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Abstract—People who work in the field of actuarial science 
pay more and more attention to the risk model with dividend 
strategy, it has become one of the hot topics in the current 
actuarial science research. In this paper, we want to study 
the Gerber-Shiu expected discounted penalty function due to 

oscillation which written as  ,b d u , considering a classical 
compound poisson risk model perturbed by diffusion in the 
presence of a constant dividend. The integro expression of 
the Gerber-Shiu function is derivated by the strong markov 

property and also  ,b d u is continuous and twice continuously 
differentiable. then we obtain the integro-differential 
equation of the Gerber-Shiu function by ˆIto  formula, It is 
unique to research the ultimate ruin probability due to 
oscillation compared with other articles.  Finally, we give the 
explicit expression of solution of integro-differential equation 

satisfied by  ,b d u when the claim sizes are exponential 
distribution. 

Keywords-Barrier strategy; Diffusion process; Compound 

poisson process; Gerber-Shiu function; Integro-differential  

I.  INTRODUCTION  
Since the Swedish actuary Filip Lundberg published 

his doctoral paper about ruin theory in 1903, ruin theroy 
has been the core content of risk theroy. The classical risk 
model founded by Filip Lundberg and Swedish 
mathematician Harald Cramer has been studied in a 
number of papers and books. Gerber and Shiu introduced 
the Gerber-Shiu function in the classical risk model in 
1998, the edge distribution and joint distribution of 
laplace transform of ruin time, ruin probability, the 
instantaneous surplus before ruin and the deficit at ruin 
researched early, also can be got by selecting penalty 
function appropriately. The introduction of Gerber-Shiu 
discounted penalty function largely promoted the 
development of risk theory. As the classical risk model is 
too idealistic, in fact there are a lot of distractors, so it’s 

necessary to study the risk model perturbed by diffusion. 
Wan (2007) studied the Gerber-Shiu discounted penalty 
function in compound poisson risk model perturbed by 
diffusion under threshold dividend strategy; Li, Wu 
(2009) also studied the aggregate discounted dividend 
mean in this risk model; Gao,Liu (2010) consided the 
mean of aggregate dividend discounted and Gerber - Shiu 
discounted penalty function in compound poisson risk 
model perturbed by diffusion under constant interest rate 
and threshold dividend strategy; Peng, Hou (2012) 
considered the absolute ruin issue in above risk model. 

Dividend strategy was first proposed by De Finetti 
(1957), Barrier dividend strategy was originally proposed 
by Gerber in 1969.A barrier strategy is considered by 
assuming that there is a horizontal barrier of level 
 b b u  such that when the surplus reaches level b , 

dividends are paid continuously so that no dividends are 
paid when the surplus is less than b . Tan, Yang (2006) 
studied the problem of stochastic dividends in binomial 
risk model under constant value of dividend strategy, And 
when the discount factor is 1, they get the progressive 
expression of Gerber - Shiu discounted penalty function; 
Eric, David (2009) studied the moment of aggregate 
discounted dividend in perturbed markov risk model 
under above strategy, and got the explicit expressions of 
aggregate discounted dividend when claim amount is 
rational family; Wang, Yin (2010)studied the perturbed 
compound poisson risk model with interest on loans and 
constant dividends under absolute ruin. And also obtained 
Gerber-Shiu discounted penalty function satisfies the 
integral - differential equations and boundary conditions.  

On the basis of Peng, Hou(2012), this paper continue 
to study the problems associated with Gerber -Shiu 
expected discounted penalty function in perturbed 
classical risk model under a barrier strategy. 
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II. THE MODEL 
Consider the following classical surplus process 

perturbed by a  diffusion. 
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Where 0u  is the initial surplus, 0c  is the 
premium rate per unit time, 0  is the diffusion 
coefficient,    , 0B t t   is a standard wiener process that 
is independent of the aggregate claims process 
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    , 0N t t  is a poisson process with 

parameter  0   ,denoting the total number of claims 
from an insurance portfolio. 1 2, ,...,X X which are 
independent of   , 0N t t  , are positive i.i.d. random 
variables with common distribution function 
   1P x P x  density function  p x ,and the laplace 

transform    
0

ˆ sxp s e p x dx


  . 
Definition 2.1 The surplus process of ruin time 

  inf , 0b bT t U t   

Definition 2.2 The expected discounted dividend function  

   ,; 0u bV u b E D U u    

Where    
0

; bT
tD u b e dD t  is the present value of all 

dividends, 0  is discount factor.   

We take Gerber-Shiu expected discounted penalty  
function  b u into two parts: one caused by a claim and 
another due to oscillation ,denoting  ,b s u and  ,b d u  
respectively. 
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Here , bT are interpreted as the force of interest and 
ruin time,  1 2 1 2, , 0, 0x x x x   is non-negative 
measurable function, 1x , 2x respectively represent the 
surplus immediately before ruin and the deficit at 
ruin,  I  is the indicator function. As  ,b s u caused by 
claim has been discussed in many literatures, this paper 
we mainly study  ,b d u due to oscillation. 

III. GERBER-SHIU EXPECTED DISCOUNTED PENALTY 
FUNCTION 

Let 0a  ,define  inf :a ss B a   , for  ,x a a  ,then 
we have 
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According to the conclusion of  Revuz, Yor (1991), 
we know that    , , ,s aP B dx s H a s x dx    and 

   ,ap ds h a s ds   , then it will be easy to prove that 

 ,h a t in a , t and  , ,H a t x in a , t , x at least twice 
continuously differentiable.  
Theorem3.1 For 0 u b  , we can derivate  ,b d u  
satisfies the following integral expression: 
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Proof. Consider 0 1aT t T   , for  0,t T , there is 
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we can get the following expression by the strong markov 
property of   U t . 
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Further, according to the size of 0t 、
a and 1T , 

 ,b d u can be divided into three parts: 
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By the conclusion of port and stone (1978), We can obtain 
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Then we take 1I 、 2I 、 3I into above expression, the 
conclusion of theorem can be derivated. 

For 1 2, 0x x  ,make  1 20, , 1x x   ,  4 will be 
written as the expression of the ultimate ruin probability 
due to oscillation, shown as follows: 
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Remark 3.1 For 0 u b  ,we can obtain  ,b d u  
satisfies the following integral expression by a similar 
derivation of Theorem 3.1, 
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Theorem3.2  Suppose  p x is continuously differentiable 

on  0, ,  ,x y  in x is continuous bounded, then 

 ,b d u is continuous and twice continuously 

differentiable on  0,b . 
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on  0,b ， for  any 0  , as long as we can prove 

 ,b d u  is continuous on  ,b   that will be perfect. 

Assume 0 2
t

c


 , 0

2
a




  , 1I 、 2I 、 3I  can be 

expressed respectively as follow by using variable 
substitution: 



     
00

0

0
1 , 0

1, , .   16
u ct at

b d
u ct a

y u ct
I e y H a t dy

 




 

  

 

  
  

 



  

 

   

0

2 ,

,

1 ,
2

                                                     . 17

t u
u ct

c
b d

u

b d

t u
I e h a t a

c c

t a dt

 

 

 

  
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   
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t at

a

u ct y

b d

I e dt H a t y dy

x p u ct y x dx

 





 

 



 



   

 

 

It’s easy to get  ,b d u is bounded by the assumption of 

 ,x y  is bounded. Then according to the continuity of 
H 、 h and f , we know that 1I 、 2I 、 3I in u is 
continuous on  ,b  , and  ,b d u  in u is continuous 

on  ,b  . Further, according to the continuity of 

 ,x y and  f x  in x , and continuous differentiability of 
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H 、 h , we can get  ,b d u  is twice continuously 
differentiable. 

Remark3.2 Suppose density function  p x is 
continuously differentiable on  0, , then we can 

derivate  ,b d u is continuous and twice continuously 
differentiable on  0,b . 

Theorem3.3 Assume  ,b d u is twice continuously 
differentiable on  0,b , we can obtain  ,b d u satisfies the 
following integro-differential equations:  


   

         

2

, ,

, ,0

2
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b d b d

u

b d b d

u c u

u u x p x dx


 

    

 

   



Proof.  Let us make , 0t  and u b    ，

    inf 0, ,tT s u cs B s b t          , there we 

notice  ,b d u and  ,b d u is bounded on  0,b , and also 

    ,0

s T

b d u c B dB


    


   is the Martingale, 

denote 1tT T T  , then we can get 

    

    

      1
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
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
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
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

We can get the expression by ˆIto formula shown as follow: 



    

     
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2
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b d b d

I t e E e u

c u u ds
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
 

 


 
    

 




As    
0 0

lim 1, lim 0t t
t t

P T t P T t 

 
    we know 

   1 ,

0
lim b d
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I t u
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




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b d b d b d

u

b d
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u c u u

I t
u x p x dx

t

I t

t

     

 




    

 



 

So we have    
2

, ,2 b d b du c u


    

       , ,0

u

b d b du u x p x dx         

Then the theorem is proved. 

Remark3.3  Assume  ,b d u is twice continuously 

differentiable on  0,b ,we obtain  ,b d u  satisfies the 
following integro-differential equations: 

     

     
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b d b d b d
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b d
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u x p x dx


  

 

  

  



IV. THE SOLUTION OF INTEGRO-DIFFERENTIAL  
EQUATION 

In this section, we will discuss the claim amount is 
exponential distribution, the expression of the solution of 

 ,b d u satisfies the homogeneous integro-differential 

equations. Assume   ,xp x e    0x  .By laplace 

transform, then    p̂ s s   . Li (2006) shows the 
generalized Lundberg equation:       

     2 2 2 0.   27s cs s            

The generalized Lundberg equation has a positive  root  , 
two negative roots 1 2,R R  , the solution of  19 can be 
expressed as follow:          

 

 

  
 

1

2

1
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2 1 1

2

1 2 2

1 2

1
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R u
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R u
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R
u e

R R R

R
e

R R R

e u b
R R



 




 



  

 





 
  

  

 
  

  


  

 



Where    1 2 .v b v b    

Example 1  In generalized Lundberg equation, if we make 
1.1c  , 1  , 1  , 0.5  , 0.05  , 10b  , then the 

root of  27 can be expressed:  
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1 20.1812,    0.2264,    9.7548.R R        

These results are substituted into the  28 , we can get: 

  0.2264 9.7548 0.1812
10, 0.08 0.9183 0.0017 ,u u u

d u e e e     

Where 0 10.u   
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