . . . , 2N + 2, with respect to the bracket (3.3) and give rise to nontrivial
flows on MN+1, therefore are Hamiltonians. That is, the bracket (3.3) is considered on
MN+1, dimMN+1 = 3(N + 2), and the set γm, βm, αm, m = 0, 1, . . . N + 1 serve as
coordinate functions in MN+1.

The following assertions are immediately derived from the Kostant-Adler scheme [1].

Proposition 5. All functions hν , ν = 0, 1, . . . , 2N + 2 determined by (3.4) mutually
commute with respect to the brackets (3.2) and (3.3).
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Proposition 6. The functions hν , ν = N + 1, . . . , 2N + 1 are functionally independent
and annihilate the bracket (3.2).

Consider the algebraic variety ON
1 ⊂ MN+1

con defined by the set of equation hν = cν,
ν = N + 1, . . . , 2N + 1, where cν are arbitrary fixed complex numbers. ON

1 is an orbit of
coadjoint action of the subalgebra g̃− and dimON

1 = 2(N + 1).

Proposition 7. The functions hν, ν = 0, . . . , N + 1 are functionally independent and
annihilate the bracket (3.3).

Consider the algebraic variety ON+1
2 ⊂ MN+1 defined by the set of equation hν = cν,

ν = 0, . . . , N + 1, where cν are arbitrary fixed complex numbers. ON+1
2 is an orbit of

coadjoint action of the subalgebra g̃+ and dimON+1
2 = 2(N + 2).

Further, the functions h0, h1, . . . , hN regarded as Hamiltonians with respect to the
bracket (3.2) give rise to nontrivial flows on MN+1

con

∂µa
m

∂τν
= {µa

m, hν}1, ν = 0, 1, . . . N. (3.6)

The functions hN+2, . . . , h2N+2 regarded as Hamiltonians with respect to the bracket (3.3)
give rise to nontrivial flows on MN+1

∂µa
m

∂τν
= −{µa

m, hν+N+2}2, ν = 0, 1, . . . N. (3.7)

Proposition 8. The system (3.6) reduced to the orbit ON
1 is equivalent to finite gap

nonlinear Schrödinger equation.
The system (3.7) reduced to the orbit ON+1

2 is equivalent to finite gap Heisenberg mag-
netic chain.

Here we give the outline of the proof.
Consider the orbit ON

1 . Rewrite (3.6) in matrix form. In particular, assigning τN = x,
τN−1 = t, we obtain

∂µ̂(z)

∂x
= [µ̂(z),∇1hN ] = [∇2h2N+1, µ̂(z)], (3.8a)

∂µ̂(z)

∂τ
= [µ̂(z),∇1hN−1] = [∇2h2N , µ̂(z)], (3.8b)

where

∇2h2N+1 =

(
zα2N+1 + αN βN

γN −(zα2N+1 + αN )

)
,

∇2h2N =

(
z2α2N+1 + zαN + αN−1 zβN + βN−1

zγN + γN−1 −(z2αN+1 + zαN + αN−1)

)
.

We use the real subalgebra su(2) of sl(2,C), that is assign αm = iam, γm = ∓β∗m, then
the compatibility condition for (3.8) gives

2iaN+1
∂βN

∂t
= −∂2βN

∂x2
− 2βN |βN |2 − 2βNh2N ,
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which coincides with nonlinear Schrödinger equation with respect to the function βN (x, t) =
ψ(x, t) as aN+1 = 1

2 , hN = aN = 0,

i
∂ψ

∂t
= −∂2ψ

∂x2
+ 2εψ|ψ|2, ε2 = 1.

Consider the orbit ON+1
2 . Note, that dimON+1

2 = 2(N + 2) and the set hN+2, hN+3,
. . . , h2N+2 is insufficient to provide Liouville integrability. Since the functions αN+1,
βN+1, and γN+1 are in involution with the set hN+2, hN+3, . . . , h2N+2 with respect to the
bracket (3.3) one can take any of them as an extra Hamiltonian. Here we chose αN+1.

Rewrite (3.7) in matrix form. In particular, by assigning τN+2 = x and τN+3 = t we
obtain

∂µ̂(z)

∂x
= [∇2hN+2, µ̂(z)] = [µ̂(z),∇1h0], (3.9a)

∂µ̂(z)

∂t
= [∇2hN+3, µ̂(z)] = [µ̂(z),∇1h1], (3.9b)

where

∇1h0 = z−1

(
α0 β0

γ0 −α0

)
,

∇1h1 = z−1

(
α1 β1

γ1 −α1

)
+ z−2

(
α0 β0

γ1 −α1

)
.

Let us replace the coordinates αm, βm, γm, m = 0, 1, . . . , N + 1, according to the
formulas

αm = iµm3, βm = µm1 − iµm2, γm = −µm1 − iµm2.

Then

{µi
m, µ

j
n}2 = εijkµ

k
m+n−N−1.

Introduce the vector notation µm = (µm1, µ2m, µ3m)t, m = 0, 1, . . . , N + 1. Now the
orbit ON+1

2 is determined by the equations

(µ0,µ0) = −c0,
2(µ0,µ1) = −c1,
. . . . . . . . . . . . . . . .∑
m+n=N+1

(µm,µn) = −cN+1,

where (·, ·) denotes the dot product. The equations (3.9) are written in the form

∂µm

∂x
= 2[µ0,µm+1], (3.10a)

∂µm

∂t
= 2[µ1,µm+1] + 2[µ0,µm+2], (3.10b)

where [·, ·] denotes the cross product.
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By reduction of (3.10) to the orbit ON+1
2 we obtain

µ1 =
1

2c0

[
µ0,

∂µ0

∂x

]
+

c1
2c0

µ0.

Taking into account the compatibility condition

∂µ0

∂t
=
∂µ1

∂x
,

we get

∂µ0

∂t
=

1

2c0

[
µ0,

∂2
µ0

∂x2

]
+

c1
2c0

∂µ0

∂x
. (3.11)

When c1 = 0, the equation (3.11) becomes the well-known classic Heisenberg magnetic
equation, also called isotropic Landau-Livshits equation.

4 Separation of variables for nonlinear Schrödinger equa-

tion

Consider the orbit ON
1 , dimON

1 = 2(N + 1). The most natural way to parameterize the
orbit, which we already noted in Section 2, is to eliminate the subset {βm} (or {γm}),
m = 0, 1, . . . , N + 1. Then, roots of γ(λ) (or β(λ)) give a half of separation variables.
This way is applied in [18]. However, in the case of nonlinear Schrödinger equation the
finite gap phase space is determined by the constrains (3.5). That is, the polynomials β(λ)
and γ(λ) have the order N , therefore the set of roots is insufficient to parameterize the
orbit ON

1 .

In order to solve this problem we change coordinates. We use coordinates as in [24].
Let

T =

(
0 −1

2
−1

2 0

)
, R =

(
1
2 −1

2
1
2 −1

2

)
, S =

(
1
2

1
2

−1
2 −1

2

)
, (4.1)

be the basis in sl(2,C). It is easily shown that [T, S] = S, [T,R] = −R, [S,R] = 2T . Then

Tm = zmT, Rm = zmR, Sm = zmS.

is a basis in g̃ ≃ sl(2,C) ⊗ P(z, z−1). An element µ̂(z) ∈MN+1 has the form

µ̂(z) =

(
1
2 [r(z) + s(z)] 1

2 [r(z) − s(z) − 2t(z)]
1
2 [s(z) − r(z) − 2t(z)] −1

2 [r(z) + s(z)]

)
,

where

t(z) =
N+1∑

m=0

zmtm, r(z) =
N+1∑

m=0

zmrm, s(z) =
N+1∑

m=0

zmsm.
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Note that tm, rm, sm, m = 0, 1, . . . , N + 1 are defined by the formulas:

tm = 〈µ̂(z), T−m−1〉−1 = 〈µ̂(z), T−m+N+1〉N+1,

rm = 〈µ̂(z), R−m−1〉−1 = 〈µ̂(z), R−m+N+1〉N+1, (4.2)

sm = 〈µ̂(z), S−m−1〉−1 = 〈µ̂(z), S−m+N+1〉N+1, m = 0, 1, . . . , N + 1.

With the new coordinates MN+1
con is defined by constrains

tN+1 = 0, rN+1 = sN+1 =
√
c2N+2 6= 0.

One can see that the subsets {rm} and {sm}, m = 0, 1, . . . , N + 1 have nilpotent
corresponding basis elements. For the reason we chose one of these subsets, namely {rm}
here, to parameterize the orbit ON

1 . From the orbit equations we find

rm =

N+1∑

j=0

(S+)−1
mj(cj+N+1 −Bj+N+1), m = 0, . . . , N + 1, c2N+2 = rN+1sN+1, (4.3)

where

S+ =




sN+1 sN . . . s1 s0
0 sN+1 . . . s2 s1
...

...
. . .

...
...

0 0 . . . sN+1 sN

0 0 . . . 0 sN+1




and Bν =
∑

m+n=ν,
06m,n6N

tmtn.

Using the parameterization (4.3), we find the expressions for the Hamiltonians h0, h1, . . . , hN

hn =

N+1∑

mj=0

S−
nm(S+)−1

mj(cj+N+1 −Bj+N+1) +Bn, n = 0, . . . N, (4.4)

where

S− =




s0 0 . . . 0 0
s1 s0 . . . 0 0
...

...
. . .

...
...

sN sN−1 . . . s0 0


 .

To proceed we define the characteristic polynomial

P (w, z) = det
(
µ(z) − w · I

)
. (4.5)

The equation P (w, z) = 0 has a form of the standard equation of a hyperelliptic curve of
genus N + 1

P (w, z) = w2 − (h0 + h1z + · · · + h2N+2z
2N+2) = 0. (4.6)

On the orbit ON
1 we have hν = cν , ν = N + 1, . . . , 2N + 1. Denote by (wk, zk) a root

of P (w, z) on the orbit, that is

wk2 = h0 + h1zk + · · · hNz
N
k + cN+1z

N+1
k + · · · c2N+2z

2N+2
k . (4.7)
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We proceed to show that the set {(wk, zk)}, k = 0, 1, . . . , N + 1 defines another pa-
rameterization of the orbit ON

1 . We have to find the explicit relation between the sets
{(w1, z1), . . . , (wN+1, zN+1)} and {t0, t1, . . . , tN , s0, s1, . . . , sN}.

Solving (4.7) for Hamiltonians h0, h1, . . . , hN one gets

h0 =
1

W
[W1 (w2) − cN+1W1(z

N+1) − · · · − c2N+2W1(z
2N+2)]

h1 =
1

W
[W2 (w2) − cN+1W2(z

N+1) − · · · − c2N+2W2(z
2N+2)]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hN =
1

W
[WN+1 (w2) − cN+1WN+1(z

N+1) − · · · − c2N+2WN+1(z
2N+2)],

(4.8)

where W and Wi(f(z,w)) denote the same as in (2.5).
On the orbit ON

1 the formulas (4.4) and (4.8) define the same set of functions. We see
that both (4.4) and (4.8) are linear in cν , ν = N + 1, . . . , 2N + 2. As {cν} is the set of
independent parameters one can equate the corresponding terms. Namely, we obtain

sm

sN+1
=
Wm+1(z

N+1)

W
, m = 0, 1, . . . , N.

This implies that the set {zk} is the set of roots of the polynomial s(z)

s(zk) = 0,

while the variables {wk} satisfy the equalities

w2k = t2(zk) + s(zk)r(zk) = t2(zk), k = 1, . . . , N + 1.

Theorem 3. Suppose the orbit ON
1 has the coordinates (tm, sm), m = 0, 1, . . . , N , as

above. Then the new coordinates (zk, wk), k = 1, . . . , N + 1, defined by the formulas

s(zk) = 0, wk = εt(zk), where ε2 = 1, (4.9)

have the following properties:

(1) a pair (wk, zk) is a root of the characteristic polynomial (4.6).

(2) a pair (zk, wk) is canonically conjugate with respect to the Lie-Poisson bracket (3.2):

{zk, zl}1 = 0, {zk, wl}1 = εδkl, {wk, wl}1 = 0; (4.10)

(3) the corresponding Liouville 1-form is

Ω−1 =
∑

k

εwk dzk.

Proof. (1) The assertion is a direct consequence of (4.6) and (4.9).
(2) It is evident that

{zk, zl}1 = 0,
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since zk, k = 1, . . . , N +1 depend only on sm, m = 0, 1, . . . , N and sm mutually commute.

Let us calculate the brackets {zk, wl}1 and {wk, wl}1. From (4.9) we have

∂zk
∂tn

= 0,
∂zk
∂sm

= − zm
k

s′(zk)
,

∂wl

∂tn
= εzn

l ,
∂wl

∂sm

= εt′(zl)
∂zl
∂sm

.

Further {sm, tn}1 = −sm+n when m+ n 6 N and {sm, tn}1 = 0 when m+ n > N . Thus,
we obtain

{zk, wl}1 =
ε

s′(zk)

s(zk) − s(zl)

zk − zl
, {wk, wl}1 =

(
t′(zk)

s′(zk)
− t′(zl)

s′(zl)

)
s(zk) − s(zl)

zk − zl
.

Thus,

{zk, wl}1 = εδkl, {wk, wl}1 = 0.

(3) From (4.10) it follows that Liouville 1-form on the orbit ON
1 is

Ω−1 =
∑

k

εwk dzk.

The reduction to Liouville torus is done by fixing the values of Hamiltonians h0, h1, . . . ,
hN . On the torus wk is the algebraic function of zk due to (4.6). After the reduction the
form Ω−1 becomes a sum of meromorphic differentials on the Riemann surface P (w, z)= 0.

�

Given a set of pairs (zk, wk), k = 1, . . . , N + 1, one can find the set (tm, sm), m =
0, . . . , N , such that the equations (4.9) are satisfied. Thus, we can define a homomorphism

C
2N+2 → ON

1 (4.11)

that takes the set of pairs (zk, wk), k = 1, . . . , N + 1, to a point of the orbit ON
1 . Since

the orbit ON
1 is topologically trivial, this implies that the map (4.11) is global.

After the reduction (4.11) turns into the map that takes the (N+1)th symmetric power
of Riemann surface to Loiuville torus:

Sym{R ×R× · · · × R} 7→ TN+1.

5 Separation of variables for Heisenberg magnetic chain

Consider the orbit ON+2
2 , dimON+2

2 = 2(N + 2). We chose to parameterize the orbit
ON+2

2 by the variables {γm, αm}, m = 0, 1, . . . , N + 1, that is we eliminate the set {βm},
which corresponding basis elements are nilpotent.

From the orbit equation we find

βm =
N+1∑

j=0

(Γ̃−)−1
mj(cj − Ãj), m = 0, . . . N + 1, (5.1)
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where

Γ̃− =




γ0 0 . . . 0 0
γ1 γ0 . . . 0 0
...

...
. . .

...
...

γN γN−1 . . . γ0 0
γN+1 γN . . . γ1 γ0




and Ãν =
∑

m+n=ν,
06m,n6N+1

αmαn.

Now, using the parameterization (5.1), we find expressions for the Hamiltonians hN+2,
hN+3, . . . , h2N+2

hn+N+1 =

N+1∑

m,j=0

Γ̃+
nm(Γ̃−)−1

mj(cj − Ãj) + Ãn+N+1, n = 1, . . . N + 1, (5.2)

where

Γ̃+ =




0 γN+1 . . . γ2 γ1

0 0 . . . γ3 γ2
...

...
. . .

...
...

0 0 . . . 0 γN+1


 .

Note that the expressions (5.2) are linear in cν , ν = N, . . . , 2N + 1.

To proceed we use the same characteristic polynomial (4.5)

On the orbit ON+1
2 we have hν , ν = 0, 1, . . . , N+1. Denote by (wk, zk) a root of P (w, z)

on the orbit, that is

wk2 = c0 + c1zk + · · · cN+1z
N+1
k + hN+2z

N+2
k + · · ·h2N+2z

2N+2
k . (5.3)

The set {(wk, zk)}, k = 0, 1, . . . , N + 1 is insufficient to parameterize ON+1
2 . Let us fix

αN+1 and γN+1 regarded as Hamiltonians and consider below the reduced orbit ON+1
2red . If

we find an explicit relation between the sets {(w1, z1), . . . , (wN+1, zN+1)} and {α0, α1, . . . ,
αN , γ0, γ1, . . . , γN} we show that the set {(wk, zk)}, k = 0, 1, . . . , N + 1 defines another
parameterization of the orbit ON+1

2red
.

Theorem 4. Suppose the orbit ON+1
2red has the coordinates (αm, γm), m = 0, 1, . . . , N , as

above. Then the new coordinates (zk, wk), k = 1, . . . , N + 1, defined by the formulas

γ(zk) = 0, wk = εα(zk), where ε2 = 1, (5.4)

have the following properties:

(1) a pair (wk, zk) is a root of the characteristic polynomial (4.6).

(2) a pair (zk, wk) is quasi-canonically conjugate with respect to the Lie-Poisson bracket
(3.3):

{zk, zl}2 = 0, {zk, wl}2 = −εzN+2
k

δkl, {wk, wl}2 = 0; (5.5)
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(3) the corresponding Liouville 1-form is

ΩN+1 = −
∑

k

εz
−(N+2)
k

wk dzk.

Proof. (1) The assertion is a direct consequence of (4.6) and (5.4).
(2) It is evident that

{zk, zl}2 = 0,

since zk, k = 1, . . . , N +1 depend only on γm, m = 0, 1, . . . , N and γm mutually commute.
Let us calculate the brackets {zk, wl}2 and {wk, wl}2. From (5.4) we have

∂zk
∂αn

= 0,
∂zk
∂γm

= − zm
k

γ′(zk)
,

∂wl

∂αn

= εzn
l ,

∂wl

∂γm

= εα′(zl)
∂zl
∂γm

.

Further {γm, αn}2 = −γm+n−N−1 when m+n 6 N + 1 and {γm, αn}2 = 0 when m+ n >
N + 1. Thus, we obtain

{zk, wl}2 =
1

γ′(zk)

zN+2
k γ(zl) − zN+2

l γ(zk)

zk − zl
,

{wk, wl}2 =

(
1

γ′(zk)
− 1

γ′(zl)

)
zN+2
k

γ(zl) − zN+2
l

γ(zk)

zk − zl
,

whence

{zk, wl}2 = −zN+2
k δkl, {wk, wl}2 = 0.

(3) From (5.4) it follows that Liouville 1-form on the orbit ON+1
2red

is

ΩN+1 = −
∑

k

εz
−(N+2)
k

wk dzk.

The reduction to Liouville torus is done by fixing the values of Hamiltonians h0, h1, . . . ,
hN . On the torus wk is the algebraic function of zk due to (4.6). After the reduction the
form Ω−1 becomes a sum of meromorphic differentials on the Riemann surface P (w, z)= 0.

�

Remark 1. When γN+1 = 0, αN+1 6= 0 one can replace αm, βm, γm by tm, sm, rm, m =
0, 1, . . . , N , according to (4.2). In this case the new coordinates (zk, wk), k = 1, . . . , N +1,
defined by the formulas

s(zk) = 0, wk = εt(zk), where ε2 = 1. (5.6)

and have the same properties as in Theorem 4.

The results of Theorem 3 and 4 can be summarized as follows. Liouville tori for the
nonlinear Schrödinger equation and Heisenberg magnetic chain have the same number of
parameterizing variables zk and each variable belongs to the hyperelliptic curve (4.6) of
genus g = N + 1. In other words, the common Liouville torus is the Jacobi variety of the
curve (4.6).
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