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Abstract 

Cellular automata were investigated not only in the viewpoint of formal language theory, but also in the viewpoint 
of pattern recognition. Cellular automata can be classified into some types. A systolic pyramid automata is also one 
parallel model of various cellular automata. A homogeneous systolic pyramid automaton with n-dimensional layers 
(n-HSPA) is a pyramid stack of n-dimensional arrays of cells in which the bottom n-dimensional layer (level 0) has 
size an (a≥1), the next lowest (a-1)n, and so forth, the (a-1)st n-dimensional layer (level (a-1)) consisting of a 
single cell, called the root. Each cell means an identical finite-state machine. The input is accepted if and only if the 
root cell ever enters an accepting state. An n-HSPA is said to be a real-time n-HSPA if for every n-dimensional tape 
of size an (a≥1) it accepts the n-dimensional tape in time a-1. Moreover, a 1- way n-dimensional cellular automaton 
(1-nCA) can be considered as a natural extension of the 1-way two- dimensional cellular automaton to n-dimension. 
The initial configuration is accepted if the last special cell reaches a final state. A 1-nCA is said to be a real- time 
1-nCA if when started with n-dimensional array of cells in nonquiescent state, the special cell reaches a final state. 
In this paper, we propose a homogeneous systolic automaton with n-dimensional layers (n-HSPA), and investigate 
some properties of real-time n-HSPA. Specifically, we first investigate a relationship between the accepting powers 
of real-time n-HSPA’s and real-time 1-nCA’s. We next show the recognizability of n-dimensional connected tapes 
by real-time n-HSPA’s.  
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1. Introduction and Preliminaries 

The question of whether processing n-dimensional 
digital patterns is much more difficult than (n-1) 
dimensional ones is of great interest from the theoretical 
and practical standpoints. Thus, the study of n- 
dimensional automata as a computational model of n- 
dimensional pattern processing has been meaningful[4- 

23]. Cellular automata were investigated not only in the 
viewpoint of formal language theory, but also in the 
viewpoint of pattern recognition. Cellular automata can 
be classified into some types [2]. A systolic pyramid 
automaton is also one parallel model of various cellular 
automata. In this paper, we propose a homogeneous 
systolic automaton with n-dimensional layers (n-HSPA), and 
investigate some properties of real-time n-HSPA.  
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Let Σ be a finite set of symbols. An n-dimensional tape 
over Σ is an (n − 1)-dimensional array of elements of Σ. The 
set of all n-dimensional tapes over Σ is denoted by Σ(𝑛). 
Given a tape x ∈ Σ(𝑛), for each j(1 ≤ j ≤ n), we let lj(x) be the 
length of x along the jth axis. When 1 ≤ ij ≤ lj(x) for each j(1 ≤ 
j ≤ n), let x(i1, i2, . . . , in) denote the symbol in x with 
coordinates (i1, i2, . . . , in). We concentrate on the input tape x 
with l1(x) = l2(x) = l3(x) = … = ln(x). A homogeneous systolic 
pyramid automaton with n-dimensional layers (n-HSPA) is a 
pyramidal stack of n-dimensional arrays of cells in which the 
bottom n-dimensional layer (level 0) has size an (a ≥ 1), the 
next lowest (a − 1)n, and so forth, the (a − 1)st n-dimensional 
layer (level (a − 1)) consisting of a single cell, called the root . 
Each cell means an identical finite-state machine, M = (Q, Σ, 
𝛿, #, F), where Q is a finite set of states, Σ ⊆ Q is a finite set 
of input states, # ∈  𝑄 − Σ is the quiescent state, F ⊆ Q is 
the set of accepting states, and 𝛿: 𝑄2𝑛+1 → Q is the state 
transition function, mapping the current states of M and its 2n 
son cells in a 2 × 2 × ･･･ × 2 block on the n-dimensional 
layer below into M’s next state. The input is accepted if and 
only if the root cell ever enters an accepting state. An n-HSPA 
is said to be a real-time n-HSPA if for every n-dimensional 
tape of size an (a ≥ 1) it accepts the n-dimensional tape in time 
a − 1. By £R[n-HSPA] we denote the class of the sets of all the 
n-dimensional tapes accepted by a real-time n-HSPA[1]. A 
1-way n-dimensional cellular automaton (1-nCA) can be 
considered as a natural extension of the 1-way 
two-dimensional cellular automaton to n dimensions [3]. The 
initial configuration of the cellular automaton is taken to be an 
l1(x) × l2(x) × ･･･ × ln(x) array of cells in the nonquiescent 
state. The initial configuration is accepted if the last special 
cell reaches a final state. A 1-nCA is said to be a real-time 
1-nCA if when started with an l1(x) × l2(x) × ･･･ × ln(x) array 
of cells in the nonquiescent state, the special cell reaches a 
final state in time l1(x) + l2(x) + ･･･  + ln(x)  −  1. By 
£R[1-nCA] we denote the class of the sets of all the 
n-dimensional tapes accepted by a real-time 1-nCA [3].  

2. Main Results 

We mainly investigate a relationship between the accepting 
powers of real-time n-HSPA’s and real-time 1-nCA’s. The 
following theorem implies that real-time n-HSPA’s are less 
powerful than real-time 1-nCA’s.  
 
Theorem 2.1. £R[n-HSPA] ⊊ £R[1-nCA]. 
 

Proof : Let V = {x x ∈ {0,1}(𝑛)  | l1(x) = l2(x) = ･･･ = 
ln(x)&[∀𝑖1 ,∀𝑖2 , . . . ,∀𝑖𝑛−1 (1 ≤ i1 ≤ l1(x), 1 ≤ i2 ≤ l2(x), . . . , 1 
≤ in-1 ≤ ln-1(x))[x(i1, i2, . . . , in-1, 1) = x(i1, i2, . . . , in-1, ln(x))]]}. 

It is easily shown that V1 ∈ £R[1-nCA]. Below, we show 
that V ∉ £R[n-HSPA]. Suppose that there exists a real-time 
n-HSPA(n = 3) accepting V . For each t ≥ 4, let  
 
W(n) = { x ∈ {0,1}(3)| l1(x) = l2(x) = ･･･ = ln(x) & [x (1, 2, 1), 
(t, t − 1, t)] ∈ {0}(3)}.  

Eight sons of the root cell A(t−1,1,1,1) of M A(t−2,1,1,2), A(t−2,1,2,2), 
A(t−2,2,1,2), A(t−2,2,2,2), A(t−2,1,1,3), A(t−2,1,2,3), A(t−2,2,1,3), A(t−2,2,2,3) are 
denoted by CUNW, CUSW, CUSE,CUNE, CDNW, CDSW, CDSE, CDNE, 
respectively. For each x in W(n), x(UNW), x(USW), x(USE), 
x(UNE), x(DNW), x(USW), x(USE), x(UNE) are the states of 
CUNW, CUSW, CUSE, CUNE, CDNW, CDSW, CDSE, CDNE, 
at time t-2, respectively. Let 𝜎(𝑥)  = (x(UNW), x(USW), 
x(DNW), x(DSW)), 𝛾(𝑥)  = (x(USE), x(UNE), x(DSE), 
x(DNE)). and 𝜌(𝑥) = (x(UNW), x(USW), x(DNW), x(DSW), 
x(USE), x(UNE), x(DSE), x(DNE)). Then, the following two 
propositions must hold:  
 
Proposition 2.1. (i) For any two tapes x, y ∈ W(n) whose 
1st(1−3) planes are same, 𝜎(𝑥) = 𝜎(𝑦). (ii) For any two 
tapes x, y ∈ W(n) whose n-th(1−3) planes are same, 𝛾(𝑥) = 
𝛾(𝑦)  
 
[Proof : From the mechanism of each cell, it is easily seen that 
the states of CUNW, CUSW, CDNW, CDSW are not influenced by the 
information of x(1 − 3)t’s. From this fact, we have (i). The 
proof of (ii) is the same as that of (i).                       
□]  
 
Propositon 2.2. For any two tapes x, y ∈ W(t) whose 1st 
(1-3) planes are different, 𝜎(𝑥) ≠ 𝜎(𝑦).  
 
[Proof : Suppose to the contrary that 𝜎(𝑥) = 𝜎(𝑦). We 
consider two tapes x’, y’ ∈ W(t) satisfying the following :  
(i) x(1−3)1 and x(1−3)t, are equal to x(1−3)1 of x, respectively  
(ii) y′(1 − 3)1 is equal to y(1 − 3)1, and y′(1 − 3)t is equal to x(1 
− 3)1.  
 

As is easily seen, x′ ∈ V and so x′ is accepted by M. On the 
other hand, from Proposition 2.1(ii), 𝛾(𝑥′) = 𝛾(𝑦′). From 
Proposition 2.1(i), 𝜎(𝑥) = 𝜎(𝑥′), 𝜎(𝑦) = 𝜎(𝑦′). It follows 
that y′ must be also accepted by M. This contradicts the fact 
that y′ is not in V .                                     
□]  
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Proof of Theorem 2.1 (continued) : Let p(t) be the number of 
tapes in W(t) whose 1st (1-3) planes are different, and let Q(t) 
= { 𝜎(𝑥) | x ∈ W(t)}, where k is the number of states of each 
cell of M. Then, p(t) = 2𝑡2 , and Q(t) ≤ k4. It follows that p(n) 
> Q(t) for large t. Therefore, it follows that for large t, there 
must be two tapes x,y in W(t) such that their 1st (1-3) planes 
are different and 𝜎(𝑥) = 𝜎(𝑦). This contradicts Proposition 
2.2, so we can conclude that V ∉ £R[3-HSPA]. In the case of 
n-dimension, we can show that V ∉ £R[n-HSPA] by using the 
same technique. This completes the proof of Theorem 2.1.  
□ 
 

We next show the recognizability of n-dimensional 
connected tapes by real-time n-HSPA’s by using the name 
technique of Ref.[3]. Let x in {0,1}(n). A maximal subset P of 
Nn satisfying the following conditions is called a 1-component 
of x. 
(i)For any (i1,i2, ... ,in ∈  P, we have 1≤i1≤l1(x), 
1≤i2≤l2(x),. . .,1≤in≤ln(x), and x(i1,i2, ... ,in) = 1. 
(ii) For any (i1,i2, ... ,in), (i1’, i2’, ... , in’) ∈ P, there exists a 
sequence (i1,0,i2,0, . . . ,in,0),(i1,1,i2,1, . . . ,in,1), . . . , 
(i1,n,i2,n, . . . ,in,n) of elements in P such that (i1,0,i2,0, . . . ,in,0) = 
(i1,i2, . . . ,in), (i1,n,i2,n, . . . ,in,n) = (i′1,i′2, . . . ,i′n), and |i1,j -i1,j−1| 
+ |i2,j -i2,j−1| + . . . + |in,j -in,j−1|≤ 1(1 ≤ j ≤ n). A tape x ∈ {0, 
1}(n) is called connected if there exists exactly one 1- 
component of x. 

Let Tc be the set of all the n-dimensional connected tapes. 
Then, we have  
 
Theorem 2.2. Tc ∉ £R[n-HSPA]. 

3. Conclusion 

We investigated a relationship between the accepting 
powers of homogeneous systolic pyramid automaton with 
n-dimensional layers(n-HSPA) and one-way n-dimensional 
cellular automata (1-nCA) in real time, and showed that 
real-time n-HSPA’s are less powerful than real time 1-nCA’s. 
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